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Abstract5

Gene expression is influenced by extrinsic noise (involving a fluctuating environment of6

cellular processes) and intrinsic noise (referring to fluctuations within a cell under constant7

environment). We study the standard model of gene expression including an (in-)active gene,8

mRNA and protein. Gene expression is regulated in the sense that the protein feeds back and9

either represses (negative feedback) or enhances (positive feedback) its production at the stage10

of transcription. While it is well-known that negative (positive) feedback reduces (increases)11

intrinsic noise, we give a precise result on the resulting fluctuations in protein numbers. The12

technique we use is an extension of the Langevin approximation and is an application of a13

central limit theorem under stochastic averaging for Markov jump processes (Kang, Kurtz14

and Popovic, 2014). We find that (under our scaling and in equilibrium), negative feedback15

leads to a reduction in the Fano factor of at most 2, while the noise under positive feedback16

is potentially unbounded. The fit with simulations is very good and improves on known17

approximations.18

Introduction19

It is now widely accepted that gene expression is a stochastic process. The reason is that a20

single cell is a system with only one or two copies of each gene and of the order tens for mRNA21

molecules [1, 2, 3]. Experimentally, this stochasticity can even be observed directly by single-22

cell measurements such as flow cytometry and fluorescence microscopy, which show the inherent23

fluctuations of protein numbers arising from cell to cell [4].24

Usually, noise in gene expression is divided into an intrinsic and an extrinsic part [1, 5]. While25

the intrinsic part leads to variation of protein numbers from cell to cell in the same environment,26

the extrinsic part is attributed to the different environmental conditions of the cell. In practice,27

ensemble averages eliminate intrinsic noise, while single-cell measurements can be thought of28

having a constant environment, thus eliminating extrinsic noise [6, 7].29

Stochasticity in gene expression is not only interesting per se. Today, its role in evolution,30

development and cell fate decisions is under discussion [8, 9, 10, 11, 12]. In general, noise should31

be detrimental to cells, since they have to function constantly. Therefore, mechanisms reducing32

the level of noise are beneficial for real systems.33

Under the central dogma of molecular biology, modeling stochasticity of gene expression is34

straight-forward (see [13] for a review). A gene, which is either turned on or off, is transcribed35

into mRNA, which is translated into protein. Both, mRNA and protein are degraded at constant36

rates. Since the resulting chemical reaction network is linear, the master equation can be solved37

and all moments can be derived analytically. Most interestingly, the variance can be decomposed38

into the effects of switching the gene on and off, noise due to the finite life-time of mRNA, and39

random fluctuations in the production of protein [13]. It is often stated that gene expression tends40
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1 THE MODEL 2

to occur in bursts, which occur due to the short life-time of the on-state of the gene and due to41

the short life-time of mRNA [14].42

We are interested in the effect of self-regulation on gene expression noise. It is known that a43

negative feedback loop, i.e. a protein suppressing its own transcription (or translation) leads to a44

reduced noise, while positive feedback is attributed to increase in noise ([15, 16]). Although these45

findings are wide-spread, a complete mathematical analysis is lacking. At least, for negative feed-46

back, [17] and in more generality [18] quantify the effect of negative feedback using a linearization47

argument. The latter paper further analyzes different feedback models differing between transla-48

tional and transcriptional autoregulation. Moreover, [19] derive the equilibrium distribution using49

a multi-scale approach under negative feedback.50

Most analyses of noise in unregulated gene expression rely on the master equation (e.g. [13]).51

By the linearity of this equation, a solution can be given explicitly. Using the approximation that52

the gene is constantly transcribed to mRNA, this linearity can as well be used under negative53

feedback [17, 18]. Our approach differs in two ways. First, we are using martingale methods54

from stochastic analysis in order to describe the chemical system [20]. Second, we can relax the55

assumption that the gene is transcribed constantly, and therefore derive a more general result.56

Consequently, we are able to analyze noise in a truly non-linear system under a quasi-steady-state57

assumption.58

59

While the full model of regulated gene expression (or any other chemical reaction network) is60

usually hard to study, considering an ODE approach instead, which approximate the full model,61

leads to new insights. Formally, a law of large numbers – usually referred to as a fluid limit –62

can be obtained connecting the stochastic and deterministic model [21, 22]. While such a law of63

large numbers gives a deterministic limit, fluctuations are studied using central limit results; see64

[23]. The special situation for gene expression is that the gene and mRNA only have a few copies,65

while the protein is often in large abundance. Such multi-scale models are often studied under66

a quasi-steady-state assumption [24]. Here, the species in low abundance are assumed to evolve67

fast, such that the slow, abundant, species only sense their time-average. For such a stochastic68

averaging, not only a law of large numbers is given e.g. by [25], but also a central limit result has69

recently be obtained by [26].70

While a multi-scale approach to stochastic gene expression is not new (see [27, 19]), the analysis71

of fluctuations for such systems is not finished yet. In a diffusion setting, fluctuations for a multi-72

scale system were computed using a Poisson-equation [28, 29]. The results by [26] are similar73

but are based on Markov jump processes. As our results show, fluctuations take into account all74

sources of noise and we give explicit formulas for the reduction of noise under negative feedback75

and the increase in noise under positive feedback.76

1 The model77

We are dealing with the standard model of gene expression without and with feedback; see e.g.78

[19]. (All details are found in the SI.) Using the terminology from [13], we write for the model79

without feedback (or the neutral model)80

off
λ+

1
GGGGGGGA on on

λ−1
GGGGGGGA off

on
λ2

GGGGGGA on + R R
µ2

GGGGGGA∅

R
λ3

GGGGGGAR + P P
µ3

GGGGGGA∅.

Here, off and on refer to the inactive and the active gene, respectively. mRNA is denoted by81

R, and the protein by P . Exchanging the first line by82
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1 THE MODEL 3

off
λ+

1
GGGGGGGA on on + P

λ	1
GGGGGGGA off + P [1]

then models a negative feedback while83

off + P
λ⊕1

GGGGGGGA on + P on
λ−1

GGGGGGGA off [2]

models a positive feedback. (Note that our results will not change if the protein binds to the84

gene in the sense that on + P → off or off + P → on.) We will refer to these three full models by85

[neu], [neg ] and [pos ], respectively. We write R(t) and P (t) for the number of mRNA and protein86

in the system at time t.87

In the sequel, we are interested in the situation where the gene and RNA has O(1) copies, while88

the protein is much more abundant (i.e. O(N) for some large N). For the parameters in [neu], this89

means that µ3 = O(1), λ+
1 , λ

−
1 , λ2, µ2, λ3 ∈ O(N). For [neg ], we have in contrast that λ	1 = O(1)90

since then λ	1 P = O(N), while for [pos ] we have λ⊕1 = O(1) since then λ⊕1 P = O(N). For this91

scaling, on, off and R are fast molecular species, and quickly equilibrate. Using a quasi-steady-state92

assumption, we see that, approximately, (see SI, Theorem 1),93

d

dt

P

N
= F

(P
N

)
with94

NF (p/N) =



Mλ+
1 λ2λ3

µ2(λ−1 + λ+
1 )
− µ3p for [neu],

Mλ+
1 λ2λ3

µ2(λ	1 p+ λ+
1 )
− µ3p for [neg ],

Mλ⊕1 λ2λ3p

µ2(λ−1 + λ⊕1 p)
− µ3p for [pos ].

[3]

Our goal is derive the variance in protein numbers under [neu], [neg ] and [pos ]. While [neu] is solved95

explicitly elsewhere, e.g. in [13], some approximations have to be made for [neg ] and [pos ]. A first96

idea is to use a Langevin approximation and write97

P (t) ≈
∫ t

0

λ3R(s)− µ3P (s)ds+

∫ t

0

√
λ3R(s) + µ3P (s)dWs

and vP for the exact solution of v̇P = F (vP ). Then, for U =
√
N(P/N − vP ) and b(vP ) =98

λ3Eπ[R] + µ3vP , the average diffusion for fixed vP , i.e.99

Nb(vP ) =



Mλ+
1 λ2λ3

µ2(λ−
1 +λ+

1 )
+ µ3NvP for [neu],

Mλ+
1 λ2λ3

µ2(λ	
1 NvP +λ+

1 )
+ µ3NvP for [neg ],

Mλ⊕
1 λ2λ3NvP

µ2(λ−
1 +λ⊕

1 NvP )
+ µ3NvP for [pos ],

we find100

d
P

N
= dvP +

1√
N
dU ≈

(
F (vP ) +

1√
N
F ′(vP )U

)
dt+

√
1

N
b(vP )dW. [4]
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2 RESULTS 4

This approach builds on applying a quasi-steady-state approach whenever possible, i.e. when101

averaging over the on/off-state of genes in order to derive F , and the number of RNA, which is102

approximated by its mean in order to derive b. Consequently, fluctuations arising from these two103

mechanisms cannot be accounted for in the resulting variance. In the next section, we give our104

results which take all reactions into account for deriving noise in gene expression.105

2 Results106

Approximate variance and Fano factor for P107

As an application of [26], we derive in the SI (Theorem 2) the following central limit result:108

Let vP be the exact solution of v̇P = F (vP ). The deviations of P/N from vP , given through109

U =
√
N(P/N − vP ), satisfy for large N the SDE110

U(t) = U(0) +

∫ t

0

F ′(vP (s))U(s)ds+

∫ t

0

√
c(vP (s))dW (s),

with W a one-dimensional standard Brownian motion and111

Nc(vP ) =



Mλ+
1 λ2λ3

µ2(λ−
1 +λ+

1 )

(
2λ−

1 λ2λ3

µ2(λ−
1 +λ+

1 )2
+ 2λ3

µ2
+ 1
)

+ µ3NvP

for [neu],

Mλ+
1 λ2λ3

µ2(λ	
1 NvP +λ+

1 )

(
2λ	

1 Npλ2λ3

µ2(λ	
1 Np+λ

+
1 )2

+ 2λ3

µ2
+ 1
)

+ µ3NvP

for [neg ],

Mλ⊕
1 λ2λ3NvP

µ2(λ−
1 +λ⊕

1 NvP )

(
2λ−

1 λ2λ3

µ2(λ−
1 +λ⊕

1 NvP )2
+ 2λ3

µ2
+ 1
)

+ µ3NvP

for [pos ].

Solving for P , we obtain, approximately (compare with [4])112

d
P

N
= dvP +

1√
N
dU =

(
F (vP ) +

1√
N
F ′(vP )U

)
dt+

√
1

N
c(vP )dW

While this limit provides a dynamical result along paths of P , we can also use this approximation113

and study the process in equilibrium by setting P (0) = v∗PN , where (see SI, Section B)114

v∗P =



Mλ+
1 λ2λ3

µ2µ3(λ−
1 +λ+

1 )
for [neu],

λ+
1

2λ	
1

(√
1 +

4Mλ	
1 λ2λ3

λ+
1 µ2µ3

− 1
)

for [neg ],

0 ∨ Mλ⊕
1 λ2λ3−λ−

1 µ2µ3

λ⊕
1 µ2µ3

for [pos ].

[5]

is the unique solution of F (vP ) = 0 (and hence v̇P = 0 for vP (0) = v∗P ). We obtain in this case115

d
P

N
= F ′(v∗P )

(P
N
− v∗P

)
dt+

√
1

N
c(v∗P )dW.

This is an Ornstein-Uhlenbeck process and it is well-known that its equilibrium has the Fano factor116
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2 RESULTS 5

V[P ]

E[P ]
=
NV[P/N ]

E[P/N ]
= N

1
N c(v

∗
P )

−2F ′(v∗P )v∗P
= − c(v∗P )

2F ′(v∗P )v∗P
. [6]

Since no factor N appears on the right hand side, some authors call the Fano factor dimensionless.117

Empirically, it was found e.g. by [30], that for all classes of genes and under all conditions, the118

expression variance was approximately proportional to the mean, which is again reminiscent of119

the lacking N in the Fano factor above. Plugging in the quantities from above, we find with120

αneg =
λ	1 Nv

∗
P

λ	1 Nv
∗
P + λ+

1

, αpos =
λ−1

λ−1 + λ⊕1 Nv
∗
P

that (see SI, Remark B.1)121

V[P ]

E[P ]
=



λ−
1 λ2λ3

µ2(λ−
1 +λ+

1 )2
+ λ3

µ2
+ 1 for [neu],(

λ	
1 Nv

∗
Pλ2λ3

µ2(λ	
1 Nv

∗
P +λ+

1 )2
+ λ3

µ2
+ 1
)
�(1 + αneg ) for [neg ],(

λ−
1 λ2λ3

µ2(λ−
1 +λ⊕

1 Nv
∗
P )2

+ λ3

µ2
+ 1
)
�(1− αpos )

for [pos ].

[7]

Refining the Fano factor122

Using a slightly different model where µ2 = O(1) (hence R = O(N)) and λ3 = O(1) (hence still123

P = O(N)), it is possible to derive a refined formula for the Fano factor. In SI, Section C, we124

derive (see (SI.13), (SI.15) and (SI.16)) that125

V[P ]

E[P ]
=



λ−
1 λ2λ3

(λ−
1 +λ+

1 )2(µ2+µ3)
+ λ3

µ2+µ3
+ 1 for [neu],

(
αneg

µ3

µ2+µ3
+

α2
negλ2λ3

λ	
1 Nv

∗
P (µ2+µ3)

+ λ3

µ2+µ3
+ 1
)
�(1 + αneg ) for [neg ],

(
− αpos

µ3

µ2+µ3
+

α2
posλ2λ3

λ−
1 (µ2+µ3)

+ λ3

µ2+µ3
+ 1
)
�(1− αpos )

for [pos ].

[8]

Note that this equation approximately gives [7] for µ2, λ3 � 1. In practice (and in our simulations126

below), the life-time of proteins is much larger than the life-time of mRNA, such that [8] doesn’t127

produce a better fit than [7]. Therefore, we will use [7] in the sequel.128

Comparing the noise in [neu], [neg ] and [pos ]129

It is frequently reported that a negative feedback in gene expression results in a reduced variance130

(noise) of protein levels, whereas a positive feedback enhances noise. These observations can be131

made precise by our results from above. Here, we report some consequences on the equilibrium132

variance and the Fano factor, V[P ]/E[P ]. For a fair comparison, we use the models [neu], [neg ] and133

[pos ] for equal values of v∗P . More specifically, we use parameters which satisfy λ−1 = λ	1 v
∗
P for134

[neg ] and λ+
1 = λ⊕1 v

∗
P for [pos ]. Then, from [7], we find that (see SI, Section B.2)135

Vneg [P ]/Eneg [P ]

Vneu [P ]/Eneu [P ]
=
Vneg [P ]

Vneu [P ]
=
(

1 +
λ	1 Nv

∗
P

λ	1 Nv
∗
P + λ+

1

)−1

,

Vpos [P ]/Epos [P ]

Vneu [P ]/Eneu [P ]
=
Vpos [P ]

Vneu [P ]
=
(

1− λ−1
λ−1 + λ+

1 Nv
∗
P

)−1

.

[9]
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2 RESULTS 6

λ−
1 /N

0.5 1 1.5 2

V
[P
/N

]

0.5

1

1.5

2
�[neu]

• [neg ]

N[pos]

Figure 1: Simulations and theoretical results with a fixed mean of 1250 proteins. The gene
association and dissociation rates are varied, i.e. λ−1 = (20, 40, . . . , 200) and λ+

1 is chosen such
that the protein mean equals 1250 in each case. Furthermore, these rates are adjusted in the cases
of negative and positive feedback according to the description right before [9] for the different
cases. The dissociation rate λ−1 is plotted on the x-axis whereas the y-axis represents the variance
in protein numbers. The solid, dotted, dashed line are the neutral, positive and negative case,
respectively. The other parameter are given by M = 1, N = 100, λ2 = 300, µ2 = 100, λ3 = 500
and µ3 = 1. Each data point is derived from 1000 Monte-Carlos simulations (cf. [31]) of the full
system given by [neu], [neg ] and [pos ].

In particular, we see that the variance is reduced in [neg ] and increased in [pos ], as expected.136

Furthermore, we performed simulations and compared them to our predictions. As can be seen137

in Figure 1 the simulated results for relatively small N , i.e. small numbers of proteins, fit the138

predictions quite well. Of course this fit improves by increasing values of N .139

Comparison to previous results140

Here, we compare our results in the neutral case with [13], and with [17], [19] and [18] in the case141

of negative feedback.142

The neutral case: Using the approximation µ3 � µ1, µ2, i.e. the protein life-time is much longer143

than the duration of constant gene activity and RNA life, we see in the SI, Section D.1, that (4)144

from [13] and [7] produce the same results.145

Negative Feedback, [17]: For [neg ], a linearization was studied in [17] for the case of fast switching146

on and off of the gene. (This will mean that both rates for switching on and off the gene are large;147

see SI, Section D.2.) Using the further approximation that the gene is switched on most of the148

time,149

λ	1 Nv
∗
P � λ+

1 , [10]

they find the approximation

V[P ]

E[P ]
= 1 +

λ3

µ2 + µ3

1− Mλ	
1 λ2

λ+
1 µ3

1 +
Mλ	

1 λ2λ3

λ+
1 µ2µ3

. [11]

Using that µ3 � µ2 and [10], we can rearrange this to give150

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2017. ; https://doi.org/10.1101/100115doi: bioRxiv preprint 

https://doi.org/10.1101/100115
http://creativecommons.org/licenses/by/4.0/


2 RESULTS 7

E[P ]

200 400 600 800 1000 1200

V
[P

]/
E[
P

]

1

2

3

4

5

6

Figure 2: Simulations and theoretical results of gene expression with negative feedback. The
mean given on the x-axis is varied and plotted against the Fano factor on the y-axis. The solid
line represents [7], the dash-dotted line the result in [8], the dashed line the result from [17] given
in [11] and the dotted line the Fano factor calculated in [18] given in [12]. The parameter for
the simulations are chosen as follows: M = 1, N = 100, λ+

1 = 250, λ−1 = (0.2, 0.4, . . . , 4), λ2 =
300, µ2 = 100, λ3 = 500, µ3 = 1. The bullets represent the estimated Fano factors of the full
system [neg ] obtained from 1000 Monte-Carlo simulations (cf. [31]) for each value of λ−1 .

V[P ]

E[P ]
≈
(

1 +
λ3

µ2

)(
1− λ	1 Nv

∗
P

λ+
1

)
.

Since fluctuations of switching the gene on and off are not accounted for in this calculation, we151

therefore find that, in this approximation,152

Vneg [P ]

Vneu [P ]
≈
(

1− λ	1 Nv
∗
P

λ+
1

)
,

which approximately equals [9]. Therefore, the results of [17] are similar to our results, but less153

accurate if gene (in-)activation is slower or if [10] is not satisfied; see also Figure 2.154

Negative Feedback, [18]: As explained around [4], the usual Langevin approximation cannot155

account for all fluctuations when a quasi-steady-state assumption is made. (Precisely, it cannot156

account for fluctuations in the averaged variables.) In [18], a Langevin approach is carried out in157

order to analyze fluctuations in autoregulatory gene expression in the cases of transcriptional and158

translational feedback. The author considers the mRNA and the protein to evolve on the same159

time-scale whereas the gene (or DNA) is considered to be on a faster time-scale. For transcriptional160

feedback (which we study here), he obtains in his (5) – see SI, Section D.3 for the transformation161

of their results into our parameters162

V[P ]

E[P ]
=

(
αneg

µ3

µ2 + µ3
+

λ3

µ2 + µ3
+ 1
)
�(1 + αneg ). [12]

This corresponds exactly to [8] with a missing term in the numerator. This term arises from163

fluctuations in gene activation, which was averaged out in calculations done [18]. At least, [12]164

arises from [8] if we assume that λ	1 Nv
∗
P , λ

+
1 � 1.165
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3 DISCUSSION 8

Negative Feedback, [19]: Our result for [neg ] has Theorem 2 of [19] as a limit result. They166

study a similar model (with M = 1), but with a scaling such that λ3, µ3 = O(1) and λ	1 = O(N),167

leading to low (i.e. O(1)) abundance of protein in the system. The resulting birth-death process168

for P has a stationary distribution which they compute explicitly. Moreover, setting169

ρ =
λ+

1 λ2λ3

λ	1 µ2µ3

,

they obtain in their Corollary 4.1 that, in equilibrium,

V[P ]

E[P ]

ρ→∞
≈ 1

2
[13]

For large ρ, it is v∗P ≈
√
ρ, and [7] gives the same limit.170

Simpler model of gene expression171

In the literature simpler models of gene expression are studied as well. Here, only two molecular172

species are involved. Either, the gene is constitutively expressed, therefore ignoring the state of173

the gene, or translation is neglected and the gene is assumed to be transcribed leading to protein174

in one step [32, 33, 34]. In either case, we have the model175

off
λ+

1
GGGGGGGA on on

λ−1
GGGGGGGA off

on
λ3

GGGGGGA on + P P
µ3

GGGGGGA∅.

for [neu], whereas for [neg ] and [pos ], we take [1] and [2] instead of the first line, respectively. We176

note that this model arises from the full model described above (see SI, Section D.4), when letting177

µ2 = λ2 →∞. Hence, we obtain for the simpler model the approximation178

V[P ]

E[P ]
=



λ−
1 λ3

(λ−
1 +λ+

1 )2
+ 1 for [neu],

(
1 +

λ	
1 Nv

∗
P

λ	
1 Nv

∗
P +λ+

1

)−1(
λ	
1 Nv

∗
Pλ3

(λ	
1 Nv

∗
P +λ+

1 )2
+ 1
)

for [neg ],

(
1− λ−

1

λ−
1 +λ⊕

1 Nv
∗
P

)−1(
λ−
1 λ3

(λ−
1 +λ⊕

1 Nv
∗
P )2

+ 1
)

for [pos ].

[14]

3 Discussion179

Quantifying noise in gene expression is essential for understanding regulatory networks in cells [17].180

Our results give the most complete theory on the intrinsic noise available today. While negative181

feedback is known to reduce noise under negative feedback, we improve on the quantification of this182

effect. Moreover, we can provide the same quantification also for positive feedback, where noise is183

increased. In particular, [9] shows that the average time the gene is off determines the reduction184

of noise in all cases relative to unregulated genes; see also [35]. Both, for negative and positive185

feedback, the change in noise is maximal if the gene is off most of the time, while still having the186

same amount of protein as in the unregulated (neutral) case. This finding is reminiscent of the fact187

that gene expression comes in bursts. The burstiness is most extreme if the gene is on only for a188

short time, producing a large amount of mRNA, and afterwards off for a long period. Interestingly,189

previous approaches only gave approximations for noise for negative feedback if switching the gene190

on and off is very fast [17, 18] and if the gene is on most of the time [17]. Hence, all previous191

papers could not have seen the effects of gene (in-)activation on protein noise. As in previous192
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results [19], we find that in the limit where the gene is off most of the time, the negative feedback193

reduces noise at most by a factor of two. In addition, noise can increase unboundedly for positive194

feedback.195

Today, quasi-steady-state assumptions are frequently used when analyzing chemical reaction196

networks. While the intuition suggests the correct approach when approximating the system by197

a deterministic path, studying fluctuations is apparently much less obvious. In [36], some special198

cases are studied when a straight-forward approximation of the fluctuations work. In our analysis,199

we use a new approach by [26] and can also interpret all terms arising in [7]. E.g., for negative200

feedback, we find – as in the neutral case – contributions from randomness in translation and201

transcription by202

Vneg [P ]

Eneg [P ]
=
( λ	1 Nv

∗
Pλ2λ3

µ2(λ	1 Nv
∗
P + λ+

1 )2︸ ︷︷ ︸
effect of RNA noise,

originating from gene

(in-)activation

+
λ3

µ2︸︷︷︸
effect of individ-

ual RNA noise

+ 1︸︷︷︸
protein

births

and

deaths

)/(
1 +

λ	1 Nv
∗
P

λ	1 Nv
∗
P + λ+

1

)
︸ ︷︷ ︸
fast back pushing due to

negative feedback

. [15]

Moreover, the negative feedback pushes the amount of protein faster back to its equilibrium value203

for a burst of gene expression. This results in the denominator in [15], which has the biggest<204

effect of the noise-reducing effect of negative feedback. In addition, another source of noise comes205

from switching the gene on and off (term λ	1 Nv
∗
Pλ2λ3/(µ2(λ	1 Nv

∗
P + λ+

1 )2)). It is due to the206

latter term that the fit of simulations and theory (see e.g. Figure 2) is excellent. Previous studies207

have averaged out this source of noise, and only the recent approach of [26] reveals the impact of208

switching gene on and off on the noise in protein numbers.209

In their paper, [26] gave as an example an approximation of noise for Michaelis-Menten kinetics210

and a model for virus infection. Their method relies mostly on solving a Poisson equation L2h =211

Fn − F , where L2 is the generator of the fast subsystem (gene and RNA in our example), FN212

and F describe the evolution of the slow system (protein) including all fluctuations and in the213

limit using the quasi-steady-state assumption, respectively. We stress that this approach is not214

only useful for equilibrium situations, but also for understanding noise if the slow system has not215

reached equilibrium yet, e.g. after a cell split.216

It was argued that complexity of gene regulatory networks leads to a reduction in the level of217

noise, while certain network motifs always lead to increased levels of noise [37, 38]. Experimentally,218

gene expression noise can be used to understand the dynamics of gene regulation [39]. Our analysis219

should provide an approach for distinguishing between different models of gene regulation based220

on measurements of noise levels.221
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A THE MODEL 1

Supporting Information:

Limits of noise for autoregulated gene expression

by Peter Czuppon and Peter Pfaffelhuber

A The model

We are dealing with gene expression without and with transcriptional feedback; see e.g.
Swain (2004); Dessalles et al. (2016). For general formulations of chemical reaction networks
(and their mathematical representations), consult Anderson and Kurtz (2015). Using the
terminology from Paulsson (2005), we write for the model without feedback (or the neutral
model)

off
λ+

1
GGGGGGGA on on

λ−1
GGGGGGGA off

on
λ2

GGGGGGA on + R R
µ2

GGGGGGA∅

R
λ3

GGGGGGAR + P P
µ3

GGGGGGA∅.

(∗neu)

Here, off and on refer to an inactive and an active gene, respectively. The mRNA is given
by R, and the protein by P . While the first line of chemical reactions models gene switching
from off to on and back, the second line encodes transcription and degradation of mRNA,
while the third line gives translation and degradation of proteins. Exchanging the first line
by

off
λ+

1
GGGGGGGA on on + P

λ	1
GGGGGGGA off + P (∗neg )

then models a negative feedback while

off + P
λ⊕1

GGGGGGGA on + P on
λ−1

GGGGGGGA off (∗pos)

models a positive feedback. In all cases, we number the equations from left to right and from
top to bottom by 1–6, so K = {1, ..., 6} is the set of chemical reactions. The species counts are
given by Xoff, Xon, XR and XP for inactive and active gene, mRNA and protein, respectively.
We will make use of the following scaling for the abundances of chemical species

Xoff = O(1), Xon = O(1), XR = O(1), XP = O(N),

or

αoff = αon = αR = 0, αP = 1,

such that Xi = O(Nαi) for all i. Reactions are scaled for all models by

λ2 = Nκ2, µ2 = Nν2, λ3 = Nκ3, µ3 = ν3.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2017. ; https://doi.org/10.1101/100115doi: bioRxiv preprint 

https://doi.org/10.1101/100115
http://creativecommons.org/licenses/by/4.0/


B RESULTS 2

For the neutral model, we also set

λ+
1 = Nκ+

1 , λ−1 = Nκ−1 , (2neu)

whereas for negative feedback

λ+
1 = Nκ+

1 , λ	1 = κ	1 , (2neg )

and for positive feedback

λ⊕1 = κ⊕1 , λ−1 = Nκ−1 . (2pos)

(Note that this scaling obeys λ−1 , λ
	
1 XP , λ

+
1 , λ

⊕
1 XP = O(N).) Setting V N

i = N−αiXi, and for
M copies of the gene, we have in the neutral case

V N
on (t) = V N

on (0) + Y1

(
N

∫ t

0
κ+

1 V
N

off (s)ds
)
− Y2

(
N

∫ t

0
κ−1 V

N
on (s)ds

)
,

V N
off (t) = M − V N

on (t),

V N
R (t) = V N

R (0) + Y3

(
N

∫ t

0
κ2V

N
on (s)ds

)
− Y4

(
N

∫ t

0
ν2V

N
R (s)ds

)
,

V N
P (t) = V N

P (0) +N−1Y5

(
N

∫ t

0
κ3V

N
R (s)ds

)
−N−1Y6

(
N

∫ t

0
ν3V

N
P (s)ds

)
,

(•neu)

for independent, rate 1 Poisson processes Y1, ..., Y6. The first equation changes in the case of
negative feedback to

V N
on (t) = V N

on (0) + Y1

(
N

∫ t

0
κ+

1 V
N

off (s)ds
)
− Y2

(
N

∫ t

0
κ	1 V

N
on (s)V N

P (s)ds
)

(•neg )

and in the case of positive feedback to

V N
on (t) = V N

on (0) + Y1

(
N

∫ t

0
κ⊕1 V

N
off (s)VP (s)ds

)
− Y2

(
N

∫ t

0
κ−1 V

N
on (s)ds

)
. (•pos)

In the sequel, we will refer to the model without, negative and positive feedback simply as
[neu], [neg ] and [pos ], respectively. We understand all equations (∗neu), (2neu), (•neu) as the
bases for [neu], equations (∗neg ), (2neg ), (•neg ) as the bases for [neg ] and all equations (∗pos),
(2pos), (•pos) as the bases for [pos ].

B Results

B.1 Law of Large Numbers and Central Limit Theorem

The following result can be obtained using a quasi-steady-state assumption. It relies on the
method of stochastic averaging; see e.g. Ball et al. (2006).

Theorem 1 (Law of Large Numbers). We consider the models [neu], [neg ] and [pos ] and

assume that V N
P (0)

N→∞
====⇒ VP (0). Then, V N

P
N→∞
====⇒ VP , where VP solves

V̇P = F (VP ),
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with (see also [3] in the main text)

F (vP ) =



Mκ+
1 κ2κ3

ν2(κ−1 + κ+
1 )
− ν3vP for [neu],

Mκ+
1 κ2κ3

ν2(κ	1 vP + κ+
1 )
− ν3vP for [neg ],

Mκ⊕1 κ2κ3vP

ν2(κ−1 + κ⊕1 vP )
− ν3vP for [pos ].

(SI.1)

In particular, the equilibrium is given by (see also [5] in the main text)

v∗P =



Mκ+
1 κ2κ3

ν2ν3(κ−1 + κ+
1 )

for [neu],

κ+
1

2κ	1

(√
1 +

4Mκ	1 κ2κ3

κ+
1 ν2ν3

− 1
)

for [neg ],

0 ∨ Mκ⊕1 κ2κ3 − κ−1 ν2ν3

κ⊕1 ν2ν3
for [pos ].

(SI.2)

Proof. The equilibrium π on the fast scale satisfies, for VP = vP fixed,

Eπ[Von] = M − Eπ[Voff] =



Mκ+
1

κ−1 + κ+
1

for [neu],

Mκ+
1

κ	1 vP + κ+
1

for [neg ],

Mκ⊕1 vP

κ−1 + κ⊕1 vP
for [pos ].

and

Eπ[VR] =
κ2

ν2
Eπ[Von] =



Mκ+
1 κ2

ν2(κ−1 + κ+
1 )

for [neu],

Mκ+
1 κ2

ν2(κ	1 vP + κ+
1 )

for [neg ],

Mκ⊕1 κ2vP

ν2(κ−1 + κ⊕1 vP )
for [pos ].

Plugging this equilibrium into the equations for VP , we obtain that

V̇P = κ3E[VR]− ν3VP = F (VP )

with F as in (SI.1). Computation of the equilibria is standard by solving F (vP ) = 0. In
particular, we have to solve

−Mκ+
1 κ2κ3 + κ+

1 ν2ν3vP + κ	1 ν2ν3v
2
P = 0 or v2

P +
κ+

1

κ	1
vP −

Mκ+
1 κ2κ3

κ	1 ν2ν3
= 0

for the equilibrium of [neg ].

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2017. ; https://doi.org/10.1101/100115doi: bioRxiv preprint 

https://doi.org/10.1101/100115
http://creativecommons.org/licenses/by/4.0/


B RESULTS 4

Our next goal is to show that
√
N(V N

P − VP ) converges and to determine the limiting
process. In the proof, we will make use of the method developed by Kang et al. (2014), which
we recall in Section E.

Theorem 2 (Central Limit Theorem). Let V N
P , VP and F be as in Theorem 1 and

√
N(V N

P (0)−
VP (0))

N→∞
====⇒ U(0). Then, for the models [neu], [neg ] and [pos ],

√
N(V N

P −VP )
N→∞
====⇒ U , where

U solves

U(t) = U(0) +

∫ t

0

√
c(VP (s))dW (s) +

∫ t

0
F ′(VP (s))U(s)ds, (SI.3)

with W the one-dimensional standard Brownian motion and

c(vP ) =



Mκ+
1 κ2κ3

ν2(κ−1 + κ+
1 )

( 2κ−1 κ2κ3

ν2(κ−1 + κ+
1 )2

+
2κ3

ν2
+ 1
)

+ ν3vP . for [neu],

Mκ+
1 κ2κ3

ν2(κ	1 vP + κ+
1 )

( 2κ	1 vPκ2κ3

ν2(κ	1 vP + κ+
1 )2

+
2κ3

ν2
+ 1
)

+ ν3p for [neg ],

Mκ⊕1 κ2κ3vP

ν2(κ−1 + κ⊕1 vP )

( 2κ−1 κ2κ3

ν2(κ−1 + κ⊕1 vP )2
+

2κ3

ν2
+ 1
)

+ ν3vP for [pos ].

(SI.4)

Remark B.1 (Deriving the Fano factor in equilibrium). In order to compute the approximate
variance of V N

P , when started in the equilibrium v∗P , we make use of the fact that the SDE
(SI.3) is solved by an Ornstein Uhlenbeck process. In particular, we obtain at late times (see
also [6] in the main text)

V[P ]

E[P ]
≈
NV[V N

P ]

E[V N
P ]

≈ V[U ]

v∗P
≈ −

c(v∗P )

2F ′(v∗P )v∗P
. (SI.5)

In order to compute the right hand side, note that

F ′(vP ) =



−ν3 for [neu],

−Mκ+
1 κ2κ3

ν2

κ	1
(κ	1 vP + κ+

1 )2
− ν3 for [neg ],

Mκ⊕1 κ2κ3

ν2

κ−1
(κ−1 + κ⊕1 vP )2

− ν3 for [pos ].

(SI.6)

Plugging in the equilibrium v∗P from (SI.2) or [5] for [neg ] and [pos ], we obtain in particular
that

v∗P =


Mκ+

1 κ2κ3

ν2ν3(κ	1 v
∗
P + κ+

1 )
for [neg ],

Mκ⊕1 v
∗
Pκ2κ3

ν2ν3(κ−1 + κ⊕1 v
∗
P )

for [pos ]

and therefore

F ′(v∗P ) =


−ν3

(
1 +

κ	1 v
∗
P

κ	1 v
∗
P + κ+

1

)
for [neg ],

−ν3

(
1− κ−1

κ−1 + κ⊕1 v
∗
P

)
for [pos ].

(SI.7)
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B RESULTS 5

In addition,

c(v∗P ) =



2Mκ+
1 κ2κ3

ν2(κ−1 + κ+
1 )

( κ−1 κ2κ3

ν2(κ−1 + κ+
1 )2

+
κ3

ν2
+ 1
)

for [neu],

2Mκ+
1 κ2κ3

ν2(κ	1 v
∗
P + κ+

1 )

( κ	1 v
∗
Pκ2κ3

ν2(κ	1 v
∗
P + κ+

1 )2
+
κ3

ν2
+ 1
)

for [neg ],

2Mκ⊕1 κ2κ3v
∗
P

ν2(κ−1 + κ⊕1 v
∗
P )

( κ−1 κ2κ3

ν2(κ−1 + κ⊕1 v
∗
P )2

+
κ3

ν2
+ 1
)

for [pos ].

Hence, plugging these quantities into (SI.5) gives

V[P ]

E[P ]
≈



κ−1 κ2κ3

ν2(κ−1 + κ+
1 )2

+
κ3

ν2
+ 1 for [neu],

(
1 +

κ	1 v
∗
P

κ	1 v
∗
P + κ+

1

)−1( κ	1 v
∗
Pκ2κ3

ν2(κ−1 v
∗
P + κ+

1 )2
+
κ3

ν2
+ 1
)

for [neg ],

(
1− κ−1 ν2ν3

Mκ⊕1 κ2κ3

)−1( κ−1 κ2κ3

ν2(κ−1 + κ⊕1 v
∗
P )2

+
κ3

ν2
+ 1
)

for [pos ].

Proof of Theorem 2. We have to show (Ê)–(Í) from Section E in all cases. Note that the
function F from Theorem 1 already satisfies (Ê). In all cases, the system (Von, VR, VP ) is a
Markov process with a generator of the form (SI.21) with

LN1 f(u, r, vP ) = κ3rN
(
f
(
u, r, vP +

1

N

)
− f(u, r, vP )

)
+ vP ν3N

(
f
(
u, r, vP −

1

N

)
− f(u, r, vP )

)
= (κ3r − pν3)

∂f

∂vP
(u, r, vP ) + o(1)

(and different operators LN2 ). This already implies that for all cases

FN (r, vP ) = κ3r − ν3vP .

For [neu],

LN2 f(u, r, vP ) = (M − u)κ+
1 (f(u+ 1, r, vP )− f(u, r, vP ))

+ uκ−1 (f(u− 1, r, vP )− f(u, r, vP ))

+ κ2u(f(u, r + 1, vP )− f(u, r, vP )) + ν2r(f(u, r − 1, vP )− f(u, r, vP )).

From (Ë) and (SI.1), we see that we need to solve

LN2 h
N = κ3r −

Mκ+
1 κ2κ3

ν2(κ−1 + κ+
1 )
.

Choosing the Ansatz
hN (u, r, vP ) = ug1(vP ) + rg2(vP ),

we obtain that

(Mκ+
1 − u(κ+

1 + κ−1 ))g1(vP ) + (κ2u− ν2r)g2(vP )
!

= κ3r −
Mκ+

1 κ2κ3

ν2(κ−1 + κ+
1 )
.
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C SLOW RNA 6

Solving for g2 and then for g1, we obtain

g2(vP ) = −κ3

ν2
, g1(vP ) = − κ2κ3

ν2(κ−1 + κ+
1 )
.

Then, εN1
N→∞
====⇒ 0 since hN is bounded in N and εN2 = 0 by construction. Hence, we have

shown (Ì). For (Í), if π is the equilibrium of the fast species U,R for given value vP of the
slow species as in Theorem 1, we have that (using notation introduced in Section E)

1

N

6∑
k=1

Eπ
[(
ζkP + hN (U,R, vP )− hN

(
U + ζkon, R+ ζkr, vP +

1

N
ζkP

))2
Λk(vP )

]
= 2g1(vP ))2M

κ−1 κ
+
1

κ−1 + κ+
1

+ (g2(vP ))2
(Mκ+

1 κ2

κ−1 + κ+
1

+
Mκ+

1 κ2

ν2(κ−1 + κ+
1 )
ν2

)
+
( Mκ+

1 κ2κ3

ν2(κ−1 + κ+
1 )

+ ν3vP

)
=

Mκ+
1

κ−1 + κ+
1

( 2κ−1 κ
2
2κ

2
3

ν2
2(κ−1 + κ+

2 )2
+

2κ2κ
2
3

ν2
2

+
κ2κ3

ν2

)
+ ν3vP .

For [neg ], all calculations above are the same, but with κ−1 replaced by κ	1 vP , and for [pos ],
all calculations are the same with κ+

1 replaced by κ⊕1 vP .

B.2 Comparing [neu], [neg ] and [pos ] if v∗P is equal

Consider a model [neu] with parameters κ+
1 , κ

−
1 , κ2, κ3, ν2, ν3 and let v∗P be the equilibrium

from [5] or (SI.2). In addition, consider a model [neg ] with κ	1 := κ−1 /v
∗
P and all other

parameters as above and a model [pos] with κ⊕1 := κ+
1 /p

∗ and all other parameters as above.
Then, from (SI.1), we see that all models have v∗P as their unique deterministic limit with the
same

c(v∗P ) =
2Mκ+

1 κ2κ3

ν2(κ−1 + κ+
1 )

( κ−1 κ2κ3

ν2(κ−1 + κ+
1 )2

+
κ3

ν2
+ 1
)

from (SI.4). Plugging all quantities in (SI.5) (or [6]) then gives

Vneg [V N
P ]

Vneu [V N
P ]
≈
(

1 +
κ	1 v

∗
P

κ	1 v
∗
P + κ+

1

)−1
,

Vpos [V
N
P ]

Vneu [V N
P ]
≈
(

1− κ−1
κ−1 + κ⊕1 v

∗
P

)−1
.

C Slow RNA

C.1 The model

Here, we study the case
λ3 = κ̃3, µ2 = ν̃2
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C SLOW RNA 7

which leads to XR = O(N), such that we have the scaling αR = 1 or VR = XR/N . Hence,
Von is fast and (VR, VP ) are slow. Note that in this case, we have that (V N

R , V N
P )⇒ (VR, VP )

with

d

dt
(VR, VP ) = F (VR, VP ) :=



Mκ+
1 κ2

κ−1 + κ+
1

− ν̃2VR

κ̃3VR − ν3VP

 for[neu],

 Mκ+
1 κ2

κ	1 VP + κ+
1

− ν̃2VR

κ̃3VR − ν3VP

 for[neg ],

Mκ⊕1 κ2VP

κ−1 + κ⊕1 VP
− ν̃2VR

κ̃3VR − ν3VP

 for[pos ].

Theorem 3 (Central Limit Theorem). Let V N
R , VR, V

N
P , VP and F be as above and

√
N((V N

R (0), V N
P (0))−(VR(0), VP (0)))

N→∞
====⇒ (UR(0), UP (0)). Then, for the models [neu], [neg ]

and [pos ],
√
N((V N

R , V N
P )− (VR, VP ))

N→∞
====⇒ (UR, UP ), where (UR, UP ) solves

UR(t) = UR(0) +

∫ t

0

√
cR(VP (s))dW (s)−

∫ t

0
ν̃2UR(s) + dR(VP (s))UP (s)ds,

UP (t) = UP (0) +

∫ t

0

√
κ̃3VR(s) + ν3VP (s)dW ′(s) +

∫ t

0
κ̃3UR(s)− ν3VP (s)UP (s)ds

(SI.8)

with W,W ′ independent Brownian motions,

cR(vR, vP ) =



Mκ+
1 κ2

κ−1 + κ+
1

( 2κ−1 κ2

(κ−1 + κ+
1 )2

+ 1
)

+ ν̃2vR for [neu],

Mκ+
1 κ2

κ	1 vP + κ+
1

( 2κ	1 vPκ2

(κ	1 vP + κ+
1 )2

+ 1
)

+ ν̃2vR for [neg ],

Mκ⊕1 vPκ2

κ−1 + κ⊕1 vP

( 2κ−1 κ2

(κ−1 + κ⊕1 vP )2
+ 1
)

+ ν̃2vR for [pos ]

(SI.9)

and

dR(vP ) =



0 for [neu],

Mκ	1 κ
+
1 κ2

(κ	1 vP + κ+
1 )2

for [neg ],

− Mκ−1 κ
⊕
1 κ2

(κ−1 + κ⊕1 vP )2
. for [pos ]

(SI.10)
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C SLOW RNA 8

Remark C.1. In equilibrium, we have

cR(v∗R, v
∗
P ) =



2ν̃2ν3v
∗
P

κ̃3

( κ−1 κ2

(κ−1 + κ+
1 )2

+ 1
)

for [neu],

2ν̃2ν3v
∗
P

κ̃3

( κ	1 vPκ2

(κ	1 vP + κ+
1 )2

+ 1
)

for [neg ],

2ν̃2ν3v
∗
P

κ̃3

( κ−1 κ2

(κ−1 + κ⊕1 vP )2
+ 1
)

for [pos ].

(SI.11)

Proof. First, note that

DF (vR, vP ) =



(
−ν̃2 0

κ̃3 −ν3

)
for[neu],(−ν̃2 − Mκ+1 κ

	
1 κ2

(κ	1 vP+κ+1 )2

κ̃3 −ν3

)
for[neg ],

(−ν̃2
Mκ−1 κ

⊕
1 κ2

(κ−1 +κ⊕1 vP )2

κ̃3 −ν3

)
for[pos ].

Again, we have to show (Ê)–Í) from Section E in all cases for F as above, which already
satisfies (Ê). We focus on [neu] first. The system (Von, VR, VP ) is a Markov process with a
generator of the form (SI.21) with

LN1 f(u, vR, vP ) = (κ2u− vRν̃2)
∂f

∂vR
(u, vR, vP ) + (κ̃3vR − vP ν3)

∂f

∂vP
(u, vR, vP ) + o(1),

LN2 f(u, vR, vP ) = (M − u)κ+
1 (f(u+ 1, vR, vP )− f(u, vR, vP ))

+ uκ−1 (f(u− 1, vR, vP )− f(u, vR, vP )).

This implies that

FN (u, vR, vP ) =

(
κ2u− ν̃2vR
κ̃3vR − ν3vP

)
.

Hence, for (Ë), we have to solve

LN2 h
N (u, vR, vP ) =

κ2u−
Mκ+

1 κ2

κ−1 + κ+
1

0

 ,

which is

hN (u, vR, vP ) =

−u
κ2

κ−1 + κ+
1

0

 .
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For the quadratic variation in (Í), we find that with z⊗2 = zz>

N
[
(VR, VP )> − 1

N
hN (Von, VR, VP )

]
t

=
1

N

∑
k∈K

∫ t

0

(
(ζkR, ζkP )> + hN

(
Von(s−), VR(s−), VP (s−)

)
− hN

(
Von(s−) + ζkon, VR(s−) +

1

N
ζkR, VP (s−) +

1

N
ζkP

))⊗2

ΛNk (Von(s), VR(s), VP (s))ds

=

∫ t

0

( κ2
κ−1 +κ+1

0

)⊗2

κ+
1 (M − Von(s)) +

(− κ2
κ−1 +κ+1

0

)⊗2

κ−1 Von(s)

+

(
1
0

)⊗2

κ2Von(s) +

(
−1
0

)⊗2

ν̃2VR(s) +

(
0
1

)⊗2

κ̃3VR(s) +

(
0
−1

)⊗2

ν3VP (s)ds

=

∫ t

0

( κ22
(κ−1 +κ+1 )2

0

0 0

)
(κ+

1 (M − Von(s)) + κ−1 Von(s)) +

(
1 0
0 0

)
(κ2Von(s) + ν̃2VR(s))

+

(
0 0
0 1

)
(κ̃3VR(s) + ν3VP (s))ds

≈
∫ t

0

(2Mκ−1 κ
+
1 κ

2
2

(κ−1 +κ+1 )3
+

Mκ+1 κ2

κ+1 +κ−1
+ ν̃2VR(s) 0

0 κ̃3VR(s) + ν3VP (s)

)
ds.

This shows the assertion for [neu]. The cases [neg ] and [pos ] are similar, if we change κ−1 by
κ	1 vP for [neu] and κ+

1 by κ⊕1 vP for [pos ].

C.2 Equilibrium Fano factor...

Let us start in equilibrium, i.e. VR(0) = v∗R, VP (0) = v∗P . Then, we will plug in cR from (SI.11),
and obtain Ornstein-Uhlenbeck processes in all cases. Since they are two-dimensional, their
equilibrium (normal) distribution can be computed (see Section F).

...for [neu]

We obtain

d

(
UR
UP

)
= −

(
ν̃2 0
−κ̃3 ν3

)(
UR
UP

)
dt+

√
2v∗P ν̃2ν3

κ̃3

(√ κ−1 κ2
(κ−1 +κ+1 )2

+ 1 0

0
√

κ̃3
ν̃2

)(
dW
dW ′

)
.

Hence, with U = (UR, UP )>, in equilibrium, from Corollary F.1,

Eneu [UU>] =
v∗P

(ν̃2 + ν3)κ3


(

1 +
κ−1 κ2

(κ−1 +κ+1 )2

)
ν3(ν̃2 + ν3)

(
1 +

κ−1 κ2
(κ−1 +κ+1 )2

)
κ̃3ν3(

1 +
κ−1 κ2

(κ−1 +κ+1 )2

)
κ̃3ν3 κ̃3(ν̃2 + ν3) + κ̃2

3

(
1 +

κ−1 κ2
(κ−1 +κ+1 )2

)
 .

(SI.12)

Therefore,
Vneu [VP ]

v∗P
= 1 +

κ̃3

ν̃2 + ν3
+

κ−1 κ2κ̃3

(κ−1 + κ+
1 )2(ν̃2 + ν3)

. (SI.13)
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...for [neg ]

Here, we obtain

d

(
UR
UP

)
= −

(
ν̃2

κ	1 v
∗
P ν̃2ν3

(κ	1 v
∗
P+κ+1 )κ̃3

−κ̃3 ν3

)(
UR
UP

)
dt+

√
2v∗P ν̃2ν3

κ̃3

(√ κ	1 v
∗
P κ2

(κ	1 v
∗
P+κ+1 )2

+ 1 0

0
√

κ̃3
ν̃2

)(
dW
dW ′

)
.

Hence, in equilibrium, and if · · · denote the quantities from (SI.12), and for b =
κ	1 v

∗
P ν̃2ν3

(κ	1 v
∗
P+κ+1 )κ̃3

,

Eneg [UU>] =
v∗P ν̃2ν3

(ν̃2ν3 + κ̃3b)(ν̃2 + ν3)κ̃3

···+ κ̃3
ν̃2
b2+

(
κ	1 v
∗
P κ2

(κ	1 v
∗
P

+κ+1 )2
+1

)
κ̃3b ···−

(
κ	1 v
∗
P κ2

(κ	1 v
∗
P

+κ+1 )2
+1

)
κ̃3b

···−κ̃3b ···+ κ̃23
ν̃2
b

 .

(SI.14)

So,

Vneg [VP ]

v∗P
=
(

1 +
κ	1 v

∗
P

κ	1 v
∗
P + κ+

1

)−1(
1 +

κ̃3

ν̃2 + ν3
+

κ	1 v
∗
Pκ2κ̃3

(κ	1 v
∗
P + κ+

1 )2(ν̃2 + ν3)

+
κ	1 v

∗
P ν3

(κ	1 v
∗
P + κ+

1 )(ν̃2 + ν3)

)
.

(SI.15)

...for [pos ]

We obtain

d

(
UR
UP

)
= −

(
ν̃2 − κ−1 ν̃2ν3

(κ−1 +κ⊕1 v
∗
P )κ̃3

−κ̃3 ν3

)(
UR
UP

)
dt+

√
2v∗P ν̃2ν3

κ̃3

(√ κ−1 κ2
(κ−1 +κ⊕1 v

∗
P )2

+ 1
)

0

0
√

κ̃3
ν̃2

)(
dW
dW ′

)
.

In equilibrium, we now have exactly (SI.14) but with b = − κ−1 ν̃2ν3
(κ−1 +κ⊕1 v

∗
P )κ̃3

. Hence,

Vpos [VP ]

v∗P
=
(

1− κ−1
κ−1 + κ⊕1 v

∗
P

)−1(
1 +

κ̃3

ν̃2 + ν3
+

κ−1 κ2κ̃3

(κ−1 + κ⊕1 v
∗
P )2(ν̃2 + ν3)

− κ−1 ν3

(κ−1 + κ⊕1 v
∗
P )(ν̃2 + ν3)

)
.

(SI.16)

D Comparison to previous results

D.1 Comparison for [neu]

The neutral case is by now well-studied. From Paulsson (2005), we see that this equilibrium
obeys, with

τ1 =
1

λ−1 + λ+
1

, τ2 =
1

µ2
, τ3 =

1

µ3
,

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2017. ; https://doi.org/10.1101/100115doi: bioRxiv preprint 

https://doi.org/10.1101/100115
http://creativecommons.org/licenses/by/4.0/


D COMPARISON TO PREVIOUS RESULTS 11

the expected life-times of a change in gene activity, mRNA and protein, respectively, that

V[P ]

E[P ]
= 1 +

λ3

µ3

τ2

τ2 + τ3
+

E[P ]λ−1
Mλ+

1

τ1

(τ2 + τ3)(τ1 + τ3)

τ1τ2 + τ2τ3 + τ1τ3

τ1 + τ2

τ3�τ1,τ2≈ 1 +
λ3

µ2
+

λ−1 λ2λ3

µ2µ3(λ−1 + λ+
1 )

τ1

τ3
= 1 +

λ3

µ2
+

λ−1 λ2λ3

µ2(λ−1 + λ+
1 )2

.

Since our scaling is exactly such that τ3 � τ1, τ2, i.e. the protein is much more stable than
RNA and the state of the gene, this result is in line with [11] in the main text.

D.2 Comparison with Thattai

In Thattai and van Oudenaarden (2001), a linearization of [neg ] was studied in the case of
fast switching on and off of the gene. (This will mean that both, κ−1 , κ

+
1 � 1.) Consider as

in the proof of Theorem 1 that

Eπ[Von] =
Mκ+

1

κ	1 vP + κ+
1

.

Then, study the system (compare with (•neg ))

V N
R (t) = V N

R (0) + Y3

(
N

∫ t

0
κ2

Mκ+
1

κ−1 V
N
P (s) + κ+

1

ds
)
− Y4

(
N

∫ t

0
ν2V

N
R (s)ds

)
,

V N
P (t) = V N

P (0) +N−1Y5

(
N

∫ t

0
κ3V

N
R (s)ds

)
−N−1Y6

(
N

∫ t

0
ν3V

N
P (s)ds

)
, (SI.17)

which can in the case (8) (i.e. λ	1 Nv
∗
P � λ+

1 ) be approximated by using

V N
R (t) = V N

R (0) + Y3

(
N

∫ t

0
Mκ2

(
1− κ	1

κ+
1

V N
P (s)

)
ds
)
− Y4

(
N

∫ t

0
ν2V

N
R (s)ds

)
. (SI.18)

Now, the system (SI.17) and (SI.18) is exactly as on p. 3 in Thattai and van Oudenaarden
(2001) with

k0 = NMκ2, k1 =
Mκ	1 κ2

κ+
1

, kP = Nκ3, γR = Nν2, γP = ν3.

Plugging these variables into [3] of Thattai and van Oudenaarden (2001) we obtain in equi-
librium with

η =
γP
γR

=
ν3

Nν2
, b =

kP
γR

=
κ3

ν2
, φ =

k1

γP
=
Mκ	1 κ2

κ+
1 ν3

that (note that η is negligible since N is large and φ is small by (8))

1

N
E[P ] =

1

N

( 1

1 + bφ

)k0b

γP
≈
(

1− Mκ	1 κ2κ3

κ+
1 ν2ν3

)Mκ2κ3

ν2ν3
=
Mκ2κ3

ν2ν3
− M2κ2

2κ
2
3

ν2
2ν

2
3

κ	1
κ+

1

,

V[P ]

E[P ]
=
( 1− φ

1 + bφ
· b

1 + η
+ 1
)
≈ 1 + b(1− φ)(1− bφ) ≈ 1 + b(1− (b+ 1)φ)

= (1 + b)− (1 + b)bφ = (1 + b)(1− bφ) =
(

1 +
κ3

ν2

)(
1−Mκ2κ3

ν2ν3

κ	1
κ+

1

)
≈
(

1 +
κ3

ν2

)(
1− κ	1

κ+
1

v∗P

)
=
(

1 +
λ3

µ2

)(
1−

λ	1 Nv
∗
P

κ+
1

)
.
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D COMPARISON TO PREVIOUS RESULTS 12

D.3 Comparison with Swain

In Swain (2004) the author uses d0 = µ2, d1 = µ3, v1 = λ3, 〈M〉 =
λ+1 λ2

(λ	1 Nv
∗
P )µ2

and

εc =
2

1 +

√
1 + 4

λ	1 λ2λ3
λ+1 µ2µ3

in order to obtain the Fano factor for the auto-regulatory gene expression with negative
(transcriptional) feedback. Expressing terms as in Section C, he gets

Vneg [P ]

Eneg [P ]
= 1 +

ν3v
∗
P

(ν̃2 + ν3)v∗R

1−

√
1 + 4

κ	1 κ2κ̃3
κ+1 ν̃2ν3

− 1

2

√
1 + 4

κ	1 κ2κ̃3
κ+1 ν̃2ν3

(
1 +

ν̃2

κ̃3

)
= 1 +

κ̃3

(ν̃2 + ν3)

(
1−

κ−1 v
∗
P

2κ−1 v
∗
P + κ+

1

(
1 +

ν̃2

κ̃3

))

=
2κ−1 v

∗
P + κ+

1 + κ̃3
κ−1 v

∗
P+κ+1

ν̃2+ν3
− κ−1 ν̃2v

∗
P

ν̃2+ν3

(2κ−1 v
∗
P + κ+

1 )

=
(κ−1 v

∗
P + κ+

1 )(1 + κ̃3
ν̃2+ν3

+
κ−1 ν3v

∗
P

(ν̃2+ν3)(κ−1 v
∗
P+κ+1 )

)

(2κ−1 v
∗
P + κ+

1 )

=
1 + κ̃3

ν̃2+ν3
+

κ−1 ν3v
∗
P

(ν̃2+ν3)(κ−1 v
∗
P+κ+1 )

(κ−1 v
∗
P+κ+1 )+κ−1 v

∗
P

κ−1 v
∗
P+κ+1

=
1 + κ̃3

ν̃2+ν3
+

κ−1 ν3v
∗
P

(ν̃2+ν3)(κ−1 v
∗
P+κ+1 )

1 +
κ−1 v

∗
P

κ−1 v
∗
P+κ+1

.

This is very similar to our equation (SI.15) except for a missing term emerging from gene
expression. As explained in the main text, the Langevin approximation Swain uses cannot
account for all fluctuations when a quasi-steady-state assumption is made. (Precisely, it
cannot account for fluctuations in the averaged variables.)

D.4 Simpler model of gene expression

We want to derive the simpler system without RNA from the full model. Noting that in
(∗neu), for κ2 = ν2 � 1, we have that for every finite N , RNA is approximately in equilibrium,
which is Poisson with parameter 1 for every on-gene. Feeding this into the equation for P ,
we obtain that

V N
P (t) = V N

P (0) +N−1Y5

(
N

∫ t

0
κ3Von(s)ds

)
−N−1Y6

(∫ t

0
ν3V

N
P (s)ds

)
.

This is the same equation which is need for the simple model given in the main text. Hence,
all results follow for κ2 = ν2 →∞.
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E RECALLING THE APPROACH OF KANG ET AL. (2014) 13

E Recalling the approach of Kang et al. (2014)

We will consider a general system of chemical reactions with S as the set of chemical species
and K the set of reactions; see also Anderson and Kurtz (2015) for further reference. The
chemical reactions have the form

νk
λk

GGGGGGAν ′k, k ∈ K, (SI.19)

where νk = (νks)s∈S and ν ′k = (ν ′ks)s∈S are vectors of chemical species, i.e. elements of NS .
For the dynamics, we assume mass action kinetics, i.e. we set

Λk(x) = λkx
νk := λk

∏
s∈S

xνkss

for the reaction rate of reaction k ∈ K. With

ζk := ν ′k − νk,

we can then define the dynamics of the Markov process X = (Xs)s∈S through the process
Rk, which describes the number of occurrences of reaction k up to time t. We have

Rk(t) = Yk

(∫ t

0
Λk(X(s))ds

)
for independent unit rate Poisson processes Yk, k ∈ K and therefore

X(t) = X(0) +
∑
k∈K

ζkRk(t) = X(0) +
∑
k∈K

ζkYk

(∫ t

0
Λk(X(s))ds

)
. (SI.20)

We will tailor the results of Kang et al. (2014) to the special case we need in our gene
expression example. This means that we can make use of several simplifications, e.g. on the
form of the generator of the full process.

1. Find F : Rds such that
F (vs) = lim

N→∞
EρN [LNvs],

2. Find hN such that
√
NεN1 ,

√
NεN2

N→∞
====⇒ 0 with εNi and εN2 from (SI.24).

For some scaling parameter N , assume that (XN
s , X

N
f ) is a Markov jump process with

state space Nds × Ndf such that for V N = (V N
s , V N

f ) with V N
f = XN

f and V N
s = XN

s /N , the
system V N

s is a slow (rescaled) sub-system and V N
f is a fast sub-system. We assume that the

generator LN has the form

LN = LN1 +NLN2 , (SI.21)

where LN2 describes the dynamics of V N
f , i.e. LN2 f = 0 if f only depends on vs. Our goal is

to show convergence

V N
s

N→∞
====⇒ Vs, (SI.22)

UN :=
√
N(V N

s − Vs)
N→∞
====⇒ U (SI.23)

for some Vs and U . Therefore, we proceed as follows.
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E RECALLING THE APPROACH OF KANG ET AL. (2014) 14

1. We have that (with the projection πs on the slow species and FN := LNπs = LN1 πs)

MN
1 (t) := V N

s (t)− V N
s (0)−

∫ t

0
FN (V N

s (s), V N
f (s))ds

is a (local) martingale. For the convergence (SI.22), we assume that∫ t

0
FN (V N

s (s), V N
f (s))

N→∞
====⇒

∫ t

0
F (Vs(s))ds

for some unique process Vs, which holds for

F (vs) = lim
N→∞

EρN [LNvs], (Ê)

where ρN is the equilibrium of V N
f for fixed slow species vs. Thus, the convergence V N

s
N→∞
====⇒

Vs holds with

Vs(t) = Vs(0) +

∫ t

0
F (Vs(s))ds

and we have shown (SI.22).
2. Note that

UN (t)− UN (0)

=
√
N(V N

s (t)− Vs(t))−
√
N(V N

s (0)− Vs(0))

=
√
N
(
MN,1(t) +

∫ t

0
FN (V N

s (s), V N
f (s))− F (V N

s (s))ds+

∫ t

0
F (V N

s )− F (Vs)ds
)
.

Assume that we

find hN such that LN2 h
N ≈ FN − F. (Ë)

(The ’≈’ is controlled by εN2 below. Note that this is a Poisson equation.) With

εN1 (t) :=
1

N

(
hN (V N

s (t), V N
f (t))− hN (V N

s (0), V N
f (0))−

∫ t

0
LN1 h

N (V N
s (s), V N

f (s))ds
)
,

εN2 (t) := −
∫ t

0
LN2 h

N (V N
s (s), V N

f (s))− (FN (V N
s (s), V N

f (s))− F (V N
s (s)))ds,

(SI.24)
we obtain that

MN
2 (t) := εN1 (t) + εN2 (t)−

∫ t

0
FN (V N

s (s), V N
f (s))− F (V N

s (s))ds

is a (local) martingale. Hence
√
N(V N

s (t)− Vs(t))−
√
N(V N

s (0)− Vs(0))

=
√
N
(
MN,1(t)−MN,2(t) + εN1 (t) + εN2 (t) +

∫ t

0
F (V N

s )− F (Vs)ds
)

We assume for εN1 , ε
N
2 from (SI.24) that

√
NεN1 ,

√
NεN2

N→∞
====⇒ 0. (Ì)
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3. In order to show convergence of MN
1 − MN

2 , we use the Martingale Central Limit
Theorem; see Theorem 5. Note that since the quadratic variation of all integrals

∫
dt vanishes,

we find that (recall the notation for Chemical Reaction Networks from (SI.19)–(SI.20), which
we now equip with a superscript N to account for the scaling constant), with z⊗2 = zz>

[
√
N(MN

1 −MN
2 )]t = N

[
V N

s −
1

N
(hN (V N

s , V N
f ))

]
t

=
1

N

∑
k∈K

∫ t

0

(
ζks + hN

(
V N

s (s−), V N
f (s−)

)
− hN

(
V N

s (s−) +
1

N
ζks, V

N
f (s−) + ζkf

))⊗2

dRNk (s),

where ζks and ζkf are the stochiometric changes of the k−th reaction in the slow and fast
subsystem, respectively. Note that in all applications, we will have that RNk either changes
slowly, or changes fast and can thus be approximated by a deterministic curve, such that

lim
N→∞

[
√
N(MN

1 −MN
2 )]t = lim

N→∞

1

N

∑
k∈K

∫ t

0

(
ζks + hN

(
V N

s (s), V N
f (s−)

)
− hN

(
V N

s (s) +
1

N
ζks, V

N
f (s−) + ζkf

))⊗2

ΛNk (s)ds.

Now, for the equilibrium ρN of the fast species for given concentration of slow species, vs, if

1

N

∑
k∈K

EρN
[(
ζks + hN

(
vs, V

N
f

)
− hN

(
vs +

1

N
ζks, V

N
f + ζkf

))⊗2
ΛNk (Vs)

]
N→∞
====⇒ c(vs), (Í)

we have that

1

N

∑
k∈K

∫ t

0

(
ζks + hN

(
V N

s (s), V N
f (s−)

)
− hN

(
V N

s (s) +
1

N
ζks, V

N
f (s−) + ζkf

))⊗2
Λ
N
k (V N

s )ds
N→∞
====⇒

∫ t

0
c(V (s))ds,

where the right hand side is a deterministic, absolutely continuous, Rs×s-valued function with
non-negative time-derivative. Hence we know from Theorem 5 that

√
N(MN,1 −MN,2)

N→∞
====⇒M

where M satisfies

dM =
√
c(V (t))dW.

4. Concluding, if F ∈ C1(Rds) with

F (V N
s )− F (Vs) =

1√
N

(
∇F (Vs)U

N + o(1)
)

we find that, if UN
N→∞
====⇒ U , then

U(t)− U(0) =

∫ t

0
∇F (Vs(r))Urdr +

∫ t

0

√
c(V (r))dW.

This gives (SI.23).
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F The two-dimensional Ornstein-Uhlenbeck process

We recall results for the two-dimensional Ornstein-Uhlenbeck process; see e.g. Gardiner
(2009).

Theorem 4 (Stationary variance of two-dimensional Ornstein-Uhlenbeck process). Let X =
(X1, X2) solve

dX = −AXdt+BdW,

where A,B ∈ R2×2. Then, if all eigenvalues of A have positive real part, the stationary
solution X0 of the SDE has E[X0] = 0 and

E[X0X
>
0 ] =

(A− (trA)E2)BB>(A> − (trA)E2) + (detA)BB>

2(detA)(trA)
.

Proof. Using partial integration, it is easy to see that this SDE is solved by

Xt = e−AtX0 +

∫ t

0
e−A(t−s)BdW.

If all eigenvalues of A have positive real part, the stationary solution of the SDE has the
distribution

X0 =

∫ 0

−∞
eAsBdWs.

In particular, E[X0] = 0 and

E[X0X
>
0 ] =

∫ 0

−∞
eAsBB>eA

>sds.

In order to compute the right hand side, we note that, for any 2× 2-matrix A =

(
a b
c d

)
, we

have that (for the unit matrix I2)

A2 =

(
a2 + bc ab+ bd
ca+ dc cb+ d2

)
=

(
(a+ d)a− (ad− bc) (a+ d)b

(a+ d)c (a+ d)d− (ad− bc)

)
= (trA)A− (detA)I2.

Hence, we can write

eAs = αs + βsA, eA
>s = αs + βsA

>,

i.e.

E[X0X
>
0 ] =

∫ 0

−∞
(αs + βsA)BB>(αs + βsA

>)ds

= αBB> + β(ABB> +BB>A>) + γABB>A>

= γ(A+
β

γ
)(BB>)(A> +

β

γ
) + (α− β2

γ
)BB>

(SI.25)

for

α =

∫ 0

−∞
α2
sds, β =

∫ 0

−∞
αsβsds, γ =

∫ 0

−∞
β2
sds.
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We then write

BB> =

∫ 0

−∞

d

ds
eAsBB>eA

>sds = AE[X0X
>
0 ] + E[X0X

>
0 ]A>

= α(ABB> +BB>A) + 2βABB>A> + β(A2BB> +BB>(A>)2)

+ γ(A2BB>A> +ABB>(A>)2)

= (α− γ(detA))(ABB> +BB>A) + 2(β + γ(trA))ABB>A>

+ β(trA)(ABB> +BB>A>)− 2β(detA)BB>

= −2β(detA)BB> + 2(β + γ(trA))ABB>A>

+ (α+ β(trA)− γ(detA))(ABB> +BB>A),

which is only possible if

1 + 2β(detA) = 0,

β + γ(trA) = 0,

α+ β(trA)− γ(detA) = 0,

i.e.

α =
detA+ (trA)2

2(detA)(trA)
, β = − 1

2 detA
, γ =

1

2(detA)(trA)

Combining this with (SI.25) then gives the result.

Corollary F.1 (Diagonal matrix B). Note that if

A =

(
a b
c d

)
, B =

(√
λ 0

0
√
ρ

)
,

then

E[X0X
>
0 ] =

(
ρb2 + λ(d · tr(A)− bc) −(ρab+ λcd)
−(ρab+ λcd) ρ(a · tr(A)− bc) + λc2

)
2(ad− bc)(a+ d)

.

Proof. Indeed, A− tr(A)E2 =

(
−d b
c −a

)
, so

(A− (trA)E2)BB>(A> − (trA)E2) =

(
−λd ρb
λc −ρa

)(
−d c
b −a

)
=

(
ρb2 + λd2 −(ρab+ λcd)
−(ρab+ λcd) ρa2 + λc2

)
.
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G Martingale Central Limit Theorem

Here, we give a version of the martingale central limit theorem as given in Ethier and Kurtz
(1986), Theorem 7.1.4.

Theorem 5. Let (MN ) be a sequence of Rd-valued martingales. Suppose that

lim
N→∞

E
[
sup
s≤t
|MN (s)−MN (s−)|

]
= 0

and

[M i
N ,M

j
N ]t → cij(t)

for all t ≥ 0, where C = (cij) is deterministic and continuous. Then MN ⇒M for a stochastic
process M which is Gaussian with independent increments and E[M(t)M(t)T ] = C(t).

Furthermore, since C is non-negative and symmetric and if C is absolutely continuous its
derivative is non-negative and thus has a non-negative square-root. This implies that M can
be written as

M(t) =

∫ t

0

√
Ċ(s)dW (s),

where W is the d-dimensional standard Brownian motion.
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