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5 Abstract

6 Gene expression is influenced by extrinsic noise (involving a fluctuating environment of
7 cellular processes) and intrinsic noise (referring to fluctuations within a cell under constant
8 environment). We study the standard model of gene expression including an (in-)active gene,
9 mRNA and protein. Gene expression is regulated in the sense that the protein feeds back and
10 either represses (negative feedback) or enhances (positive feedback) its production at the stage
1 of transcription. While it is well-known that negative (positive) feedback reduces (increases)
12 intrinsic noise, we give a precise result on the resulting fluctuations in protein numbers. The
13 technique we use is an extension of the Langevin approximation and is an application of a
14 central limit theorem under stochastic averaging for Markov jump processes (Kang, Kurtz
15 and Popovic, 2014). We find that (under our scaling and in equilibrium), negative feedback
16 leads to a reduction in the Fano factor of at most 2, while the noise under positive feedback
17 is potentially unbounded. The fit with simulations is very good and improves on known
18 approximations.

» Introduction

2 It is now widely accepted that gene expression is a stochastic process. The reason is that a
2 single cell is a system with only one or two copies of each gene and of the order tens for mRNA
» molecules [1, 2, 3]. Experimentally, this stochasticity can even be observed directly by single-
23 cell measurements such as flow cytometry and fluorescence microscopy, which show the inherent
2+ fluctuations of protein numbers arising from cell to cell [4].

2 Usually, noise in gene expression is divided into an intrinsic and an extrinsic part [1, 5]. While
s the intrinsic part leads to variation of protein numbers from cell to cell in the same environment,
27 the extrinsic part is attributed to the different environmental conditions of the cell. In practice,
;s ensemble averages eliminate intrinsic noise, while single-cell measurements can be thought of
» having a constant environment, thus eliminating extrinsic noise [6, 7).

30 Stochasticity in gene expression is not only interesting per se. Today, its role in evolution,
a development and cell fate decisions is under discussion [8, 9, 10, 11, 12]. In general, noise should
3 be detrimental to cells, since they have to function constantly. Therefore, mechanisms reducing
33 the level of noise are beneficial for real systems.

3 Under the central dogma of molecular biology, modeling stochasticity of gene expression is
55 straight-forward (see [13] for a review). A gene, which is either turned on or off, is transcribed
s into mRNA, which is translated into protein. Both, mRNA and protein are degraded at constant
s rates. Since the resulting chemical reaction network is linear, the master equation can be solved
33 and all moments can be derived analytically. Most interestingly, the variance can be decomposed
3 into the effects of switching the gene on and off, noise due to the finite life-time of mRNA, and
w0 random fluctuations in the production of protein [13]. It is often stated that gene expression tends
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1 THE MODEL 2

s to occur in bursts, which occur due to the short life-time of the on-state of the gene and due to
« the short life-time of mRNA [14].

3 We are interested in the effect of self-regulation on gene expression noise. It is known that a
«  mnegative feedback loop, i.e. a protein suppressing its own transcription (or translation) leads to a
»s reduced noise, while positive feedback is attributed to increase in noise ([15, 16]). Although these
» findings are wide-spread, a complete mathematical analysis is lacking. At least, for negative feed-
« back, [17] and in more generality [18] quantify the effect of negative feedback using a linearization
s argument. The latter paper further analyzes different feedback models differing between transla-
w0 tional and transcriptional autoregulation. Moreover, [19] derive the equilibrium distribution using
s a multi-scale approach under negative feedback.

51 Most analyses of noise in unregulated gene expression rely on the master equation (e.g. [13]).
52 By the linearity of this equation, a solution can be given explicitly. Using the approximation that
53 the gene is constantly transcribed to mRNA, this linearity can as well be used under negative
s« feedback [17, 18]. Our approach differs in two ways. First, we are using martingale methods
s from stochastic analysis in order to describe the chemical system [20]. Second, we can relax the
s assumption that the gene is transcribed constantly, and therefore derive a more general result.
57 Consequently, we are able to analyze noise in a truly non-linear system under a quasi-steady-state
s assumption.

59

60 While the full model of regulated gene expression (or any other chemical reaction network) is
&1 usually hard to study, considering an ODE approach instead, which approximate the full model,
e leads to new insights. Formally, a law of large numbers — usually referred to as a fluid limit —
&3 can be obtained connecting the stochastic and deterministic model [21, 22]. While such a law of
e large numbers gives a deterministic limit, fluctuations are studied using central limit results; see
s [23]. The special situation for gene expression is that the gene and mRNA only have a few copies,
e while the protein is often in large abundance. Such multi-scale models are often studied under
& a quasi-steady-state assumption [24]. Here, the species in low abundance are assumed to evolve
e fast, such that the slow, abundant, species only sense their time-average. For such a stochastic
s averaging, not only a law of large numbers is given e.g. by [25], but also a central limit result has
w0 recently be obtained by [26].

n While a multi-scale approach to stochastic gene expression is not new (see [27, 19]), the analysis
7 of fluctuations for such systems is not finished yet. In a diffusion setting, fluctuations for a multi-
7 scale system were computed using a Poisson-equation [28, 29]. The results by [26] are similar
»  but are based on Markov jump processes. As our results show, fluctuations take into account all
7 sources of noise and we give explicit formulas for the reduction of noise under negative feedback
7 and the increase in noise under positive feedback.

» 1 The model

7z We are dealing with the standard model of gene expression without and with feedback; see e.g.
7o [19]. (All details are found in the SI.) Using the terminology from [13], we write for the model
s without feedback (or the neutral model)

A A
off ———on on ——off
A2 H2
on——>on+ R R ——0
)\3 u3
R——>R+P P —.
81 Here, off and on refer to the inactive and the active gene, respectively. mRNA is denoted by

2 R, and the protein by P. Exchanging the first line by
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1 THE MODEL 3
AT AT
off ———on on+P ——off +P [1]
83 then models a negative feedback while
AV A
off + P——— on+P on——— off 2]
8 models a positive feedback. (Note that our results will not change if the protein binds to the

s gene in the sense that on+ P — off or off + P — on.) We will refer to these three full models by
s [neu], [neg] and [pos], respectively. We write R(¢) and P(t) for the number of mRNA and protein
&7 in the system at time t.

88 In the sequel, we are interested in the situation where the gene and RNA has O(1) copies, while
s the protein is much more abundant (i.e. O(N) for some large N). For the parameters in [neu], this
o means that puz = O(1), A\, A}, A2, pta, A3 € O(N). For [neg], we have in contrast that AT = O(1)
o since then AP = O(N), while for [pos] we have A = O(1) since then Af P = O(N). For this
o2 scaling, on, off and R are fast molecular species, and quickly equilibrate. Using a quasi-steady-state
3 assumption, we see that, approximately, (see SI, Theorem 1),

94 with

MAF Ao
p2(AL + A1)

MAF Ao
——=—=""— — u3p for [neg], 3
pe(p+ ) ] 3

M)\?)\g)\gp
(AT +ATp)

—pusp  for [neu],

NFE(p/N) =

— pgp  for [pos].

s Our goal is derive the variance in protein numbers under [neu|, [neg] and [pos]. While [ney] is solved
o explicitly elsewhere, e.g. in [13], some approximations have to be made for [neg] and [pos]. A first
o7 idea is to use a Langevin approximation and write

P(t) ~ /0 AsR(s) — psP(s)ds +/O VA3R(s) + pzP(s)dWs

o and vp for the exact solution of vp = F(vp). Then, for U = vN(P/N — vp) and b(vp) =
w  A3E:[R] + usvp, the average diffusion for fixed vp, i.e.

MAT XaXs

m —+ ,U,3NUP fOI' [neu],
MAT A2
Nb(vp) = Wv;i\f) + pusNvp  for [neg],
MAP A A3 Nvp

2O 3P Nop) + pusNvp  for [pos],

w0 we find

P 1 1, 1
dﬁ = d’UP + ﬁdU ~ (F(’Up) + \/7NF (Up)U)dt + Nb(’l)p)dW [4]


https://doi.org/10.1101/100115
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/100115; this version posted January 12, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

2 RESULTS 4

i This approach builds on applying a quasi-steady-state approach whenever possible, i.e. when
102 averaging over the on/off-state of genes in order to derive F', and the number of RNA, which is
103 approximated by its mean in order to derive b. Consequently, fluctuations arising from these two
14 mechanisms cannot be accounted for in the resulting variance. In the next section, we give our
s results which take all reactions into account for deriving noise in gene expression.

w 2 Results

w Approximate variance and Fano factor for P

s As an application of [26], we derive in the SI (Theorem 2) the following central limit result:
w0 Let vp be the exact solution of vp = F(vp). The deviations of P/N from vp, given through
w U =+N(P/N — vp), satisfy for large N the SDE

U(t) :U(O)+/O F'(vp(s))U(s)ds+/O Ve(up(s))dW (s),

m with W a one-dimensional standard Brownian motion and

M A2)s ( 227 A2

2\
paOn +AD) Ny +AD2 e T 1) T usNop

for [neu],

MAT AaXs ( 227 NpAads

2
Ne(vp) = { 207 Nvp+AT) \uz (AT Np+AT)? Tt 1) + usNvp

for [neyg],

MA® Ao A3Nvp ( 2X] A2z

2y
2 On A9 Nor) N O +AeNop)E | ke T 1) +usNvp

for [pos].

uz  Solving for P, we obtain, approximately (compare with [4])

P T 1 1
dy = dvp +—=dU = (F(Up) +=F (vp)U>dt + 1/ elvr)dw

u3  While this limit provides a dynamical result along paths of P, we can also use this approximation
us and study the process in equilibrium by setting P(0) = v5, N, where (see SI, Section B)

MAT AaXs
p2ps (A7 +AT)

* + S
o= (1 S 1) b s

MAP A2 A3—A] paps
AP paps

for [neu],

ov

for [pos].

us  is the unique solution of F(vp) = 0 (and hence 9p = 0 for vp(0) = v5). We obtain in this case

P, . P 1
d =F (UP)(N - vp)dt 1 elvp)dw.

ue  This is an Ornstein-Uhlenbeck process and it is well-known that its equilibrium has the Fano factor
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2 RESULTS 5

V[P] _ NV[P/N] . melp)  _ evp) 6
E[P]  E[P/N] = —2F/(vh)vhp  2F(vh)vh’
7 Since no factor N appears on the right hand side, some authors call the Fano factor dimensionless.
us  Empirically, it was found e.g. by [30], that for all classes of genes and under all conditions, the
19 expression variance was approximately proportional to the mean, which is again reminiscent of
120 the lacking N in the Fano factor above. Plugging in the quantities from above, we find with

AP Nv AL
Qugg = T8~ % 1 v+ Qpos = T B rrw
AT Nvb + A AL+ AP N

o1 that (see SI, Remark B.1)

)\; A2 )3 )\7
m + N; + 1 fOI“ [neu],
O Ary
VIP] _ | (e + 2 4 1)
i pa (AP Nvp+A)2 T pa 1+ Orng) for [neg], [7]

AL d2)s As )
(Mz(z\{+A§BNv;)2 + K2 +1 /(1 —a ) for [pos].
pos

> Refining the Fano factor

123 Using a slightly different model where ps = O(1) (hence R = O(N)) and A3 = O(1) (hence still
e P = O(N)), it is possible to derive a refined formula for the Fano factor. In SI, Section C, we
s derive (see (SI.13), (SI.15) and (SI.16)) that

AL A2 N
()‘f+)‘§r)2(/t2+us) Mz-:ua +1 for [neu],
2 AoAs A
w = H2tps AP N (p2+ps) H2+ps /(1 + aneg) for [neﬂ]’ [8]

PSpotps TN (patps) | HetHs /(1 ~ay) for [pos].
pos

s Note that this equation approximately gives [7] for p2, A3 > 1. In practice (and in our simulations
w7 below), the life-time of proteins is much larger than the life-time of mRNA, such that [8] doesn’t
s produce a better fit than [7]. Therefore, we will use [7] in the sequel.

» Comparing the noise in [neu|, [neg] and [pos]

1o It is frequently reported that a negative feedback in gene expression results in a reduced variance
w1 (noise) of protein levels, whereas a positive feedback enhances noise. These observations can be
122 made precise by our results from above. Here, we report some consequences on the equilibrium
1 variance and the Fano factor, V[P]/E[P]. For a fair comparison, we use the models [neu], [neg] and
w  [pos] for equal values of v}. More specifically, we use parameters which satisfy A\] = )\1911}3 for
15 [neg] and A\] = APw for [pos]. Then, from [7], we find that (see SI, Section B.2)

VeslP/EwlP) _ VulPl () ANep )
Vneu[P]/Eneu[P] B Vneu[P] N )\?NU}Z —+ )\T ’ [9]
Vpas[P]/EpHS[P] o VpUS[P] o (1 - )\717)_1
Vneu[P}/Eneu[P] - Vneu[P] B )\; + )\;FN’U;; '
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2 RESULTS 6

W[y
o [1eg]
A [pos]

Figure 1: Simulations and theoretical results with a fixed mean of 1250 proteins. The gene
association and dissociation rates are varied, i.e. A] = (20,40,...,200) and \] is chosen such
that the protein mean equals 1250 in each case. Furthermore, these rates are adjusted in the cases
of negative and positive feedback according to the description right before [9] for the different
cases. The dissociation rate A is plotted on the x-axis whereas the y-axis represents the variance
in protein numbers. The solid, dotted, dashed line are the neutral, positive and negative case,
respectively. The other parameter are given by M = 1, N = 100, Ao = 300, uo = 100, A3 = 500
and p3 = 1. Bach data point is derived from 1000 Monte-Carlos simulations (cf. [31]) of the full
system given by [neu], [neg] and [pos].

s In particular, we see that the variance is reduced in [reg] and increased in [pos], as expected.
137 Furthermore, we performed simulations and compared them to our predictions. As can be seen
18 in Figure 1 the simulated results for relatively small N, i.e. small numbers of proteins, fit the
139 predictions quite well. Of course this fit improves by increasing values of V.

w Comparison to previous results

w1 Here, we compare our results in the neutral case with [13], and with [17], [19] and [18] in the case
12 of negative feedback.

143 The neutral case: Using the approximation pus < w1, o, i.e. the protein life-time is much longer
1 than the duration of constant gene activity and RNA life, we see in the SI, Section D.1, that (4)
ws  from [13] and [7] produce the same results.

146 Negative Feedback, [17]: For [neg], alinearization was studied in [17] for the case of fast switching
w7 on and off of the gene. (This will mean that both rates for switching on and off the gene are large;
us  see SI, Section D.2.) Using the further approximation that the gene is switched on most of the
1o time,

AT Nvp < AT, [10]
they find the approximation
\ 1 MAT A2
VI[P T A
- =1+ : Mile/;)\ ' [11]
E[P] M2+ p3q 2K 23
1 H2/43

150 Using that ps < pe and [10], we can rearrange this to give
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2 RESULTS 7

VIP]/E[P]

s
T T T T T T
200 400 600 800 1000 1200

E[P]

Figure 2: Simulations and theoretical results of gene expression with negative feedback. The
mean given on the x-axis is varied and plotted against the Fano factor on the y-axis. The solid
line represents [7], the dash-dotted line the result in [8], the dashed line the result from [17] given
in [11] and the dotted line the Fano factor calculated in [18] given in [12]. The parameter for
the simulations are chosen as follows: M = 1, N = 100, )\f = 250,A7 = (0.2,04,...,4), 2 =
300, uo = 100, A3 = 500, u3 = 1. The bullets represent the estimated Fano factors of the full
system [neg] obtained from 1000 Monte-Carlo simulations (cf. [31]) for each value of A] .

—t -~
~

[S] U}'ﬁ—)
mp = (12 (- 255)

1+—

12 AT
151 Since fluctuations of switching the gene on and off are not accounted for in this calculation, we
12 therefore find that, in this approximation,

Vneg[P] ~ (1 _ )\?N’UTD)
Vneu[P] )\i‘r ’

153 which approximately equals [9]. Therefore, the results of [17] are similar to our results, but less
15« accurate if gene (in-)activation is slower or if [10] is not satisfied; see also Figure 2.

155 Negative Feedback, [18]: As explained around [4], the usual Langevin approximation cannot
155 account for all fluctuations when a quasi-steady-state assumption is made. (Precisely, it cannot
157 account for fluctuations in the averaged variables.) In [18], a Langevin approach is carried out in
158 order to analyze fluctuations in autoregulatory gene expression in the cases of transcriptional and
150 translational feedback. The author considers the mRNA and the protein to evolve on the same
160 time-scale whereas the gene (or DNA) is considered to be on a faster time-scale. For transcriptional
1 feedback (which we study here), he obtains in his (5) — see SI, Section D.3 for the transformation
12 of their results into our parameters

U3 A3
V[P Olpe + +1
[ } — ( ﬂ/L? + us3 Mo + p3 )/(1 + aneg). [12]

E[P]

13 This corresponds exactly to [8] with a missing term in the numerator. This term arises from
e fluctuations in gene activation, which was averaged out in calculations done [18]. At least, [12]
165 arises from [8] if we assume that A7 Nvh, AT > 1.
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3 DISCUSSION 8

166 Negative Feedback, [19]: Our result for [neg] has Theorem 2 of [19] as a limit result. They
17 study a similar model (with M = 1), but with a scaling such that A3, u3 = O(1) and Ay = O(N),
s leading to low (i.e. O(1)) abundance of protein in the system. The resulting birth-death process
w9 for P has a stationary distribution which they compute explicitly. Moreover, setting

b AT A2 A3
AT pops’
they obtain in their Corollary 4.1 that, in equilibrium,

V[P] poe 1
Bp "~ 3 [13]

o For large p, it is v} &~ \/p, and [7] gives the same limit.

m Simpler model of gene expression

12 In the literature simpler models of gene expression are studied as well. Here, only two molecular
73 species are involved. Either, the gene is constitutively expressed, therefore ignoring the state of
s the gene, or translation is neglected and the gene is assumed to be transcribed leading to protein
ws in one step [32, 33, 34]. In either case, we have the model

A A
off ——>on on ——off
)\3 u3
on——>on-+ P P —0.

ws for [neu], whereas for [neg] and [pos], we take [1] and [2] instead of the first line, respectively. We
w7 note that this model arises from the full model described above (see SI, Section D.4), when letting
ws g = A9 — 00. Hence, we obtain for the simpler model the approximation

AT A
ooz Tl for [neu],
ViP] AONvp \ T APNupas
W B (1 + )‘leN”;:Xf> ((A?Nv}i/\i")z + 1) for [neﬂ]’ [14]
AL -1 AT A3
(1 N A;-‘:—A%PNU;;) (()\;4_)\1?3]\[1};«))2 + 1) for [pos}.

w 3 Discussion

180 Quantifying noise in gene expression is essential for understanding regulatory networks in cells [17].
11 Our results give the most complete theory on the intrinsic noise available today. While negative
12 feedback is known to reduce noise under negative feedback, we improve on the quantification of this
183 effect. Moreover, we can provide the same quantification also for positive feedback, where noise is
e increased. In particular, [9] shows that the average time the gene is off determines the reduction
15 of noise in all cases relative to unregulated genes; see also [35]. Both, for negative and positive
s feedback, the change in noise is maximal if the gene is off most of the time, while still having the
17 same amount of protein as in the unregulated (neutral) case. This finding is reminiscent of the fact
188 that gene expression comes in bursts. The burstiness is most extreme if the gene is on only for a
19 short time, producing a large amount of mRNA, and afterwards off for a long period. Interestingly,
10 previous approaches only gave approximations for noise for negative feedback if switching the gene
1 on and off is very fast [17, 18] and if the gene is on most of the time [17]. Hence, all previous
102 papers could not have seen the effects of gene (in-)activation on protein noise. As in previous
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REFERENCES 9

s results [19], we find that in the limit where the gene is off most of the time, the negative feedback
s reduces noise at most by a factor of two. In addition, noise can increase unboundedly for positive
105 feedback.

196 Today, quasi-steady-state assumptions are frequently used when analyzing chemical reaction
17 networks. While the intuition suggests the correct approach when approximating the system by
s a deterministic path, studying fluctuations is apparently much less obvious. In [36], some special
109 cases are studied when a straight-forward approximation of the fluctuations work. In our analysis,
200 we use a new approach by [26] and can also interpret all terms arising in [7]. E.g., for negative
21 feedback, we find — as in the neutral case — contributions from randomness in translation and
200 transcription by

Vg [ P] AP NvE Az A3 AP NS,
E Pl sNor ozt L L sy =) 19
neg [P p2(AT Nvp + A7) H2 : AT Nvp + A
N~~~ protein
effect of RNA noise, effect of individ- births fast back pushing due to
originating from gene ual RNA noise and negative feedback
(in-)activation deaths

203 Moreover, the negative feedback pushes the amount of protein faster back to its equilibrium value
2¢  for a burst of gene expression. This results in the denominator in [15], which has the biggest<
25 effect of the noise-reducing effect of negative feedback. In addition, another source of noise comes
26 from switching the gene on and off (term AT NvhAads/(u2(ATNvph + AF)?)). It is due to the
a7 latter term that the fit of simulations and theory (see e.g. Figure 2) is excellent. Previous studies
28 have averaged out this source of noise, and only the recent approach of [26] reveals the impact of
200 switching gene on and off on the noise in protein numbers.

210 In their paper, [26] gave as an example an approximation of noise for Michaelis-Menten kinetics
an and a model for virus infection. Their method relies mostly on solving a Poisson equation Loh =
a2 F, — F, where Ly is the generator of the fast subsystem (gene and RNA in our example), Fy
a3 and F describe the evolution of the slow system (protein) including all fluctuations and in the
2 limit using the quasi-steady-state assumption, respectively. We stress that this approach is not
215 only useful for equilibrium situations, but also for understanding noise if the slow system has not
as  reached equilibrium yet, e.g. after a cell split.

217 It was argued that complexity of gene regulatory networks leads to a reduction in the level of
28 noise, while certain network motifs always lead to increased levels of noise [37, 38]. Experimentally,
20 gene expression noise can be used to understand the dynamics of gene regulation [39]. Our analysis
20 should provide an approach for distinguishing between different models of gene regulation based
a1 on measurements of noise levels.
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A THE MODEL 1

Supporting Information:

Limits of noise for autoregulated gene expression

by PETER CzUPPON and PETER PFAFFELHUBER

A  The model

We are dealing with gene expression without and with transcriptional feedback; see e.g.
Swain (2004); Dessalles et al. (2016). For general formulations of chemical reaction networks
(and their mathematical representations), consult Anderson and Kurtz (2015). Using the
terminology from Paulsson (2005), we write for the model without feedback (or the neutral

model)
AL A
off ——on on ——off
A9 H2
on———>on+ R R ——0 (Fneu)
A3 M3
R——>R+P P —0.

Here, off and on refer to an inactive and an active gene, respectively. The mRNA is given
by R, and the protein by P. While the first line of chemical reactions models gene switching
from off to on and back, the second line encodes transcription and degradation of mRNA,
while the third line gives translation and degradation of proteins. Exchanging the first line
by
A A
off ———on on+ P ——off +P (*neg)

then models a negative feedback while

AT M
of + P———> on+ P on—— off (*pas)

models a positive feedback. In all cases, we number the equations from left to right and from
top to bottom by 1-6, so K = {1, ..., 6} is the set of chemical reactions. The species counts are
given by Xog, Xon, Xp and Xp for inactive and active gene, mRNA and protein, respectively.
We will make use of the following scaling for the abundances of chemical species

Xog =0(1),  Xon=0(1), Xp=0(1), Xp=O(N),
or

Qoff = Qon = ag = 0, ap =1,
such that X; = O(N®) for all i. Reactions are scaled for all models by

A2 = Nkg, p2=Nve, A3= Nk3z, puz=rvs.
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B RESULTS 2

For the neutral model, we also set

)‘1+ = N”f’ )‘I = N’{Iv (D”E“)
whereas for negative feedback
A =Nk, A =k{, (Oneg)
and for positive feedback
M =k, A\ =Nkj. (Opos)

(Note that this scaling obeys A], AT Xp, AT, A Xp = O(N).) Setting VN = N~ X;, and for
M copies of the gene, we have in the neutral case
t t
Vi) =V o) + v (N [ et ve)as) - (N [ ki vd(s)ds),
0 0

Voit (t) = M — Ve (b),

ViR () = Vi (0) + Y3(N /Ot HQ%]IY(S)dS> -Y (N /01t VQVéV(s)ds>, (®re)

VY (t) = VY (0) + N71Y; (N /Ot mgvg(s)ds) . N—1Y6(N /Ot ygvliV(s)ds),

for independent, rate 1 Poisson processes Y1, ..., Yg. The first equation changes in the case of
negative feedback to

VA0 =V i (8 [ i) (N [VNevEeE) e

and in the case of positive feedback to
t t
Val(t) = VN (0) + i (N / ROV (5)Vi(s)ds) — Yo (N / ATV ()ds). (9pc5)
0 0

In the sequel, we will refer to the model without, negative and positive feedback simply as
[neu|, [neg] and [pos], respectively. We understand all equations (%u), (Oneu), (®n) as the
bases for [neu], equations (%), (Ouey), (®ney) as the bases for [neg] and all equations (),
(Opos)s (®p0s) as the bases for [pos].

B Results

B.1 Law of Large Numbers and Central Limit Theorem

The following result can be obtained using a quasi-steady-state assumption. It relies on the
method of stochastic averaging; see e.g. Ball et al. (2006).

Theorem 1 (Law of Large Numbers). We consider the models [neu], [neg] and [pos] and

assume that VA (0) Lo Vp(0). Then, V& Hox Vp, where Vp solves

Vp = F(Vp),
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B RESULTS 3

with (see also [3] in the main text)

( Mrt
@7@? — v3up for [neu],
va(ky +57)
Mk Kok
Fup) = ——=22 —usup  for [neg), (SL1)

va(Kyvp + ki)
MK?I{QKBUP

( v2(k] + KT vp)

—v3vp  for [pos].

In particular, the equilibrium is given by (see also [5] in the main text)

.
M +
L for [neu],
vovs(ky + K7 )
. T AM kY
2Ky K] VaU3
MkP — K]
0v ka| I@gg fn P2l for [pos].
R{12l3

Proof. The equilibrium 7 on the fast scale satisfies, for Vp = vp fixed,

M +
% for [neu],
K1 + m}r
Mk
Eﬁ[‘/on} =M — }Eﬂ—[voﬁ‘] == -, ¥ for [neg],
K{vp + K{
Aln?vp
5 for [pOS].
\ K1 T K{vp
and
M +
_/171/‘624_ for [neu],
va(kq ++/<a1 )
K9 M/ﬁ:l K9
E:[Vr] = —=E;|[Von| =8 —————— for ,
=VR] Vo [ Von] Vg(lilevp—l-/if) [neg]
Mﬂ?/ﬁ;gvp
= e . for [p().f].
vo(K] + K7 vp)

Plugging this equilibrium into the equations for Vp, we obtain that

VP = HgE[VR] — I/3Vp = F(Vp)

with F' as in (SI.1). Computation of the equilibria is standard by solving F(vp) = 0. In
particular, we have to solve

+ +
K Mk7 koks
_Mfifm/is + mfl/zl/gvp + mleygygv%, =0 or v}% 4 %UP _ 917 —0
k1 K V2V3

for the equilibrium of [neg]. O
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B RESULTS 4

Our next goal is to show that v/N (Vé\] — Vp) converges and to determine the limiting
process. In the proof, we will make use of the method developed by Kang et al. (2014), which
we recall in Section E.

Theorem 2 (Central Limit Theorem). Let VA, Vp and F be as in Theorem 1 and /N (VA (0)—

N—o0

Vp(0)) ox U(0). Then, for the models [neu], [neg] and [pos|, V' N (VA —Vp) === U, where
U solves

U(t) = U(0) + /0 VP AW (s) + /0 F(Vp(s)U (s)ds. (SL3)

with W the one-dimensional standard Brownian motion and
(

Mk Kok 2K Kok 2K
—1 : -?l)— ( = : :-))&- 7 T = + 1) + v3vup. for [neu],
1/2(/{1 + Ky ) I/Q(Hl + Ky ) 1)
My kaks ( 2kTvpkoks | 2k3
c\vp) = +7+1>+u or [neg], S1.4
) va(kTvp + k1) \va(kFvp + K1) 12 sp Jor [neg] (SL.4)
M © 2K 2
ﬁ_l mﬂ%vp ( _Hl @gg 5+ L 1) + v3vp  for [pos].
VQ(HI + K1 UP) V2(/€1 + K1 ’Up) 1)

Remark B.1 (Deriving the Fano factor in equilibrium). In order to compute the approximate
variance of Vlﬁv , when started in the equilibrium v}, we make use of the fact that the SDE
(SL.3) is solved by an Ornstein Uhlenbeck process. In particular, we obtain at late times (see
also [6] in the main text)

VIP] _NVIVE] VU] | c(vp)

~ ~ ~ — ) SL.5
E[P] E[VZ] vp 2F"(vp)vp (SL5)
In order to compute the right hand side, note that
—u3 for [neu],
Mﬂf/ﬁg/ﬁg mle
/ B —v3 for ,
F (Up) = v (Iilevp + /‘31"_)2 3 [neﬂ] (SI.6)
MK Kaks Ky
—v for [pos|.
Vo (k] + KT vp)? ° pos]
Plugging in the equilibrium v}, from (SI.2) or [5] for [neg] and [pos], we obtain in particular
that
Mﬁi"ﬁgﬂg
for ,
Vgl/g(mlev} + K1) [neg]
vp =
Mﬁ?’l]}gﬁgﬁg
- . for [pos]
vav3(ky + Ky vp)
and therefore
(SIS
KTV
—v3 (1 + %) for [neg],
L K{Vp + Kq
F'(vp) = 3 (SL.7)
K
—u3(1— 71) for .
L 3< Ky + R?U}B Lpos]
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B RESULTS D

In addition,

2Mrf .
Al /@/-13 ( m£52K3+ TR 1) for [neu],
va(ky +K7) \va(ky +67)2 12
2M K Kok ( KT Vb Kok K3
c(vp) = —|——+1> for [neg],
(vP) vo(KTv% + K1) \a(kTvh + k)2 1 ireg
2M K ko k3 1
L g P ( Ifl 52%}) + 3By 1) for [pos].
va(ky + Ky vp) \a(ky + Ry 0vp)? 12

Hence, plugging these quantities into (SI.5) gives

& + 58 for [neu],
va(ky +K7)2
V[P KTvE -1 KT UbR2K K
L% <1+ @iP—i-) ( 1_523+2+73+1) for [neg],
E[P] KTVp + K] va(kivh +K7)2 1
Ky vovg \ 1 K1 KaK3 K3
 Q— > ( 1 4+ — 4+ 1) for [pos].
( MK Kok vo(ky + KPvp)2 12 pes

Proof of Theorem 2. We have to show (@)-(®) from Section E in all cases. Note that the
function F' from Theorem 1 already satisfies (@). In all cases, the system (Vy,, Vg, Vp) is a
Markov process with a generator of the form (SI.21) with

L{Vf(u,’l“,vp) = HgTN(f(U,T,’UP + %) - f(u,r, UP)) +’UPV3N(f(U,T‘,’UP - %) - f(u,r, UP))
of

= (kgr — pl/g)%(u, r,up) + o(1)

(and different operators L)'). This already implies that for all cases
FN(r,vp) = k3r — v3up.
For [neu],
Lévf(uvr7 UP) = (M - u)’%;r(f(u + 1,7", UP) - f(uarv UP))
+ury (f(u—1,r,0vp) — f(u,r,vp))
+ wou(f (u, 7+ 1,vp) = f(u,r,0p)) + vor(f(u,r — 1,0p) — f(u,r,vp)).
From (@) and (SI.1), we see that we need to solve

M/if/ﬁgli:g

LYRN = ggr — —1 200
2 va(K] + K7)

Choosing the Ansatz
WY (u,r,vp) = ugi(vp) + rga(vp),

we obtain that

_ ! MEKT Kok
(M&y —u(ry + w7))g1(vp) + (kou — var)ga(vp) = Kar — _172_?;
va(ky +K7])
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C SLOW RNA 6

Solving for go and then for g;, we obtain

(vp) = ——2 (vp)
2(Vp) = ——, \vp) =————F—""71<-
g 1% g v (K] —|—mf)

R2RK3

Then, eV 22X g since AV is bounded in N and el = 0 by construction. Hence, we have
shown (®). For (@), if 7 is the equilibrium of the fast species U, R for given value vp of the
slow species as in Theorem 1, we have that (using notation introduced in Section E)

% iEn [(Ckp + (U, R,vp) — Y (U + Chons R+ Cryvp + %(kP>)2Ak(UP)]
k=1

-+ + +
K, K MKk ko MgK] Ko
= 2g1(vp))* M —2"L + (ga(vp 2( —1 - 2)
(ve)) K1 +ﬁf (92(vr)) K1 +ﬁf Vo (K] —|—/<,1+)
Mk Kok
(3723; + V3UP)
va(ky +K7)
_ Mxf 2K K33 2koK3  Kok3
= = ¥ 5 — 2 ) + + v3up.
Ky + K] \vy(k] + Ky) vy V2

For [neg], all calculations above are the same, but with x; replaced by xTvp, and for [pos],
all calculations are the same with ﬁf replaced by ﬁ?v P. O

B.2 Comparing [neu|, [neg] and [pos| if v} is equal

Consider a model [neu] with parameters n{“, K1 s K2, k3,12, 13 and let vp be the equilibrium
from [5] or (SI.2). In addition, consider a model [neg} with k{ = k| /v and all other
parameters as above and a model [pos] with x{ := k] /p* and all other parameters as above.
Then, from (SI.1), we see that all models have v}, as their unique deterministic limit with the
same

oy 2M/<gff<52/<a3 K{ K2K3

K3
c(vp) = — = +7+1)
(vp va(ky + &7 (Vg(lil +K)2

from (SI.4). Plugging all quantities in (SI.5) (or [6]) then gives

Vneg[Vlﬁv] (1 N n?v; )—1

V eu [VFJ,V] /flev} + K]

Vpos [V - -1
p[Z] O___m@ )'

Ve[ V'] Ky + K Up

C Slow RNA
C.1 The model

Here, we study the case
A3 = K3, p2 = V2
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C SLOW RNA

which leads to Xr = O(NN), such that we have the scaling ar = 1 or Vg = Xr/N. Hence,
Von is fast and (Vg, Vp) are slow. Note that in this case, we have that (Vév, Vjév) = (Vgr,Vp)

with

a(VR,Vp) = F(Vg,Vp) =

nl_—l—/ﬁ

MH?HQVP ~
— o — 12VRr
k3VRr —13Vp

for[neu],

for[neg],

for[pos].

Theorem 3 (Central Limit Theorem). Let VéV,VR,VlﬁV,Vp and F be as above and
VN (VY (0), VY (0)) = (V&(0), Vp(0))) 2225 (UR(0), Up(0)). Then, for the models [neu], [neg)

N—o0

and [pos|, VN (VA , V) — (Vg, Vp)) === (Ug, Up), where (Ug,Up) solves

UR(t) = UR(O) + /Ot \/CR(VP(S))dW(S) — /Ot DQUR(S) + dR(Vp(S))UP(S)dS,

(SL.8)
t t
Up(t) = UP<0) + / \/EgVR(S) + Vng(S)dW/(S) + / EgUR(S) — I/3Vp(8)Up(8)dS
0 0
with W, W' independent Brownian motions,
( Mk ko ( 2K K2 -
— — + 1) + DoUR for [neu],
ki + k] \(k] + k)2
M/ﬁf/ig ( 2&1@’01:52 -
cr(vR,vp) = —|—1)+1/v or , SI.9
r(VR, vP) Sup + 1F \(Cop + R 2R for [neg] (SL9)
Mﬁ?vp/ﬁg ( 2K] K2 -
— — + 1) +voug  for [pos]
(k] + &Tvp \(k] + KkTvp)?
and
0 for [neu],
M/ilelifﬁg for [neg]
B or [negl,
dr(vp) = (Fc?vp n /4;1+)2 ) (SI.10)
Mr= 5]
R for [pos]

(k] + KTop)?
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C SLOW RNA 8
Remark C.1. In equilibrium, we have
( 2vavsvp ( Ry K2 + 1> for [neu]
Ry Nk + K2 ’
cr(vh, o) = § 2200 ( ;16’“”‘2+ + 1) for [neg], (SL11)
K3 \(kpvp + K1 )?
209130 ( K K2
— + 1) for |pos].
R\ +apun)? v

Proof. First, note that

2
( 2 > for[neu],
K3 —U3
172 Mnfnlemg
L
DF(vg,vp) = < ~ (1 ”T”l )2> for[neg],
3 —V3
~ Mlﬁll_fi?liz
—p, MeyKyR2
< ST +“§B”UP)2> for[pos].
K3 —v3

\

Again, we have to show (@)-@) from Section E in all cases for F' as above, which already
satisfies (@). We focus on [neu] first. The system (Von, Vi, Vp) is a Markov process with a

generator of the form (SI.21) with
N ~, Of .
Ly f(u,vr,vp) = (kou — vrV2) 5 (u,vR,vp) + (K3vr — vpv3) o~—(u, vR, vp) + 0(1),
Ovgr ovp
+(f(u + 1, vR, UP) - f(u7 VR, UP))

LY f(u,vr,vp) = (M — u)x;
+ury (f(u—1,vRr,vp) — f(u,vgr,vp)).

This implies that
Ro2U — D/Q’U R >

FN(u,vg,vp) = <%3UR ~ Davp

Hence, for (@), we have to solve

Mfif/ig

NN Rotb = = ¥
Ly hY (u,vg,vp) = Ky t Ry
0
which is
K2
_u —
Ky + /ﬁf

WY (u, v, vp) =
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C SLOW RNA 9

For the quadratic variation in (@), we find that with 22 = 22"

1
N[(VR, Vo) = b (Von, Vi, Vi) |

N Z/ ( G Grp) '+ B (Von(s=), V(s =), Vp(s—))

kEIC

1 1 ®2
1 (Vo5) G Vi(s=) 3o Vols) + o) )

AR (Vou(s), Vr(s), Vp(s))ds

t k2 - ®2 k2 - ®2
= /0 <’f1 6”1 > /{;F(M — Von(s)) + < ””10+“1 > KIVOH(S)
1 ®2 1 ®2 0 ®2 0 ®2
+ <O> Ko Von(s) + ( 0 ) o Vr(s) + (1> r3VRr(s) + <_1) v3Vp(s)ds

- /Ot <(n1~i§ef)2 8) (k] (M = Vou(s)) + K7 Von(s)) + ((1) 8)(@‘/011(3) + 1 VR(s))

- (8 (1)) (RaVi(s) + vaVip(s))ds

o / <2<Af”ififf + M“ =+ Vi(s) ’ >ds
~ 1 )
0 0 k3VRr(s) + v3Vp(s)

This shows the assertion for [neu]. The cases [neg] and [pos] are similar, if we change k] by
kTvp for [neu] and k] by k{vp for [pos]. O
C.2 Equilibrium Fano factor...

Let us start in equilibrium, i.e. Vg(0) = vj, Vp(0) = vp. Then, we will plug in cg from (SI.11),
and obtain Ornstein-Uhlenbeck processes in all cases. Since they are two-dimensional, their
equilibrium (normal) distribution can be computed (see Section F).

...for [neu]

We obtain

p Ur\ _ (72 0)(Ugr b+ 20513 % +1 0 aw
Up —:‘53 123 UP Eg 0 \/g aw’ |-
2

Hence, with U = (Ug,Up) ", in equilibrium, from Corollary F.1,

B, [UUT] = — P (1+ G2 ) (@ + ) (1 s s
e\ (5 e s R i)
(SL12)
Therefore,
Vil VP _ R Tl (SL13)

vp vot+vs (K] + /€1+)2(172 +u3)
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...for [neg]

Here, we obtain

[SH
KT VpK2

S, % =~
U D _FyUplabs SPV2V3~ U 2% DQVg Our t T +1 0 aw
d(UIIj) _ _< 2 (K3 UP—&—n'l")ng) <Ui> dt + 1;{73 (kT vp+H] )2 ~ dW/ .

—K3 Vs 0 N
)
O, % =
Hence, in equilibrium, and if - - - denote the quantities from (SI.12), and for b = —L 225
(kyvp+r])R3
* 77, ...+E73b2+ M_i_l Rab  e— ﬂ_&_l %ab
E.. [UUT] = — EPV233 — 72 (“16“};4"’”“_1‘—)2 " (“16”}3""“?—)2 "
7 (ov3 + K3b) (V2 + v3)Fs3 o Tsb ...+%b
(SI.14)
So,
VWP/P] _ <1 N e/ilev}; +)71<1 L K3 - ﬁ;lev}i@%j,
Up Ky Up + K votuvs  (kyvp 4 Ky)? (V2 + v3)
o . (SI.15)
KT VpV3 >
(k7vp + &) (2 +13)/
...for [pos]
We obtain
U Dy, ——faters N\ /iy 2uHou3 \/Hl_gf z + 1) 0 aw
d( R) :_< 2 <~1+H?v;>zg>< R)dt~|— fi( (s o) )( )
UP _E3 V3 UP K3 O @ dW
V2
In equilibrium, we now have exactly (SI.14) but with b = —%. Hence,
(k1 +rRIVp)R3
Vpo;£VP]:<1_ flea *>—1<1+~%+3 +( — ,;1,:2)5(3~ - )
v K K{v U+ 3 K kY v Uy + v
P 1 1YpP 1 1YpP 2 73 (SL16)
_ K1 V3 )
(ky +KTvp) (T2 +v3)/

D Comparison to previous results

D.1 Comparison for [neu]

The neutral case is by now well-studied. From Paulsson (2005), we see that this equilibrium
obeys, with

1 1 1
™ = —), 3= —)

1 = = )
AT+ AT 142 13
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the expected life-times of a change in gene activity, mRNA and protein, respectively, that

V[P] 14 é T2 E[P]/\l_ Ty T1To + ToT3 + T1T3
E[P] 13 T + T3 M/\T (T2+T3)(T1+7'3) T + To
T3S>>TL,T: N AT oA
gy Al m_ g A Adeds
p2 o ppps( A +A) T3 p2 o pa(AL +AT)

Since our scaling is exactly such that 73 > 71,79, i.e. the protein is much more stable than
RNA and the state of the gene, this result is in line with [11] in the main text.

D.2 Comparison with Thattai

In Thattai and van Oudenaarden (2001), a linearization of [neg] was studied in the case of
fast switching on and off of the gene. (This will mean that both, &1,k > 1.) Consider as
in the proof of Theorem 1 that

Mkt
Er[Von] = 55—
[ ] Klevp + /11’—
Then, study the system (compare with (e,,,;))
N N ! Mk .
vV (1) = v (0) + Yg(N/ I€27—d8> - Y4(N/ WV (s)ds),
AR 0 R V() 4 0 R

t t
V() = VY (0) + N7'Y; (N / KV (s)ds) - N—1Y6<N / VsV (5)ds>, (SL17)
0 0
which can in the case (8) (i.e. AT Nvj < Af) be approximated by using
t S t
V(1) = VY (0) + V3 (N / M@(l — Sy (s))ds) _v, <N / v VY (s)ds). (SL18)
0 Rq 0

Now, the system (SI.17) and (SI.18) is exactly as on p. 3 in Thattai and van Oudenaarden
(2001) with

_ MIQIGI{Q

+ )
K1

ko = NMko, k1 kp = Nks, Yr = Nuo, Yp = V3.

Plugging these variables into [3] of Thattai and van Oudenaarden (2001) we obtain in equi-
librium with

yYp V3 k‘P R3 k‘l M/Qlelig
= — = —, b = — =, d) = — = T
YR Nue YR V2 P K1 V3
that (note that n is negligible since N is large and ¢ is small by (8))
lE[ ]:i< 1 )kob%(l_Mﬁlelﬁgffg)Mlﬁzlﬁg:MHQIQ?,_MQH%H%HI@
N N\1+0bp/ vp K{vavs VU3 VU3 vav3 ki’

V[P (1—¢ b +1>%1+b(1_¢)(1—b¢)zl—i—b(l—(b-l—l)(b)

E[P]  \1+bp 147
K3 /4/2/4/3/4/@
= (14b) — (1+b)bg = (1+b)(1 — bg) = <1+V2><1—MV2V3&>

o A AP Nk
(0 2) (- S) - 1 202
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D.3 Comparison with Swain

+
In Swain (2004) the author uses dy = uo,d; = us,v1 = A3, (M) = ﬁ and
P
2
€ =
)\ A2)3
Ly 4)‘TN2M3

in order to obtain the Fano factor for the auto-regulatory gene expression with negative
(transcriptional) feedback. Expressing terms as in Section C, he gets

“1 KoR3

1+4 ~
Vneg[P] 14 V3Up - + k] Davs <1 + V2>

ey [P] (V2 +v3)vp 9. /14 451 K2R3
Hl Dav3

:1+~%3<1—_“1”73+(1+52)>
(V9 + v3) 2K Vp + K] K3

— ok + A
— % + ~ Ky Uptky K V2Vp
261 Up + Ky + K3 Up+vs3 vp+v3

(267 vp + mf)

(kyvp + k)1 + 4 vsvp )

V2+V3 (Va+vs) (k] vh+T)
- T
(2r1 vp + A7)
Ky V3Up
l’2+”3 (Vatvs) (k] vh+r])
(k] UP—l—nir)—i—n;v};
H;v};—‘rﬁir

1+

Ky V3Vp
V2+V3 (§2+u3)(/€fv}+nf)

1+

K1 Vp
n;v};+/~tl+
This is very similar to our equation (SI.15) except for a missing term emerging from gene
expression. As explained in the main text, the Langevin approximation Swain uses cannot

account for all fluctuations when a quasi-steady-state assumption is made. (Precisely, it
cannot account for fluctuations in the averaged variables.)

D.4 Simpler model of gene expression

We want to derive the simpler system without RNA from the full model. Noting that in
(new ), for ko = 15 > 1, we have that for every finite N, RNA is approximately in equilibrium,
which is Poisson with parameter 1 for every on-gene. Feeding this into the equation for P,
we obtain that

V() = V' (0) + N™'Ys (N /0 t m3%n<s>ds) - N*YG( /0 t Vs VY (s)ds).

This is the same equation which is need for the simple model given in the main text. Hence,
all results follow for K9 = 9 — 0.
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E Recalling the approach of Kang et al. (2014)

We will consider a general system of chemical reactions with S as the set of chemical species
and K the set of reactions; see also Anderson and Kurtz (2015) for further reference. The
chemical reactions have the form

Ak
V——>V, ke, (SI.19)

where v, = (Vks)ses and v, = (v,,)ses are vectors of chemical species, i.e. elements of NS.
For the dynamics, we assume mass action kinetics, i.e. we set

Ag(x) = Apa™* == Ng, H ks
s€ES

for the reaction rate of reaction k£ € K. With

Ck = V]/g_l/kv

we can then define the dynamics of the Markov process X = (X;)ses through the process
Ry, which describes the number of occurrences of reaction k£ up to time ¢. We have

matt) =i | A (9))ds)

for independent unit rate Poisson processes Y, k € K and therefore

X(t)=X(0)+ Y GRi(t) = X(0) + > GYa ( /0 t Ak(X(s))ds). (SL.20)

kel kel

We will tailor the results of Kang et al. (2014) to the special case we need in our gene
expression example. This means that we can make use of several simplifications, e.g. on the
form of the generator of the full process.

1. Find F : R% such that
F(vs) = lim E,[L"vq],

N—oo

N—o0

2. Find 2" such that vV Ne}¥, vV Nell === 0 with £V and & from (SI.24).

For some scaling parameter N, assume that (X2 ,XfN ) is a Markov jump process with
state space N% x N such that for VN = (VN V{V) with V¥ = X¥ and V¥ = XV /N, the
system V.V is a slow (rescaled) sub-system and VfN is a fast sub-system. We assume that the
generator LY has the form

N =¥ + NLY, (S1.21)

where LY describes the dynamics of VfN ,i.e. LY f = 0 if f only depends on vs. Our goal is
to show convergence

vy A2x (S1.22)
UN = VNN —v) 23U (S1.23)

for some Vi and U. Therefore, we proceed as follows.
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1. We have that (with the projection 7 on the slow species and FV := LNm, = LV )
¢
MY = V) - V)~ [ PV 9V ()i
0
is a (local) martingale. For the convergence (SI.22), we assume that

/ FN VN (5), Vi (s)) 2222 / F(Va(s))ds

0 0

for some unique process V5, which holds for
. N
F(US) - ]\}gnoo EPN [L US]? (0)

where py is the equilibrium of VfN for fixed slow species vs. Thus, the convergence V.V Voo

Vs holds with

and we have shown (SI.22).
2. Note that

UN(t) - UN(0)
= VN(VN(t) - Vi(t)) — VNV (0) — V4(0))

VN (M) + [ R0, V) - FORY s + [ R - F4as).
0 0

Assume that we
find hY such that LYRY ~ FN — F. (®)

(The '~ is controlled by €} below. Note that this is a Poisson equation.) With

() = 7 (W2 0. 0) =W 02 0.0 = [ N0 (6. (),

e (t) = —/0 LN (VY (), V¥ (5)) = (FN (VN (5), Vi (5)) = F(VY (s)))ds,
(SI.24)

we obtain that
ME® =<0+ 30— [ PN 6.V - PO )ds
is a (local) martingale. Hence
VNV (1) = V(1) = VN (VN (0) = Vi(0))
= VR (a0 - 2820+ <) + )+ [ FOY) - )
We assume for eIV, e} from (SI.24) that

\/Ngiv,\/ﬁsng—Li%o. (®)
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3. In order to show convergence of M{ — M4, we use the Martingale Central Limit
Theorem; see Theorem 5. Note that since the quadratic variation of all integrals [ dt vanishes,
we find that (recall the notation for Chemical Reaction Networks from (SI.19)—(SI1.20), which
we now equip with a superscript N to account for the scaling constant), with 252 = 22"

[¢NmﬁV—M§m=ﬂvhN—34MWv%wﬁﬂt

§:u/ (G 1% (125, V¥ (5-)

N & .
—n (VN( —)+ Cks,Vf( )+Ckf>> ARy (s),

where (s and (ir are the stochiometric changes of the k—th reaction in the slow and fast
subsystem, respectively. Note that in all applications, we will have that R{CV either changes
slowly, or changes fast and can thus be approximated by a deterministic curve, such that

lim [VN(MYN — M), = hm NZ/ (Ck;s—i-hN VN( ) Vi (s-))

N—oo

®2
—h¥ (VSN(S) + NCksa ViV (s—) + Ck:f)) AY (s)ds.
Now, for the equilibrium py of the fast species for given concentration of slow species, vy, if

1 1 ®2 o
N ];CE/JN {(Cks +hY (o, ViY) = BN (Us + ks Vi + Ck:f)) Ai;V(Vs)} 22 ¢(vy), (@)
we have that

Z/ (Gho +1Y (VY (), 7V (5)

kelC

N (yN(e) 4 L N(g— Mg X2X tcss
W (VY (5) + e V) ) ) AN (s 2255 v (o),

where the right hand side is a deterministic, absolutely continuous, R®*S-valued function with
non-negative time-derivative. Hence we know from Theorem 5 that

VN(MN = pN2y A2 6y

where M satisfies

AM = \/c(V(£))dW.

4. Concluding, if F' € CY(R%) with

F(VN) - F(V;) = (VE(VH)UN +0(1))

%H

N—o0

we find that, if UV === U, then

/VF Udr+/t\/de.

This gives (SI1.23).


https://doi.org/10.1101/100115
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/100115; this version posted January 12, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

F THE TWO-DIMENSIONAL ORNSTEIN-UHLENBECK PROCESS 16

F The two-dimensional Ornstein-Uhlenbeck process

We recall results for the two-dimensional Ornstein-Uhlenbeck process; see e.g. Gardiner
(2009).

Theorem 4 (Stationary variance of two-dimensional Ornstein-Uhlenbeck process). Let X =
(X1, X2) solve
dX = —AXdt+ BdWw,

where A,B € R?*2. Then, if all eigenvalues of A have positive real part, the stationary
solution Xo of the SDE has E[Xo] = 0 and

(A — (trA)E2)BBT (AT — (trA)Es) + (det A) BB

E[XoX, ] = 2(det A)(trA)

Proof. Using partial integration, it is easy to see that this SDE is solved by

t
X, = e MX)+ / e~ AU=5) Baw.
0

If all eigenvalues of A have positive real part, the stationary solution of the SDE has the
distribution

0
Xy = / e BdW,.

—00

In particular, E[Xo] = 0 and

0
E[XoX]] = / e BB A 5ds.
In order to compute the right hand side, we note that, for any 2 x 2-matrix A = (CCL b), we
have that (for the unit matrix Is)
42— a’ +bc ab+ bd _ ((la+d)a— (ad — bc) (a+d)b
ca+dc cb+ d? (a+d)c (a+d)d — (ad — bc)
= (trA)A — (det A)Is.

Hence, we can write
T T
eAS = o, + B4, eA S =+ A,

i.e.
0
E[XoX, ] = / (a5 + BsA)BB T (as 4 B, AT )ds
—aBB' + (ABB" + BB"A") + yABBTA" (S1.25)
B Ty 4T o B 8% T
=~(A+5)(BBT)(AT+ 5 —-)BB
( +’y>( ) +,Y>+(a 7)
for

0 0 0
o —/ O{zdsv B —/ asfsds, Y _/ /Bgds
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We then write
0
BBT = / d%eASBBTeATSds = AE[XoX] | + E[Xo X, AT
— a(ABB" + BB"A) +28ABB" A" + B(A’BB" + BB'(A")?)
+v(A’BBTA"T + ABBT(AT)?)
= (o — y(det A))(ABB" + BBT A) + 2(8 + »(trA))ABBT AT
+ B(trA)(ABB" + BBTAT) — 23(det AYBB"
— —26(det A)BB" 4+ 2(8 + v(trA))ABBTAT
+ (a+ B(trA) — ~(det A))(ABBT + BBT A),

which is only possible if

1+28(det A) =0,
B+~(trd) =0,
a+ B(trA) —y(det A) = 0,

ie.
a_detA+(trA)2 g 1 B 1
= 2(det A)(trA)’ T T 2detA’ T 2(det A)(trA)
Combining this with (SI.25) then gives the result. O

Corollary F.1 (Diagonal matrix B). Note that if
A—(e by p- VA 0 7
c d 0 p
then

—(pab + Acd) pla-tr(A) — be) + Ac?
2(ad — be)(a + d)

<pb2 + A(d - tr(A) — be) —(pab + cd) )
E[XoX, ] =

Proof. Indeed, A — tr(A)Ey = (_d b >, SO

Cc —a

(A — (trA)Ey)BBT (AT — (trA)E»)

—Ad pb —d c
Ac  —pa b —a
pb?> + Ad®>  —(pab+ \cd)
—(pab+ Aed)  pa?+ A2 )
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G Martingale Central Limit Theorem

Here, we give a version of the martingale central limit theorem as given in Ethier and Kurtz
(1986), Theorem 7.1.4.

Theorem 5. Let (My) be a sequence of R*-valued martingales. Suppose that

im E |sup|Mn(s) — My(s—)|| =0

1
N—o00 s<t
and
[Miv, Me = i (1)

forallt > 0, where C = (c;5) is deterministic and continuous. Then My = M for a stochastic
process M which is Gaussian with independent increments and E[M ()M (t)T] = C(t).

Furthermore, since C' is non-negative and symmetric and if C' is absolutely continuous its
derivative is non-negative and thus has a non-negative square-root. This implies that M can

M= [ ewave)

where W is the d-dimensional standard Brownian motion.

be written as
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