Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation

View ORCID ProfileErik Clark
doi: https://doi.org/10.1101/099671
Erik Clark
Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erik Clark
  • For correspondence: ec491@cam.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

Drosophila segmentation is a well-established paradigm for developmental pattern formation. However, the later stages of segment patterning, regulated by the “pair-rule” genes, are still not well understood at the systems level. Building on established genetic interactions, I construct a logical model of the Drosophila pair-rule system that takes into account the demonstrated stage-specific architecture of the pair-rule gene network. Simulation of this model can accurately recapitulate the observed spatiotemporal expression of the pair-rule genes, but only when the system is provided with dynamic “gap” inputs. This result suggests that dynamic shifts of pair-rule stripes are essential for segment patterning in the trunk, and provides a functional role for observed posterior-to-anterior gap domain shifts that occur during cellularisation. The model also suggests revised patterning mechanisms for the parasegment boundaries, and accounts for the even-skipped null mutant phenotype. Strikingly, a slightly modified version of the model is able to pattern segments in either simultaneous or sequential modes, depending only on initial conditions. This suggest that fundamentally similar mechanisms may underlie segmentation in short-germ and long-germ arthropods.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted March 20, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation
Erik Clark
bioRxiv 099671; doi: https://doi.org/10.1101/099671
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation
Erik Clark
bioRxiv 099671; doi: https://doi.org/10.1101/099671

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3586)
  • Biochemistry (7545)
  • Bioengineering (5495)
  • Bioinformatics (20732)
  • Biophysics (10294)
  • Cancer Biology (7951)
  • Cell Biology (11610)
  • Clinical Trials (138)
  • Developmental Biology (6586)
  • Ecology (10168)
  • Epidemiology (2065)
  • Evolutionary Biology (13580)
  • Genetics (9521)
  • Genomics (12817)
  • Immunology (7906)
  • Microbiology (19503)
  • Molecular Biology (7641)
  • Neuroscience (41982)
  • Paleontology (307)
  • Pathology (1254)
  • Pharmacology and Toxicology (2192)
  • Physiology (3259)
  • Plant Biology (7025)
  • Scientific Communication and Education (1294)
  • Synthetic Biology (1947)
  • Systems Biology (5419)
  • Zoology (1113)