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ABSTRACT  

An estimated 17% of cancers worldwide are associated with infectious causes. The extent 
and biological significance of viral presence/infection in actual tumor samples is 
generally unknown but could be measured using human transcriptome (RNA-seq) data 
from tumor samples. 

We present an open source bioinformatics pipeline viGEN, which combines existing 
well-known and novel RNA-seq tools for not only the detection and quantification of 
viral RNA, but also variants in the viral transcripts. 

The pipeline includes 4 major modules: The first module allows to align and filter out 
human RNA sequences; the second module maps and count (remaining un-aligned) reads 
against reference genomes of all known and sequenced human viruses; the third module 
quantifies read counts at the individual viral genes level thus allowing for downstream 
differential expression analysis of viral genes between experimental and controls groups. 
The fourth module calls variants in these viruses. To the best of our knowledge, there are 
no publicly available pipelines or packages that would provide this type of complete 
analysis in one open source package. 

In this paper, we applied the viGEN pipeline to two case studies. We first demonstrate 
the working of our pipeline on a large public dataset, the TCGA cervical cancer cohort. 
We also performed additional in-depth analyses on a small focused study of TCGA liver 
cancer patients. In this cohort, we perform viral-gene quantification, viral-variant 
extraction and survival analysis. This allowed us to find differentially expressed viral-
transcripts and viral-variants between the groups of patients, and connect them to clinical 
outcome.  

From our analyses, we show that we were able to successfully detect the human 
papilloma virus among the TCGA cervical cancer patients. We compared the viGEN 
pipeline with two metagenomics tools and demonstrate similar sensitivity/specificity. We 
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were also able to quantify viral-transcripts and extract viral-variants using the liver cancer 
dataset. The results presented corresponded with published literature in terms of rate of 
detection, viral gene expression patterns and impact of several known variants of HBV 
genome. Results also show novel information about distinct patterns of expression and 
co-expression in Hepatitis B and the Human Endogenous Retrovirus (HERV) K113 
viruses. 

This pipeline is generalizable, and can be used to provide novel biological insights into 
the significance of viral and other microbial infections in complex diseases, 
tumorigeneses and cancer immunology. The source code, with example data and tutorial 
is available at: https://github.com/ICBI/viGEN/. 

Keywords – RNA-seq, viral detection, liver cancer, TCGA, variant analysis, next-
generation sequencing, cancer immunology 

INTRODUCTION 
An estimated 17% of cancers worldwide are associated with infectious causes. These 
infectious agents include viruses, bacteria, parasites and other microbes. Examples of 
viruses include human papilloma viruses (HPVs) in cervical cancer, epstein-Barr virus 
(EBV) in nasopharyngeal cancer, hepatitis B and C in liver cancer (HBV and HCV), 
human herpes virus 8 (HHV-8) in Kaposi sarcoma (KS); human T-lymphotrophic virus-1 
(HTLV-1) in adult T cell lymphocytic leukemia (ATL) and non-Hodgkin lymphoma; 
merkel cell polyomavirus (MCV) in Merkel cell carcinoma [1]. Bacteria such as 
Helicobacter pylori have been implicated in stomach cancer. Parasites have also been 
associated with cancer, examples are Opisthorchis viverrini and Clonorchis sinensis in 
bile duct cancer and Schistosoma haematobium in bladder cancer [1]. Detection and 
characterization of these infectious agents in tumor samples can give us better insights 
into disease mechanisms and their treatment [2]. 
 
Vaccines have been developed to help protect against infection from the many cancers. 
But these vaccines can only be used to help prevent infection and cannot treat existing 
infections [1]. There are several screening methods widely used to detect viral infections, 
especially for blood borne viruses including HBV, HCV, HIV and HTLV. These include 
the enzyme linked immunosorbent assay (ELISA or EIA) [3], chemluminescent 
immunoassay (ChLIA), Indirect fluorescent antibody (IFA),  Western blot (WB), 
Polymerase Chain Reaction (PCR), and Rapid immunoassays [4]. ELISA and WB test 
detects and measures antibodies in serum taken from the patient’s blood, and are typically 
prescribed after certain symptoms are observed in the patient.   

 
There are several challenges in detection of viruses in tumors including loss of viral 
information in progressed tumors and limited or latent replication resulting in low 
transcription of tumors [5]. The extent and biological significance of viral 
presence/infection in actual tumor samples is generally unknown but could be measured 
using human transcriptome data from tumor samples.  
 
The popularity of next-generation sequencing (NGS) technology has exploded in the last 
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decade. NGS technologies are able to perform rapid sequencing, and in a massively 
parallel fashion [6]. In recent years, applications of NGS technologies in clinical 
diagnostics have been on the rise [7, 8]. Amongst the various NGS technologies, whole-
transcriptome sequencing, also called RNA-seq has been very popular with methods and 
tools being actively developed. Exploring the genome using RNA-seq gives a different 
insight than looking at the DNA since the RNA-seq would have captured actively 
transcribed regions. Every aspect of data output from this technology is now being used 
for research, including detection of viruses and bacteria [9-11]. They are also independent 
of prior sequence information, and require less starting material compared to 
conventional cloning based methods, making it a powerful and exciting new technology 
in virology [6]. These high throughput technologies give us direct evidence of infection 
in the tissue as compared to ELISA-based assays, which only proves presence of 
infection somewhere in the human body. RNA-seq technology has hence enabled the 
exploration and detection of viral infections in human tumor samples. This technology 
also enables detection of variants in viral genome, which have been connected to clinical 
outcome [12] [13]. 

In recent years, US regulators approved a viral based cancer therapy [14], proving that 
the study of viruses in the human transcriptome has biomedical interest, and is paving the 
way for promising research and new opportunities. 

In this paper, we present our pipeline viGEN to not only detect and quantify read counts 
at the individual viral genes level, but also detect viral variants from human RNA-seq 
data. The characterization of viral variants helps enable better epidemiological analysis. 
The input file to our pipeline is a fastq [15] file, so our viGEN pipeline can be extended 
to work with genomic data from any NGS technology. Our pipeline can also be used to 
detect and explore not only viruses, but other microbes as well, as long as the sequence 
information is available in NCBI [16].  

We applied our viGEN pipeline to two case studies as a proof of concept - a dataset of 
304 cervical cancer patients, and a set of 50 liver cancer patients, both from the TCGA 
collection. We first applied the pipeline to the transcriptome of cervical cancer patients to 
see if we are able to detect the human papilloma viruses. We also performed additional 
in-depth analyses on a small focused study of liver cancer patients. In this cohort, we 
perform viral-gene quantification, viral-variant extraction and survival analysis.  

From our analyses, we show that we were able to successfully detect the human 
papilloma virus among the TCGA cervical cancer patients. We compared the viGEN 
pipeline with two metagenomics tools and demonstrate similar sensitivity/specificity. We 
were also able to quantify viral-transcripts and extract viral-variants using the liver cancer 
dataset. This enabled us to perform downstream analysis to give us new insights into 
disease mechanisms. 

In addition to the two case studies, we have made available an end-to-end tutorial 
demonstrated on a publicly available RNA-seq sample from an HBV liver cancer patient 
from NCBI SRA (http://www.ncbi.nlm.nih.gov/bioproject/PRJNA279878). We also 
provided step-by-step instructions on how to run our viGEN pipeline on this sample data, 
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along with the code at https://github.com/ICBI/viGEN/ and demonstrate the detection of 
HBV transcripts in this sample. This allows other users to apply this pipeline to explore 
viruses in their data and disease of interest. We are currently implementing the viGEN 
pipeline in the Seven Bridges Cancer Genomics Cloud [17]. 

There are a number of existing pipelines that detect viruses from human transcriptome 
data. Of these, very few pipelines offer quantification at the gene expression level. A 
comprehensive comparison of these pipelines is provided in Table 1. Our goal was not to 
compete with these other tools, but to offer a convenient and complete end–to-end 
publicly available pipeline to the bioinformatics community. To the best of our 
knowledge there are no publicly available pipelines or packages that would provide this 
type of complete analysis in one package. Customized solutions have been reported in the 
literature however were not made public.  

<<Table 1 goes here >> 

In the future, our plan is to package this pipeline and make it available to users through 
Bioconductor [18], allowing users to perform analysis on either their local computer or 
the cloud.  

MATERIALS AND METHODS  
 
In this paper, we applied our viGEN pipeline to two case studies as a proof of concept - a 
dataset of 304 cervical cancer patients, and a set of 50 liver cancer patients, both from the 
TCGA collection [19]. We first applied the pipeline to the transcriptome of cervical 
cancer patients to see if we are able to detect the human papilloma viruses. We also 
performed additional in-depth analyses on a small focused study of liver cancer patients 
afflicted with Hepatitis B virus. In this cohort, we perform viral-gene quantification, 
viral-variant extraction and survival analysis. The results from these analyses allowed us 
to compare experimental and control groups using viral-gene expression data and viral-
variant data, and give us insights into their impacts on the tumor, and disease mechanisms.  
 
In the following sections, we describe the viGEN pipeline, and the two case studies. 

The viGEN pipeline 

The viGEN pipeline includes 4 major modules. Figure 1 shows an image of our viGEN 
pipeline.  

<<Figure 1 goes here>> 

Module 1: Viral genome level analysis (filtered human sample input) 
In Module 1 (labelled as ‘filtered human sample input’), the human RNA sequences were 
aligned to the human-reference genome using RSEM [20] tool. One of the outputs of 
RSEM includes sequences that did not align to the human genome (hence the name 
‘filtered human sample input’). These un-aligned sequences were taken and aligned to the 
viral reference file using popular alignment tools BWA [21] and Bowtie2 [22]. 
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Module 2: Viral genome level analysis (unfiltered human sample input) 
In Module 2 (labelled as ‘unfiltered human sample input’), the human RNA seq 
sequences were directly aligned to the viral reference using Bowtie2 without any filtering.  
The reason for using two methods to obtain the viral genomes in human RNA-seq data 
(Module 1 and Module 2) was to allow us to be as comprehensive as possible in viral 
detection. 

The aligned reads from Module 1 and 2 were in the form of BAM files [23], from which 
read counts were obtained for each viral genome species (referred to as ‘genome level 
counts’) using Samtools idxstats [24] or Picard BAMIndexStats [25] tools.  Using the 
genome level counts, we estimated the number of reads that covered the genome, a form 
of viral copy number. Viral copy number was defined as in equation below: 

����� ��	
 ����� �
����� �� �		�� ����� �  ���� ������

����� ������
 

Only those viral species with copy number more than a threshold are selected for the next 
module. 

Module 3: Viral gene expression analysis 
The BAM files from Module 1 and 2 (from Bowtie2 and BWA) were input into the 
Module 3 (referred to as ‘viral gene expression level analysis’), which calculated 
quantitate read counts at the individual viral genes level. We found existing RNA-seq 
quantification tools to be not sensitive enough for viruses, and hence developed our own 
algorithm for this module. Our in-house algorithm used region-based information from 
the general-feature-format (GFF) files [26] of each viral genome, and the reads from the 
BAM file. It created a summary file, which had a total count of reads within or on the 
boundary of each region in the GFF file.  This is repeated for each sample and for each 
viral GFF file. At the end, a matrix is obtained where the features (rows) are regions from 
the GFF file, and the columns are samples. The read count output from Module 3 (viral 
gene expression module) allowed for downstream differential expression analysis of viral 
genes between experimental and controls groups. The source code for our in-house 
algorithm written using the R programming language [27] has been made public at 
available at github.com/ICBI/viGEN.   

Module 4: Viral RNA variant calling module 
The BAM files from Module 1 and 2 (from Bowtie2) were also input to Module 4 to 
detect mutations in the transcripts from these viruses (referred to as ‘viral RNA variant 
calling module’). The BAM files were first sorted coordinate-wise using Samtools [24]; 
PCR duplicates were removed using tool Picard [25], then the chromosomes in the BAM 
file were ordered in the same way as the reference file using Picard. The Viral reference 
file was created from combining all known and sequenced human viruses obtained from 
NCBI [16]. Because viral variants are known to be low frequency, we have selected a 
variant calling tool Varscan2 [28], which allows detection of low-frequency variants [29]. 
Low quality and low depth variants were flagged, but not filtered out, in case these low 
values were attributed to low viral load. Once the variants were obtained, they were 
merged to form a multi-sample VCF file. Only variants that had a variant in at-least one 
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sample were retained. PLINK [30] was used to perform case-control association test 
(Fishers Exact Test) to compare groups.  

Tutorial in Github  
The viGEN pipeline is easy to implement because our pipeline incorporates existing best 
practices and tools available. For Module 3, we found existing RNA-seq quantification 
tools to be not sensitive enough for viruses, and hence developed our own algorithm. The 
source code for the in-house algorithm, along with a tutorial on how to execute the code 
on sample data has been made public at https://github.com/ICBI/viGEN/. 
 

Since access to TCGA raw data is controlled access, we could not use this dataset to 
create a publicly available tutorial. So we used a publicly available RNA-seq dataset to 
demonstrate our pipeline with an end-to-end workflow. We chose one sample 
(SRR1946637) from publicly available HBV liver cancer RNA-seq dataset from NCBI 
SRA (http://www.ncbi.nlm.nih.gov/bioproject/PRJNA279878). This dataset is also 
available through EBI SRA (http://www.ebi.ac.uk/ena/data/view/SRR1946637). The 
dataset consists of 50 HBV Liver cancer patients, and 5 adjacent normal liver tissues. We 
downloaded the raw reads for one sample, and applied our viGEN pipeline to it and were 
able to successfully detect HBV transcripts in this sample. A step-by-step workflow that 
includes – description of tools, code, intermediate and final analysis results are provided 
in Github: https://github.com/ICBI/viGEN/. This tutorial has also been provided as 
Additional File 1. 

Custom reference index 
We were interested in exploring all viruses existing in humans. So we first obtained 
reference genomes of all known and sequenced human viruses obtained from NCBI [16] 
(745 viruses) and merged them into one file (referred to as the ‘viral reference file’) in 
fasta file format [31]. This file has been shared in our Github page. 

Case studies 

Cervical cancer dataset 
Cervical cancer is caused by the Human Papilloma Virus (HPV). This dataset consisted 
of 304 cervical cancer patients in the TCGA data collection. These samples were primary 
tumors from either Cervical Squamous Cell Carcinoma or Endocervical Adenocarcinoma 
where RNA-seq data was available.  
 
We applied our viGEN pipeline on these samples using the Seven Bridges platform 
(https://cgc.sbgenomics.com). Among the 304 cervical cancer patients, 22 patients had 
virus detection confirmed by PCR or other lab methods and made available through the 
clinical data. So we used this information from the 22 patients to estimate the sensitivity 
and specificity of our viGEN pipeline.   

Liver cancer dataset 
This dataset consisted of 50 liver cancer patients in the TCGA data collection. 25 of these 
patients were afflicted with Hepatitis B virus (labelled ‘HepB’), while the rest of the 25 
patients had a co-infection of both Hepatitis B and C viruses (labelled ‘HepB+C’). 
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Information about viral presence was obtained from ‘Viral Hepatitis Serology’ attribute 
from the clinical information.  

We first applied the viGEN pipeline on the 50 samples, using the Globus Genomics 
platform [32]. Once the viral genomes were detected, we then chose only the high 
abundance viral species for the gene quantification step and viral variant detection steps 
(Module 3 and 4 respectively). 

We then performed a focused analysis on this dataset. We used the viral-gene expression 
read counts, to examine the differences between “Dead” and “Alive” samples. The 
analysis was performed using a Bioconductor software package called EdgeR [33] in the 
R programming language (http://www.R-project.org). Cox proportional hazards (Cox PH) 
regression model [34] was applied to this group to look at the association of viral-gene 
expression data with overall survival.  We also compared the dead and alive samples at 
the viral RNA variant level using a tool called PLINK to see if it can add valuable 
information to the tumor landscape in humans.  

RESULTS 

Detection of HPV in cervical cancer patients 
We used our viGEN pipeline to detect viruses in the RNA of human cervical tissue and 
obtained viral copy number for each species. We used a threshold copy number of 10 as a 
‘positive’ viral detection for both HPV-16, HPV-18 and HPV-26 viruses. Based on this 
criterion, HPV-16 was detected in 53% of the samples, HPV-18 in 13% of the samples 
and HPV-26 in 0.3 % of the samples (Figure 2).  

<<Figure 2 goes here >> 

 
We obtained the clinical data for this TCGA cervical cancer cohort from the cBio portal 
[35]. Among the 304 patients, 22 patients had virus detection confirmed by PCR or other 
lab methods and made available through the clinical data. Out of the 22 patients, 12 
patients had the HPV-16 virus, 4 patients had HPV-18, and the rest had other HPV 
viruses. So we used this information from the clinical data to estimate the sensitivity and 
specificity of our viGEN pipeline.  We got a sensitivity of 83% and specificity of 60% for 
HPV-16 detection (Table 2 A); and a sensitivity of 75% and specificity of 94% for HPV-
18 detection   (Table 2 B) 
 

<< Table 2 A goes here >> 
<< Table 2 B goes here >> 

 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/099788doi: bioRxiv preprint 

https://doi.org/10.1101/099788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

Additional analysis in liver cancer patients 

Detection of Hepatitis B virus at the genome level 
We applied our viGEN pipeline (modules 1 and 2) on the RNAseq data from the TCGA 
liver cancer tumors, and obtained genome-level read counts for each viral species. We 
used a threshold copy number of 10 to define a positive detection of the Hepatitis B virus.  

Once the viral genomes were detected, we short-listed the high abundance viral species 
for the viral-gene quantification step and viral-variant detection steps (Module 3 and 4 
respectively). High abundance was defined as those virus species that were detected in at-
least 5 samples. In addition to Hepatitis B and C viruses, several other viruses came up in 
this short list including Human endogenous retrovirus K113 (HERV K113 and others. A 
complete list is provided in Table 3. 

<<Table 3 goes here >> 

Comparing dead and alive samples in the using viral gene expression data 
To get a more detailed overview of the viral landscape, we applied Module 3 of the 
viGEN pipeline to the liver cancer dataset. This allowed us to quantify viral-gene 
expression regions in the RNA of liver tumor tissues. We then used those results to 
examine the differences between dead and alive samples.  

Out of 25 HepB patients, 16 were alive (baseline group), and 9 dead (comparison group) 
as per the clinical data. It is known that these patients were afflicted with the Hepatitis B 
virus and hence many of the differentially expressed regions were from this viral genome. 
But as we know, other viruses also coexist in humans. This was confirmed by the 
presence of differentially expressed viral-regions from other viruses. 

The differentially expressed regions that were significant among the results are shown in 
Table 4 (A) and Table 4 (B). Table 4 (A) lists only the differentially expressed regions 
from Hepatitis B virus and Table 4 (B) shows the differentially expressed regions from 
other viruses. 

<<Tables 4 (A) and 4 (B) go here >> 

From the differential expression analyses, the two most informative results were (1) a 
region of the Hepatitis B genome that produced the HBeAg and HBcAg proteins were 
overexpressed in the dead patients and (2) another region of the Hepatitis B genome that 
produced HBsAg protein was overexpressed in the alive patients. 

In detail, we saw several important findings as described below:  

(a) Region NC_003977.1_CDS_1814_2452 of the Hepatitis B genome was 2.18 times 
overexpressed (log fold change = +1.128) in dead patients. This region contains Gene C 
that produces pre-code protein external core antigen; HBeAg. HBeAg is produced by 
proteolytic processing of the pre-core protein  
(b) Region NC_003977.1_CDS_1901_2452 which was 1.74 times overexpressed (log 
fold change = +0.8, FDR = 0.053) in dead patients contains Gene C as above, but 
encodes a different core antigen HBcAg  
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(c) Region NC_003977.1_CDS_2848_4050 of the Hepatitis B genome was 6.73 times 
over expressed (log fold change = -2.7) in the alive patients of compared to the 
dead’patients. This region encodes Gene S that produces a large surface protein/L 
glycoprotein/L-HBsAG  
(d) We also found several regions of the Human endogenous retrovirus K113 (HERV 
K113) viral genome (NC_022518.1_region_1112_6746, NC_022518.1_STS_5100_5381 
and NC_022518.1_STS_7174_7323) to be about 2 times overexpressed on average in 
alive patients (log fold change = -1.186, -1.051, -0.992).  

Survival analysis (Cox Regression) using viral gene expression data 
Based on the results from previous section, we selected two most informative regions 
from the Hepatitis B genome (log counts per million from 
NC_003977.1_CDS_2848_4050, NC_003977.1_CDS_1814_2452) for a Cox 
Proportional Hazard (Cox PH) model to look at association with overall survival event 
and time.  This model was applied on the 25 Hep B and 25 HepB+HepC samples to 
maximize power. The result from this model (Table 5), are consistent with the results 
from differential expression analysis: 
 
(a) The Cox PH model shows that assuming other covariant to be constant, unit increase 
in expression of this region NC_003977.1_CDS_1814_2452, increases the hazard of 
event (death) by 70%.  
(b) On the other hand, that assuming other covariant to be constant, unit increase in 
expression of this region NC_003977.1_CDS_2848_4050, decreases the hazard of event 
(death) by 43%.  
(c) The overall model is significant with p-value < 0.05 from the Log rank test (also 
called Score test). 
 

<<Table 5 goes here >> 

Comparing dead and alive samples using viral-variant data  
We performed variant calling (Module 4) on the liver cancer patients to see if it can add 
valuable information to the tumor landscape in humans. We then compared the dead and 
alive samples at the viral-variant level on the 25 HepB patients. For this analysis, the 
outputs from both Module 1 and 2 were fed into Module 4.  
 
Most of the top variants from filtered human sample (Module 1 + Module 4) and 
unfiltered human sample (Module 2 + Module 4), were the same. We collated the 
significant common results (p value <= 0.05) in Table 6 (A) and Table 6 (B). Among 
these results, we saw several missense and frameshift variants in Gene X of the Hepatitis 
B genome (nucleotide 1479), Gene P (2573, 2651, 2813), and a region that overlaps Gene 
P and PreS1 (nucleotides 2990, 2997, 3105, 3156). All these variants were found mutated 
more in the cases than controls. Other significant common results included variants in 
Gene C (nucleotide 1979, 2396) and variants in PreS2 region (nucleotide positions 115, 
126 and 148) (Table 6 A). 
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In addition, there were two missense variants that were common among the top results, 
but not significant (p value = 0.06). They were variants in the X gene of the Hepatitis B 
genome (nucleotides 1762 and 1764) (Table 6 A).  

Among the significant common results to both, were a few variants of the Human 
endogenous retrovirus K113 complete genome (HERV K113). These include nucleotide 
positions 7476, 7426 and 8086. These map to frameshift and missense mutations in the 
putative envelope protein of this virus (Q779_gp1, also called ‘env’) (Table 6 B). 

<<Table 6 A and 6 B go here>> 

DISCUSSION 

Detection of HPV in cervical cancer patients 
The Seven Bridges team used two metagenomic tools Centrifuge [36] and Kraken [37] to 
detect HPV viruses on the same cohort of TCGA patients [38, 39], and shared the results 
with us. They used an abundance of 0.02 as a positive viral detection [38, 39].  We 
compared viGEN with Kraken and Centrifuge in terms of the percentage of samples 
where the species was detected (Table 7). We can see that the results are in the same 
range for all three tools.  
 

<<Table 7 goes here >> 
 

We also estimated the sensitivity and specificity of these tools using the same 22 patients 
and compared with that of the viGEN pipeline.  The Centrifuge tool had a sensitivity of 
83% and specificity of 60% for HPV-16 detection; and a sensitivity of 75% and 
specificity of 94% for HPV-18 detection. The Kraken tool had a sensitivity of 83% and 
specificity of 20% for HPV-16 detection; and a sensitivity of 75% and specificity of 17% 
for HPV-18 detection (detailed in Additional File 2). It shows that our viGEN pipeline 
was able to match the sensitivity and specificity of Centrifuge tool and surpassed that of 
Kraken (detailed in Additional File 2). 

Additional analysis on liver cancer patients 
We used our viGEN pipeline to get genome-level read counts obtained from viruses 
detected in the RNA of human liver tissue. In our results, HBV was correctly detected in 
20% of the samples. This is similar to earlier analyses of TCGA liver cancer cohort study 
[10, 40, 41], which detected the HBV virus in 23% and 32% (with typically low counts 
range) of cases respectively. 

It has also been reported that the viral gene X (HBx) was the most predominately 
expressed viral gene in liver cancer samples [40] which is in concordance with our 
findings where the peak number of reads were observed for gene X region of the HBV 
genome. 

Comparing dead and alive samples in the liver cancer cohort using viral gene 

expression data 

To get a more detailed overview of the viral landscape, we examined the human RNA-
seq data to detect and quantify viral gene expression regions. We then examined the 
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differences between dead and alive samples at the viral-transcript level on the Hepatitis B 
sub-group (Table 4 (A) and Table 4 (B)).  
 
From the differential expression analyses, the two most informative results were (1) a 
region of the Hepatitis B genome that produced the HBeAg protein was overexpressed in 
the dead patients and (2) another region of the Hepatitis B genome that produced HBsAg 
protein was overexpressed in the alive patients. 

Presence of HBeAg or HBcAg is an indicator of active viral replication; this means the 
person infected with Hepatitis B can likely transmit the virus on to another person. 
Typically, loss of HBeAg is an indicator of recovery from acute Hepatitis B infection. 
Active viral replication could allow the virus to persist in infected cells, and increase the 
risk of disease [42, 43]. So our results, showing that antigens HBeAg and HBcAg were 
overexpressed in dead patients compared to alive patients makes sense, indicating that 
these patients never recovered from acute infection. 

The results also indicate a higher level of HBsAg in the alive patients compared to the 
dead patients. The highest levels of HBsAg in the virus are known to occur in the 
‘immunotolerant phase’. This pattern is seen in patients who are inactive carriers of the 
virus i.e. they have the wild type DNA, and the virus has been in the host for so long, that 
the host does not see the virus as a foreign protein in the body, and hence there’s no 
immune reaction against the virus. In this phase, there is known to be minimal liver 
inflammation and low risk of disease progression [44-46]. This could explain why we 
saw higher level of HBsAg in the alive patients compared to the dead patients.  

Also among the significant results were three regions from the Human endogenous 
retrovirus K113 (HERV K113) genome (with negative log fold change) that were 
overexpressed in the alive patients. Two of these regions were Sequence-tagged sites 
(STS) and the third region was in the gag-pro-pol region that has frameshifts. HERV 
could protect the host from invasion from related viral agents through either retroviral 
receptor blockade or immune response to the undesirable agent [47]. 

Overall, we found that our results from viral-gene expression level make biological sense, 
with much of the results validated through published literature. 

Comparing dead and alive samples in the liver cancer cohort using viral-variant data  

We performed variant calling on the viral data to see if it can add valuable information to 
the tumor landscape in humans. We then compared the dead and alive samples at the 
viral-variant level on the 25 patients in the Hepatitis B sub-group. 
 
Among the significant results (Table 6A and Table 6B) included variants in Gene C 
(nucleotide 1979, 2396) and variants in PreS2 region (nucleotide positions 115, 126 and 
148). The Gene C region creates the pre-capsid protein, which plays a role in regulating 
genome replication [48]. The mutation in the 2396 position lies in a known CpG island 
(ranging from 2215-2490), whose methylation level is significantly correlated with 
hepatocarcinogenesis [49]. Mutations in PreS2 are associated with persistent HBV 
infection, and emerge in chronic infections. The PreS1 and PreS2 regions are known to 
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play an essential role in the interaction with immune responses because they contain 
several epitopes for T or B cells [50]. 

Mutations in the 1762/1764 positions of the X gene are known to be associated with 
greater risk of HCC [50] [51], and is independent of serum HBV DNA level [51]. This 
mutation combination is also known to be associated with hepatitis B related acute-on-
chronic liver failure [52]. It is predicted that mutations associated with HCC variants are 
likely generated during HBV-induced pathogenesis. The A1762T/G1764A combined 
mutations was shown to be a valuable biomarker in the predicting the risk of HCC [50] 
[51]; and are often detected about 10 years before the diagnosis of HCC [50]. 

Among the significant common results to both, were a few variants of the Human 
endogenous retrovirus K113 complete genome (HERV K113). These variants map to 
frameshift and missense mutations in the putative envelope protein of this virus 
(Q779_gp1, also called ‘env’). Studies have shown that this envelope protein mediates 
infections of cells [53].  HERV K113 is a provirus and is capable of producing intact 
viral particles [54]. Studies have shown a strong association between HERV-K antibodies 
and clinical manifestation of disease and therapeutic response [12] [13]. It is 
hypothesized that retroviral gene products can be ‘reawakened’ when genetic damage 
occurs through mutations, frameshifts and chromosome breaks. Even though the direct 
oncogenic effects of HERVs in cancer are yet to be completely understood, it has shown 
potential as diagnostic or prognostic biomarkers and for immunotherapeutic purposes 
including vaccines [13]. 

Limitations 
One limitation of our viGEN pipeline is that it is dependent on sequence information 
from reference genome. This makes it challenging to detect viral strains where reference 
sequence information is not known. In the future, we plan to explore de novo assembly 
when aligning to reference genome. 

Biological significance 
In recent years, US regulators approved a viral based cancer therapy [14], proving that 
the study of viruses in the human transcriptome has biomedical interest, and is paving the 
way for promising research and new opportunities. 
 
We show that our viGEN pipeline can thus be used on cancer and non-cancer human 
NGS data to provide additional insights into the biological significance of viral and other 
types of infection in complex diseases, tumorigeneses and cancer immunology. Detection 
and characterization of these infectious agents in tumor samples can give us better 
insights into disease mechanisms and their treatment [2]. 
 

CONCLUSION 

With the decreasing costs of NGS analysis, our results show that it is possible to detect 
viral sequences from whole-transcriptome (RNA-seq) data in humans. Our analysis 
shows that it is not easy to detect DNA and RNA viruses from tumor tissue, but certainly 
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possible. We were able to not only quantify them at a viral-gene expression level, but 
also extract variants. Our goal is to facilitate better understanding and gain new insights 
in the biology of viral presence/infection in actual tumor samples. The results presented 
in this paper on two case studies are in correspondence with published literature and are a 
proof of concept of our pipeline.  

This pipeline is generalizable, and can be used to examine viruses present in genomic 
data from other next generation sequencing (NGS) technologies. It can also be used to 
detect and explore other types of microbes in humans, as long as the sequence 
information is available from the National Center for Biotechnology Information (NCBI) 
resources. 

This pipeline can thus be used on cancer and non-cancer human NGS data to provide 
additional insights into the biological significance of viral and other types of infection in 
complex diseases, tumorigeneses and cancer immunology. We are planning to package 
this pipeline and make it open source to the bioinformatics community through 
Bioconductor. 

LIST OF ABBREVIATIONS 
 
HBV- Hepatitis B virus,  
HCV – Hepatitis C Virus,  
HERV K113 – Human Endogenous Retrovirus K113,  
TCGA – The Cancer Genome Atlas,  
HCC - Hepatocellular carcinoma  
NAFLD - nonalcoholic fatty liver disease 
Hep B - Hepatitis B 
Hep C - Hepatitis C 
HepB + HepC - coinfected with both Hepatitis B and C virus 
HBsAg - Hepatitis B surface antigen 
HBeAg - Hepatitis B type e antigen 
NGS - next-generation sequencing 
RNA-seq - whole transcriptome sequencing 
BAM - Binary version of Sequence alignment/map format 
CDS – coding sequence 
Cox PH - Cox Proportional Hazard  
HBx - viral gene X 
STS - Sequence-tagged sites  
NCBI - National Center for Biotechnology Information  
GFF - general-feature-format 
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Figure 1: viGEN pipeline. Each module has a color, shown in the legend 
Figure 2: The HPV viruses detected in cervical cancer patients using the viGEN pipeline  
 
Table 1. Comparison of existing pipelines that detect viruses from human transcriptome data 
Table 2 (A): Estimation of sensitivity and specificity for HPV-16 detection in TCGA cervical cancer 
samples using the viGEN pipeline 
Table 2 (B): Estimation of sensitivity and specificity for HPV-18 detection in TCGA cervical cancer 
samples using the viGEN pipeline 
Table 3: List of viruses species detected in at-least 5 samples 
Table 4: Differential expression analysis of transcript level read counts Liver cancer dataset 
comparing Dead and Alive samples. These results shown used the viral-gene data obtained from Module 
1 (using alignment tool Bowtie2) + Module 3. The table shows results with q value < 0.06 and sorted based 
on LogFC in the descending order. Table 4 (A) shows transcript level read counts in the Hepatitis B virus 
while Table 4 (B) shows transcript level read counts in other species 
 
Table 5: Cox proportional hazard survival analysis (across 25 HepB samples and 25 HepB + HepC 
Samples). These results shown used the viral-gene expression data obtained from Module 1 (using 
alignment tool Bowtie2) + Module 3. Coef: coefficient (Beta) of the model; exp(coef): Hazard Ratio; 
se(coef) : Standard Error; Pr(>|z|) : P-value 
 
Table 6: Results of case-control association test applied on the results from viral variant calling 
(showing only common results between two possible analysis steps). The table is sorted based on 
Annotation. Annotation includes gene name, protein name, etc., separated by commas, multiple annotations 
separated by semi-colon. Table 6 (A) shows variants in the Hepatitis B virus only while Table 6 (B) shows 
variants in other species 
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Table 7: Comparing the viral detection ability of viGEN with other tools 
 
 
Additional File 1: viGEN Github tutorial 
Additional File 2: Detailed results from analysis of TCGA cervical cancer patients 
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Virus Name Tool Name % of samples where the 

species was found 

HPV 16 (Alphapapillomavirus 9) Kraken 58% 

HPV 16 Centrifuge 55% 

HPV 16 viGEN 53% 

     

HPV 18 Kraken 20% 

HPV 18 (Alphapapillomavirus 7) Centrifuge 15% 

HPV 18 viGEN 13% 

      

HPV 26 (Alphapapillomavirus 5) Kraken 1% 

HPV 26 Centrifuge 0.3% 

HPV 26 viGEN 0.3% 
 

  Table 7: Comparing the viral detection ability of viGEN with other tools 
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Table 6: Results of case-control association test applied on the results from viral variant calling (showing only common results between two possible 
analysis steps). The table is sorted based on Annotation. Annotation includes gene name, protein name, etc., separated by commas, multiple annotations 
separated by semi-colon. 

Table 6 (A) shows variants in the Hepatitis B virus only while Table 6 (B) shows variants in other species 

CHR 
(Chromosome) 

Species 
(Name of Virus) 

BP 
(Base 
pair) 

A1 
(minor 
allele) 

C_A 
(Number 
of cases 
with A1) 

C_U 
(number 

of 
controls 
with A1) 

A2 
(major 
allele) 

P 
(P value) 

Annotation from GFF file 
 
 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 1479 C 4 0 A 0.02857 
Gene=X, 

product=X protein, 
protein_id=NP_647606.1 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 2573 C 0 6 T 0.03571 Gene=P, 
product=polymerase, 

protein_id=NP_647604.2 
gi|21326584|ref|NC_003977.1| Hepatitis B virus 2651 T 4 0 C 0.00476 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 2813 C 2 0 T 0.03571 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 2990 T 2 0 A 0.02222 Gene=P, product=polymerase, 
protein_id=NP_647604.2; 

 
Gene=S, product=large envelope 
protein, protein_id=YP_355333.1 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 2997 C 2 0 T 0.03571 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 3105 C 2 0 A 0.02222 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 3156 G 4 0 A 0.00476 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 1979 G 2 0 A 0.03571 Gene=C, product=pre-capsid 
protein, protein_id=YP_355335.1, 

NP_647607.1 gi|21326584|ref|NC_003977.1| Hepatitis B virus 2396 0 4 0 CG 0.01499 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 115 C 2 0 A 0.02222 Pre S2 region, ID=id0, 
Dbxref=taxon: 10407, 

Is_circular=true, gbkey=Src, 
genome=genomic, 

mol_type=genomic DNA, 
strain=ayr 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 126 C 2 0 T 0.02222 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 148 G 2 0 A 0.02222 

gi|21326584|ref|NC_003977.1| Hepatitis B virus 1762 T 0 4 A 0.06061 Gene=X, Name=NP_647606.1, 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted N
ovem

ber 21, 2017. 
; 

https://doi.org/10.1101/099788
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/099788
http://creativecommons.org/licenses/by-nc-nd/4.0/


gi|21326584|ref|NC_003977.1| Hepatitis B virus 1764 A 0 4 G 0.06061 
product=X protein, 

protein_id=NP_647606.1 

 

Table 6 (B) 

gi|548558394|ref|NC_022518.1| 
Human 

endogenous 
retrovirus K113 

7476 0 10 14 TACTG 0.00600 
ID=gene0, Name=Q779_gp1; 

 
ID=cds0, Name=YP_008603282.1, 

product=putative env, 
protein_id=YP_008603282.1 

gi|548558394|ref|NC_022518.1| 
Human 

endogenous 
retrovirus K113 

7426 G 3 0 A 0.00714 

gi|548558394|ref|NC_022518.1| 
Human 

endogenous 
retrovirus K113 

8086 T 3 0 C 0.00714 
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Table 5: Cox proportional hazard survival analysis (across 25 HepB samples and 25 HepB + 
HepC Samples). These results shown used the viral-gene/CDS data obtained from Module 1 (using 
alignment tool Bowtie2) + Module 3. Coef: coefficient (Beta) of the model; exp(coef): Hazard Ratio; 
se(coef) : Standard Error; Pr(>|z|) : P-value 

 

(a) The Cox PH model shows that assuming other covariant to be constant, unit increase in expression 
of this region NC_003977.1_CDS_1814_2452, increases the hazard of event (death) by 70%.  

(b) On the other hand, that assuming other covariant to be constant, unit increase in expression of this 
region NC_003977.1_CDS_2848_4050, decreases the hazard of event (death) by 43%.  

(c) The overall model is significant with p-value < 0.05 from the Log rank test (also called Score test). 

 

Formula:  
coxph(formula = survObject ~ NC_003977.1_CDS_2848_4050  + NC_003977.1_CDS_1814_2452) 
Results from the model:  
n= 37, number of events= 5   
(13 observations deleted due to missingness) 
      
Covariate coef exp(coef) se(coef) Z Pr(>|z|) 
NC_003977.1_CDS_2848_4050 -0.5548 0.5742 0.7434 -0.746 0.456 
NC_003977.1_CDS_1814_2452 0.5302 1.6993 0.6145 0.863 0.388 
 

Covariate 
exp(coef
) 

exp(-
coef) 

Lower 
0.95 

Upper 
0.95 

 
NC_003977.1_CDS_2848_4050 0.5742 1.7415 0.1337 2.465 
NC_003977.1_CDS_1814_2452 1.6993 0.5885 0.5096 5.667 
Concordance= 0.654  (se = 0.188 ) 
Rsquare= 0.12   (max possible= 0.329 ) 
Likelihood ratio test= 4.74  on 2 df,   p=0.09343 
Wald test            = 0.75  on 2 df,   p=0.6856 
Score (logrank) test = 10.58  on 2 df,   p=0.00503 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/099788doi: bioRxiv preprint 

https://doi.org/10.1101/099788
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4 (A): Differential expression analysis of transcript level read counts Liver cancer dataset comparing Dead and Alive samples. These results 
shown used the viral-gene data obtained from Module 1 (using alignment tool Bowtie2) + Module 3. The table shows results with q value < 0.06 and sorted 
based on LogFC in the descending order.  
 
Table 4 (A) shows transcript level read counts in the Hepatitis B virus while Table 4 (B) shows transcript level read counts in other species  
 
Name of region  
(Name of virus_region_start position 
of region_end position of region) 

Log 
Fold 
change 
(logFC) 

Log 
count
s per 
millio
n 
(logC
PM) 

P Value Q Value  
(FDR) 

Name of virus Region annotation 

NC_003977.1_gene_1814_2452 1.128 13.449 1.71E-06 0.000243 Hepatitis B virus Contains Gene C that produces pre-code 
protein external core antigen; HBeAg. 
HBeAg is produced by proteolytic 
processing of the pre-core protein 

NC_003977.1_CDS_1814_2452 1.128 13.449 1.71E-06 0.000243 Hepatitis B virus Contains Gene C that produces pre-code 
protein external core antigen; HBeAg.  

NC_003977.1_CDS_1901_2452  0.828 12.42 0.00050
7 

0.053928 Hepatitis B virus Contains Gene C, encodes core antigen 
HBcAg 

NC_003977.1_CDS_155_835 -2.121 16.335 1.67E-15 1.11E-12 Hepatitis B virus Encodes Gene S that produces small 
envelope protein, S protein; S glycoprotein; 
S-HBsAg,  

NC_003977.1_gene_2307_4838 -2.133 12.655 2.61E-15 1.11E-12 Hepatitis B virus Gene P, encodes protein P 
NC_003977.1_CDS_2307_4838 -2.133 12.655 2.61E-15 1.11E-12 Hepatitis B virus Gene P, encodes protein P 
NC_003977.1_CDS_3205_4050 -2.352 8.67 1.93E-12 6.84E-10 Hepatitis B virus Gene S, encodes middle envelope protein 

pre-S2/S 
NC_003977.1_gene_2848_4050 -2.75 11.741 5.84E-22 6.20E-19 Hepatitis B virus Encodes Gene S that produces a large 

surface protein/L glycoprotein/L-HBsAG 
NC_003977.1_CDS_2848_4050 -2.75 11.741 5.84E-22 6.20E-19 Hepatitis B virus Encodes Gene S that produces a large 

surface protein/L glycoprotein/L-HBsAG 
NC_003977.1_CDS_155_835 -2.121 16.335 1.67E-15 1.11E-12 Hepatitis B virus Encodes Gene S that produces small 

envelope protein, S protein; S glycoprotein; 
S-HBsAg,  
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Table 4 (B) 
 
Name of region  
(Name of virus_region_start position 
of region_end position of region) 

Log 
Fold 
change 
(logFC) 

Log 
count
s per 
millio
n 
(logC
PM) 

P Value Q Value  
(FDR) 

Name of virus Region annotation 

NC_001405.1_intron_9724_12307 2.527 6.463 4.02E-08 1.22E-05 Human 
mastadenovirus C 

Gene=L1, locus_tag=HAdVC_gp10, 
note=precedes capsid protein precursor 
pIIIa CDS 

NC_001405.1_intron_9724_11039 2.5 6.451 6.65E-08 1.28E-05 Human 
mastadenovirus C 

Gene=L1, locus_tag=HAdVC_gp10, 
note=precedes encapsidation protein 52K 
CDS 

NC_001405.1_gene_10866_11023 2.5 6.451 6.65E-08 1.28E-05 Human 
mastadenovirus C 

Gene=VAII, locus_tag=HAdVC_gs02, 
GeneID:2653002 

NC_001405.1_transcript_10866_11023 2.5 6.451 6.65E-08 1.28E-05 Human 
mastadenovirus C 

Gene=VAII, locus_tag=HAdVC_gs02, 
GeneID:2653002 

NC_001405.1_exon_10866_11023 2.5 6.451 6.65E-08 1.28E-05 Human 
mastadenovirus C 

Gene=VAII, locus_tag=HAdVC_gs02, 
GeneID:2653002 

NC_001405.1_intron_10580_14015 2.428 6.475 9.24E-08 1.64E-05 Human 
mastadenovirus C 

Gene=E2B, locus_tag=HAdVC_gp04 

NC_022518.1_STS_7174_7323 -0.992 9.122 0.00030
9 

0.034527 Human endogenous 
retrovirus K113 

Sequence-tagged site (STS), locus_tag 
=Q779_gp1, standard_name=D6S2277, 
UniSTS:59918 

NC_022518.1_STS_5100_5381 -1.051 9.532 0.00011
8 

0.0139 Human endogenous 
retrovirus K113 

Sequence-tagged site (STS), 
standard_name= D22S1651, UniSTS: 
474031 

NC_022518.1_region_1112_6746 -1.186 13.022 3.49E-06 0.000463 Human endogenous 
retrovirus K113 

gag-pro-pol; two -1 frameshifts predicted to 
occur  to produce a fusion protein; the 
location of frameshifts  has not been 
determined 

NC_018464.1_region_1_927 -1.288 12.784 5.78E-07 9.45E-05 Shamonda virus mol_type=genomic RNA, isolate=Ib An 
5550, taxon:159150, segment=S 

NC_002645.1_gene_293_20568 -2.598 6.126 3.93E-05 0.004911 Human coronavirus 
229E 

locus_tag=HCoV229Egp1, GeneID: 
918764, replicase polyprotein 1ab 
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Table 3: Virus species detected in at-least 5samples 
 

Name of Virus 

Hepatitis C virus 

Tick-borne encephalitis virus 

Hepatitis C virus genotype 2 

Cutthroat trout virus 

Human endogenous retrovirus K113 

Lunk virus NKS-1 

Hepatitis C virus genotype 6 

Hepatitis B virus 
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  PCR or other lab techniques for 

screening viruses (obtained from 

clinical data) 

 

   Positive Negative Total 

RNA-seq from 

tumor tissue 

(output of 

algorithm) 

Positive 10 4 14 

Negative 2 6 8 

 Total 12 10 22 

Table 2a: Estimation of sensitivity and specificity for HPV-16 detection in TCGA cervical cancer samples using 
the viGEN pipeline 

 

 

 

  PCR or other lab techniques for 

screening viruses (obtained from 

clinical data) 

 

   Positive Negative Total 

RNA-seq from 

tumor tissue 

(output of 

algorithm) 

Positive 3 1 4 

Negative 1 17 18 

  4 18 22 

Table 2b: Estimation of sensitivity and specificity for HPV-18 detection in TCGA cervical cancer samples using 
the viGEN pipeline 
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Table 1. Comparison of existing pipelines that detect viruses from human transcriptome data 
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Tool Name Detect 

viruses from 

Human RNA-

seq data 

Perform 

quantification at 

viral-gene/CDS 

level 

Works on 

DNAseq, 

RNAseq or 

Both 

Variant 

calling at 

viral-variant 

level 

Discover 

viral 

integration 

sites 

Other comments 

Virana [1] Yes Identifies 

microbial 

transcripts, does 

not quantify 

Both No Yes Also offers analysis of 

homologs 

VirusSeq [2] Yes No Both No Yes Pre-designed to work on 

a select set of 18 viruses 

Viral Fusion Seq [3] Yes No Both No Yes Can also detect fusion 

events 

Virus Finder [4] Yes No Both No Yes Can be applied to 

samples infected with 

undiagnosed viruses 

PathSeq [5] Yes No Both No No  

RINS [6] Yes No RNA-seq No No Generates contigs with 

these non-human 

sequences 

Kraken [7] Yes No No No No Metagenomic analysis 

tool 

Cetrifuge  [8] Yes No No No No Metagenomic analysis 

tool 

viGEN (our pipeline) Yes Yes Both Yes No  
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