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Abstract  
 

Plasmodium vivax populations are more resistant to malaria control strategies than Plasmodium 

falciparum, maintaining high genetic diversity and gene flow even at low transmission. To quantify the 

impact of declining transmission on P. vivax populations, we investigated population genetic structure 

over time during intensified control efforts and over a wide range of transmission intensities and spatial 

scales in the Southwest Pacific. Analysis of 887 P. vivax microsatellite haplotypes (Papua New Guinea, 

PNG = 443, Solomon Islands = 420, Vanuatu =24) revealed substantial population structure among 

countries and modestly declining diversity as transmission decreases over space and time. In the 

Solomon Islands, which has had sustained control efforts for 20 years, significant population structure 

was observed on different spatial scales down to the sub-village level. Up to 37% of alleles were 

partitioned between populations and significant multilocus linkage disequilibrium was observed 

indicating substantial inbreeding. High levels of haplotype relatedness around households and within a 

range of 300m are consistent with a focal and clustered infections suggesting that restricted local 

transmission occurs within the range of vector movement and that subsequent focal inbreeding may be 

a key factor contributing to the observed population structure. We conclude that unique transmission 

strategies, including relapse allows P. vivax populations to withstand pressure from control efforts for 

longer than P. falciparum. However sustained control efforts do eventually impact parasite population 

structure and with further control pressure, populations may eventually fragment into clustered foci that 

could be targeted for elimination.  
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Introduction 
Spatial clustering of infectious diseases is a well-known phenomenon in which micro-epidemiological 

variations in exposure due to factors controlling disease transmission result in some individuals in the 

community being disproportionately infected (Cattani, et al. 1986; Bousema, et al. 2012; Cotter, et al. 

2013). Malaria is one disease in which spatial clustering of transmission has been frequently reported, 

with heterogeneity becoming more pronounced as transmission decreases (Woolhouse, et al. 1997; 

Bousema, et al. 2012). Concerted international efforts over the last 15 years, have reduced the global 

malaria burden by more than 50% with rapidly declining transmission in many endemic regions (WHO 

2015c).  As countries aim for elimination, measuring the impact of control efforts and mapping 

transmission foci will provide data that can guide when to switch from broad ranging to targeted 

control efforts, and will help to prioritise regions for elimination.  

 

Plasmodium falciparum and Plasmodium vivax are the major agents of human malaria, however as 

malaria transmission declines in co-endemic areas, P. vivax becomes the main source of malaria 

infection and disease because it is more refractory to control efforts (Harris, et al. 2010; Kaneko 2010; 

Oliveira-Ferreira, et al. 2010; Rodriguez, et al. 2011; Organisation 2013; Kaneko, et al. 2014; 

Noviyanti, et al. 2015; Waltmann, et al. 2015; WHO 2015a, c). P. vivax employs unique life-history 

strategies including dormant liver-stage infections (hypnozoites), the early development of 

transmissible forms (gametocytes) and the lower density (and thus detectability) of infections which 

probably underlie control-driven shifts in species dominance and suggest that P. vivax will be the far 

more challenging species to eliminate (Feachem, et al. 2010; Bousema and Drakeley 2011; White and 

Imwong 2012; Mueller, et al. 2013). Transmission-reducing interventions originally developed for 

African P. falciparum malaria, may not be sufficient or suitable against P. vivax and therefore novel 

strategies to confront the unique challenges posed by P. vivax may need to be developed (Mendis, et al. 

2001; Alonso, et al. 2011; Alonso and Tanner 2013; Cotter, et al. 2013; WHO 2015b, a).  

 

Parasite population genetics has been successfully harnessed to understand changes in P. falciparum 

populations in response to sustained control (Daniels, et al. 2015), but this has not yet been applied 

extensively to P. vivax control. As infections reduce in number and transmission becomes more focal, it 

is expected that effective population size, genetic diversity, gene flow and outcrossing will decrease, 

eventually leading to inbred, structured populations (Anderson, Haubold, et al. 2000; Markert, et al. 

2010; Bousema, et al. 2012). Conversely, in areas of high transmission, high levels of diversity, gene 
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flow and outcrossing are common (Anderson, Haubold, et al. 2000), resulting in admixed and 

unstructured populations (Anderson, Haubold, et al. 2000). Whilst P. falciparum fits this expectation 

(Anderson, Haubold, et al. 2000; Markert, et al. 2010; Bousema, et al. 2012), P. vivax populations 

exhibit high levels of diversity and large effective population sizes irrespective of transmission (Van 

den Eede, et al. 2010; Chenet, et al. 2012; Gray, et al. 2013; Gunawardena, et al. 2014; Barry, et al. 

2015). Strong structuring of P. vivax populations has been observed among continents indicating long 

periods of isolation (Koepfli, et al. 2015; Hupalo, et al. 2016; Pearson, et al. 2016), but at regional and 

local scales sub-structure has been reported only for some areas (Imwong, et al. 2007; Van den Eede, et 

al. 2010; Abdullah, et al. 2013; Delgado-Ratto, et al. 2016), but not others (Koepfli, et al. 2013; 

Jennison, et al. 2015; Noviyanti, et al. 2015) with little apparent relationship to transmission intensity. 

In co-endemic areas where P. vivax prevalence is comparable to, or lower than that of P. falciparum, P. 

vivax exhibits large panmictic populations (Orjuela-Sanchez, et al. 2013; Jennison, et al. 2015). 

Regions where P. vivax population structure has been observed, such as Peru (Van den Eede, et al. 

2010), Colombia (Imwong, et al. 2007) or Malaysia (Abdullah, et al. 2013) tend to have had multiple 

introductions (Taylor, et al. 2013), historically low P. vivax transmission (Van den Eede, et al. 2010,; 

Delgado-Ratto, et al. 2016), non-overlapping vector species refractory to non-autochthonous strains 

(Pimenta, et al. 2015) or historically focal transmission combined with recent reductions due to control 

(Abdullah, et al. 2013). In regions with past hyperendemic P. vivax transmission and recent upscaling 

of malaria control efforts, population structure has not been observed (Noviyanti, et al. 2015).  

 

In comparison to P. falciparum, the lack of local population structure of P. vivax is consistent with 

more stable transmission over a long period of time and/or deeper evolutionary roots (Neafsey, et al. 

2012) and also reflects the contribution of relapse and multiple infections to outcrossing and gene flow 

(Jennison 2015). Relapses account for up to 80% of P. vivax blood stage infections in highly endemic 

areas (Robinson, et al. 2015), undoubtedly playing a central role in shaping the complex genetic 

structure of P. vivax populations. At lower prevalence, significant multilocus linkage disequilibrium 

(LD) in the context of high diversity suggests that P. vivax may increasingly undergo clonal 

transmission and inbreeding as diverse strains in the hypnozoite reservoir are depleted (Chenet, et al. 

2012), leading to increasing population structure (Abdullah, et al. 2013). Changes in the P. vivax 

population structure within declining transmission and in the context of long-term intensified control 

have not been investigated.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2017. ; https://doi.org/10.1101/100610doi: bioRxiv preprint 

https://doi.org/10.1101/100610
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  
	
  

5	
  

Malaria control programs need to measure the effectiveness of control efforts, determine whether their 

interventions are having an impact and how much control pressure is needed and for how long. For P. 

vivax, current approaches, mostly confined to prevalence surveys and monitoring clinical cases, lack 

the resolution to discern underlying population processes. Population genetics however, is a powerful 

approach to determine whether populations are under stress (Markert, et al. 2010). Before these 

molecular approaches can be effectively utilized, it will be important to understand how declining 

transmission affects P. vivax population structure. Furthermore, in order to stratify interventions for 

maximum impact, malaria control programs need to know the spatial scales that characterize P. vivax 

populations (Bousema, et al. 2012). Here we define P. vivax transmission patterns by measuring 

population genetic structure at different transmission intensities, spatial scales and in the context of 

successful long-term malaria control. We analysed almost 900 P. vivax microsatellite haplotypes from 

isolates collected throughout the Southwest Pacific region, which has a natural, gradual decline in 

malaria endemicity from west to east (high transmission in PNG, moderate-to-high in Solomon Islands 

and low in Vanuatu), that has been accentuated by recent control efforts. Included were dense spatial 

and temporal data from areas of residual P. vivax transmission in the Solomon Islands (Waltmann, et 

al. 2015), where over the last two decades malaria incidence has been reduced by approximately 90% 

(Program 2013). The results suggest that long-term sustained control will eventually impact P. vivax 

populations, highlighting the importance of maintaining control efforts, and the key role that population 

genetic surveillance can play in malaria control and elimination.  
 

Results 
Wide range of Plasmodium vivax transmission intensities across the study area 

Genotyping of all available P. vivax infections using the highly polymorphic markers MS16 and 

msp1F3 was first done to determine the multiplicity of infection (MOI) and calculate the proportion of 

polyclonal infections as a surrogate measure of transmission intensity (Nkhoma, et al. 2013). The 

greatest proportion of polyclonal infections was seen in regions with high P. vivax prevalence in PNG 

and in the Solomon Islands population of Tetere 2004-5 at 72.4% (42/58), consistent with the high 

level of malaria transmission at the time of sample collection (Figure 1, (Koepfli, et al. 2013; Jennison, 

et al. 2015)). In Vanuatu, among 30 P. vivax isolates in the original study (Boyd et al., unpublished), 25 

were successfully genotyped and of these only 10.0% (3/25) were polyclonal and the mean MOI was 

1.13 (range 1-2) (Figure 1D).  
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Figure 1. Map of the study areas and transmission intensity 
(A) Southwest Pacific sampling locations showing Papua New Guinea in blue, Solomon Islands in 
green and Vanuatu in red. (B) Central Solomon Islands. (C) Ngella, including 19 villages from five 
distinct geographical / ecological regions. Anchor villages are indicated in yellow, Bay in blue, South 
Coast in green, Channel in red and North Coast in purple). (D) The frequency of monoclonal and 
polyclonal infections is shown for each sampling location, as an indicator of transmission intensity.   
 

Within Solomon Islands, variation in the proportion of polyclonal infections was observed over time 

and space (Figure 1D). By 2013, Tetere had a lower proportion that in 2004-5 at 57.1% (32/56) 

indicating lower transmission than in 2004-5, but remaining at moderately high levels similar to the 

Madang Province of PNG. The mean MOI was 1.73 (range 1-5). In the other Solomon Islands 

populations of Auki and Ngella, the majority of infections were monoclonal consistent with much 

lower transmission. Of 18 Auki P. vivax infections, only 27.8% (5/18) were polyclonal and mean MOI 

was 1.33 (range 1-4). Within Ngella, an area of dense sampling, the smallest proportion of polyclonal 

infections was found in Anchor (the zone with the lowest prevalence) and the greatest proportion was 

found on the North Coast (Figure 1D). 
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Definition of high quality microsatellite haplotypes  
 A total of 889 high quality haplotypes with data for at least five out of nine loci were available for 

analysis (Figure S1). These included 557 confirmed single (MOI =1) and 332 “dominant” haplotypes 

from samples with MOI=2, which comprised the dominant allele calls (highest peaks) for all markers. 

However, two haplotypes were identified as outliers (i.e. those that do not conform to the expected 

distribution), due to rare singleton alleles at the MS2 locus (one from PNG and one from Tetere 2004-

5). These were discarded for subsequent analyses leaving a final dataset of 887 haplotypes (Table 1). 

No significant genetic differentiation was observed between haplotypes constructed from dominant 

alleles from multiple infections and those from confirmed single infections (Table S2) thus the 

haplotypes were combined for further analyses. The 887 haplotypes were distributed across all 

catchment areas. Smaller sample sizes were available for lower prevalence regions (Table 1, Table S1). 

The allele frequencies for each of the populations are summarized in Table S3. 

 

Temporal changes in Plasmodium vivax population structure after sustained control 

Although sustained control has been ongoing in the Solomon Islands since 1996, from 2003 with 

support from the Global Fund for combatting AIDS, Tuberculosis and Malaria, there have been several 

interventions in more recent years including indoor residual spraying (IRS) in 2006, introduction of 

artemisinin combination therapy (ACT) in 2008, and widespread distribution of long lasting insecticide 

treated bednets (LLIN) in 2009 (WHO 2015c). Data was available for two time points, 2004-5 and 

2013 for Tetere, a village on the north coast of the main island of Guadalcanal. In Tetere 2013, 

diversity (HE and RS) was lower and effective population sizes were half that of the values observed for 

the 2004-5 population, consistent with a significant impact on the P. vivax population over that period 

(Table 1). Furthermore, in 2004-5 there were no identical haplotypes and no significant LD (Koepfli, et 

al. 2013) (Table 2), indicating high levels of outcrossing due to high transmission. By 2013, multilocus 

LD had increased to significant levels consistent with an increase in inbreeding (Table 2), and the 

populations from the two time points showed low but significant levels of genetic differentiation (Jost 

D=0.195, GST=0.021, FST=0.029, Figure 2, Table S4). The Tetere 2004-5 population was also 

genetically differentiated from other two Solomon Islands populations (Auki and Ngella), which 

included samples collected in 2012 and 2013, respectively (Figure 2). This clearly demonstrates 

increasing LD and population structure in the Tetere P. vivax population in the period from 2004-2013, 

most likely as a result of declining transmission due to intensified malaria control.  
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Figure 2. Estimates of genetic differentiation for P. vivax populations of the Southwest Pacific. 
Genetic differentiation values are shown for populations at different spatial scales, and are based on 
Jost’s D (Jost 2008). Darker shading indicates higher values. Values for FST and GST are available in 
the supporting materials (Tables S4 and S5). 
 

Spatially variable diversity and effective population sizes for Plasmodium vivax according to level 

of transmission 

The study area included a wide range of transmission intensities and spatial scales (Figure 1). Diversity 

based on the mean expected heterozygosity was high for all populations with marginally lower values 

in the lowest transmission site of Espiritu Santo in Vanuatu (0.72) compared to the PNG and Solomon 

Islands populations (range 0.79 - 0.85, Table 1) demonstrating the ability of P. vivax populations to 

maintain high levels of diversity even at very low transmission. In Ngella, the lowest HE was found in 

the Channel and Anchor populations (0.79) and the highest on the North Coast (0.85). The mean allelic 

richness (RS) displays a similar pattern but broader range of values, with the lowest in Vanuatu (5.45 

alleles/locus) and the highest in Solomon Islands and PNG, on the North Coast of Ngella (9.73 

alleles/locus) and Madang Province (9.62 alleles/locus) respectively. Within Solomon Islands, Anchor, 

an area of Ngella, and the area with the lowest P. vivax prevalence, had the lowest mean number of 

estimated alleles/locus (6.51) (Table 1)  

 

Effective population sizes (Ne) were also variable across the different parasite populations, with 

Vanuatu having the lowest values. Solomon Islands and PNG populations showed comparably 

SOUTHWEST PACIFIC
PNG Solomon Is. Vanuatu

PNG 0 0.216 0.408
Solomon Is. 0 0.417
n 443 420 24

SOLOMON ISLANDS
Tetere 2004-5 Tetere 2013 Bay South Channel North Anchor Auki

Tetere 2004-5 0 0.197 0.305 0.307 0.275 0.292 0.278 0.265
Tetere 2013 0 0.209 0.193 0.265 0.189 0.201 0.233
Bay 0 0.098 0.212 0.156 0.177 0.322
South 0 0.320 0.158 0.155 0.396
Channel 0 0.251 0.352 0.372
North 0 0.132 0.307
Anchor 0 0.323
n 45 39 83 35 46 136 23 13

NGELLA: NORTH NGELLA: CHANNEL
Vura Polohomu Tavulea Vutumakoilo Huanavavine

Vura 0 0.184 0.236 Vutumakoilo 0 0.488
Polohomu 0 0.192 n 14 29
n 58 46 33
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moderate to high Ne (Table 1) even though transmission in Solomon Islands was lower than that of 

PNG (Figure 1). Among the Ngella populations, Channel had the smallest effective population 

size. These relative patterns in Ne (effectively another measure of diversity) show that very low 

transmission is needed (e.g. Vanuatu) for Ne to be impacted substantially, particularly when the 

diversity of microsatellite markers are used for its calculation.   

 

Evidence of Significant Inbreeding in Plasmodium vivax parasite populations of Solomon Islands 

and Vanuatu  

In previously published data from PNG and Solomon Islands there were no identical haplotypes and no 

significant LD was observed (Koepfli, et al. 2013; Jennison, et al. 2015). In the new data from Solomon 

Islands (samples collected almost a decade later to the previous study) and Vanuatu, seven haplotypes 

were found repeatedly. All of these shared haplotypes were observed within Ngella, which may in part 

be due to lower transmission as well as the greater depth of sampling in this region. The seven repeated 

haplotypes were found in four Ngella sub-regions, not including Bay (Table S6, Figure S2). One 

haplotype was found in five isolates, one in four isolates, three were found in three isolates each and 

two in two isolates each. Three identical haplotypes were restricted to the same village, and the other 

four were shared among villages of the same or different region (Table S6, Figure S2). For those 

haplotypes shared among villages, at least one of the infected individuals reported travel other parts of 

Ngella or Guadalcanal.  

 

Based on the complete microsatellite haplotypes (n=248), significant multilocus LD was observed for 

Solomon Islands and Vanuatu populations, with the exception of Tetere 2004-5 as mentioned above 

(Table 2) (Koepfli, et al. 2013). Strong LD was also observed within villages (Table 2). The pattern of 

strong LD was retained when only single infections were considered (n=93, Table 2) (any differences 

in IA
S estimates or increases in p-values are due to the sample size reductions), as well as when only 

one locus per chromosome was analyzed to confirm that LD was not the result of physical linkage 

(Table S7). As previously reported, significant multilocus LD was not found in PNG, indicating high 

levels of outcrossing in that population (Jennison, et al. 2015). 

 

Geographic Population Structure of Plasmodium vivax in the Southwest Pacific  

To investigate population structure across the study area, genetic differentiation (Jost’s D) was 

calculated and clusters defined from the haplotype data. Substantial population structure was observed 
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across the region with low to moderate GST (0.20-0.54) and FST values (0.038-0.085), and Jost’s D 

values among countries indicating that between 21.6-41.7% of the alleles are private (Figure 2, Tables 

S4, S5). Higher values of genetic differentiation between parasite populations of different regions and 

villages in Solomon Islands were observed (Figure 2, Tables S4, S5), but not among regions or villages 

in PNG (Koepfli, et al. 2013; Jennison 2015), while Vanuatu samples were from only one region and 

thus within country structure could not be determined.  

 

STRUCTURE analysis showed sub-structuring at various spatial scales down to the village level 

(Figures 3, S3). Analysis of all haplotypes showed that Southwest Pacific parasites optimally clustered 

into three genetically distinct populations associated with each of the countries (Figures 3, S3). Within 

Solomon Islands, further substructure was observed (K=4, Figures 2, 3). Moderate to high levels of 

genetic differentiation were observed with the highest values observed for all populations against Auki, 

albeit the small sample size (n=13) may have elevated these values (Figure 2).  Tetere 2013 and Ngella 

infections were the least differentiated indicating greater gene flow between these two populations 

(Figure 2). STRUCTURE analyses confirmed this additional sub-population structure within Solomon 

Islands showing four genetically distinct groups of haplotypes with weak clustering between the Tetere, 

Ngella and Auki haplotypes (Figures 3, S3).  

 

Within Ngella, genetic differentiation and clustering was observed amongst the five defined geographic 

regions and even among villages in the same region (Figure 2). Differentiation values were highest for 

the Channel population against all other populations, with the strongest differentiation as compared to 

the Anchor and South Coast regions (Figure 2). As sample sizes were substantial, we also compared 

three villages on the North Coast located approximately 6-15km apart (Vura n=58, Polomuhu n=46, 

and Tavulea n=33) and two villages in the Channel region (Hanuvavine n=29 and Vutumakoilo n=14) 

which are approximately 6km apart. Moderate genetic differentiation was observed among the North 

Coast villages and high levels between the two Channel villages (Jost’s D=0.488) (Figure 2). In 

addition, clustering was evident among the five defined regions. STRUCTURE analysis containing 

only Ngella haplotypes gave an optimal K of 4 (Figures 3, S3). With this analysis, further clustering 

was also discernible within the Channel region, with the Hanuvavine and Vutumakoilo village isolates 

forming distinct clusters (Figures 3, S3) consistent with the genetic differentiation results  (Figure 2). A 

separate analysis of the three North Coast villages (Vura, Polomuhu and Tavulea), which were between 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2017. ; https://doi.org/10.1101/100610doi: bioRxiv preprint 

https://doi.org/10.1101/100610
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  
	
  

11	
  

6-15km apart also confirmed that clustering in Ngella is present even at small geographical scale 

(Figure 3, S3).  

 

Figure 3. Clustering patterns of P. vivax microsatellite haplotypes. Results of STRUCTURE 
analysis are shown for different geographic strata including (A) Southwest Pacific, (B) Solomon 
Islands, (C) Ngella and (D) Ngella, North Coast. The analysis assigns P. vivax haplotypes to a defined 
number of genetic clusters (K) based on genetic distance. Vertical bars indicate individual P. vivax 
haplotype and colours represent the ancestry co-efficient (membership) within each cluster.  
 

Fine-scale clustering of Plasmodium vivax infections in Solomon Islands  

To investigate whether clustering of infections could be observed on a very fine scale (sub-village) we 

also investigated genetic relatedness of infections within and between households (Figure 4A). The 

analyses made use of two datasets of pairwise haplotype comparisons with only high quality haplotypes 

with at least six of the nine genetic loci successfully typed (Table S4). These included an intra-

household comparison (n comparisons with ≥ 6 markers assessed = 164), where pairwise allele sharing 

was calculated only between each haplotypes of the same household and included 208 Ngella 

haplotypes from 86 households with ≥2 infections (Figures 4A and B); and an inter-household 

comparison (n comparisons=46,479; n haplotypes = 315; n households with ≥1 infection = 187), where 

pairwise allele sharing was calculated between all haplotypes.  
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Figure 4. Fine scale genetic relatedness (allele 
sharing) of P. vivax haplotypes in Ngella, 
Solomon Islands. (A) Schematic of the types of 
pairwise allele sharing comparisons within and 
between households with P. vivax carriers of two 
theoretical villages, A and B. Intra-household 
comparisons, red lines; inter-household 
comparisons within a village, black lines; inter- 
household comparisons between villages, blue 
lines). (B) Proportion of allele sharing (PS) within 
and between Ngella households. (C) Distribution 
of the D statistic (proportion alleles shared within 
households – proportion of alleles shared between 
households). A total of 10,000 permutations were 
used. The observed D value (0.074) is shown in 
red. Under the null hypothesis, the 10,000 D 
values permuted never reach the observed D value. 
Hence, the distribution of the proportion of alleles 
shared within household compared to that between 
households is statistically different (p<0.00001). 
 

Comparisons of allele sharing (PS) showed that clonal pairs, which had identical alleles at all markers, 

were found within households (2/164, 1.2%) more frequently than between households (27/46479, 

0.06%, p<0.001) (Figure 4B, S5). There was also a greater proportion of full siblings, sharing 51-90% 

of their alleles, within household pairs (19/164, 11.6%) compared to that between households 

(1338/46479, 2.88%, p<0.001) (Figure 4B). Half-siblings, which share 20-50% of their alleles, were 

also more common within households (62/164, 37.8%) compared to inter-household comparisons but 

the difference did not reach statistical significance (15177/46479, 32.7%, p=0.160) (Figure 3B). 

Overall, there was 7.4% more allele sharing within-households (D=0.074), which is well beyond the 
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range of normal variation, as none of the D values of the 10,000 permutations reached the observed D 

(p<0.00001, Figure 4C). The assessment of PS at individual microsatellite loci was also consistent with 

a strong gradient of spatial variation in relatedness with a mean PS across the loci of 0.34 within 

households compared to 0.29 between households in the same village (p<0.00001), 0.26 between 

households of the same region (p<0.0001) and 0.23 between households in the entire Ngella 

comparison set (p<0.00001, Figure S6). 

 

In order to assess the spatial scale of clustering, we then assessed associations between the extent of 

allele sharing and geographic distance of the households. The median physical distance between pairs 

of haplotypes sharing less than five alleles was 10 km with significant differences in the distance 

distributions of haplotypes with zero to four alleles shared. For clonal and sibling haplotypes sharing 

more than five alleles, there was a highly significant decrease in the median distance to between 100-

300m (Figure 5).  

  

 
Figure 5. Relationship between geographic distance and genetic relatedness of P. vivax 
haplotypes from Ngella, Solomon Islands. Geographic distance in metres for each pair of haplotypes 
was calculated based on GPS co-ordinates of households from which the haplotypes originated. 
Genetic relatedness was measured using the pairwise allele sharing (Ps) of haplotypes. The distribution 
of geographic distances was then plotted for all pairs as a function of genetic relatedness. Circles 
represent the median geographic distance for a given genetic distance value, bars represent the 5-95th 
percentiles. Asterisks indicate highly significant (p<0.000001) differences between 0 shared alleles and 
a given number of shared alleles. 
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Discussion  
The spatial scales that define malaria parasite populations and clustering of foci becomes particularly 

important at low transmission (Bousema, et al. 2012) to map the distribution of infections and aid in the 

spatial stratification of interventions for maximum impact. However, this may be challenging for P. 

vivax given high levels of outcrossing and complex patterns of gene flow that threaten to undermine 

control efforts (Jennison 2015; Noviyanti, et al. 2015; Hupalo, et al. 2016; Pearson, et al. 2016). Using 

the most spatially dense dataset of geo-positioned P. vivax genotypes to date, our results reveal 

decreasing diversity and increasing multilocus LD over time as well as fragmented P. vivax populations 

with declining transmission in space in the context of sustained long-term malaria control. In the 

central study area of Ngella, Solomon Islands, P. falciparum has almost disappeared due to ongoing 

control interventions, but significant P. vivax residual, mostly sub-clinical transmission remains 

(Waltmann, et al. 2015). In this region, P. vivax parasite populations were spatially structured among 

sub-regions, villages and households. A substantial decrease in diversity and an increase in LD and 

population structure over time on a neighbouring island (Guadalcanal) indicate that the patterns 

observed are predominantly the result of sustained malaria control, which has been ongoing in 

Solomon Islands for more than 20 yrs. The results show that while P. vivax may be overall more 

resistant to control efforts than P. falciparum (Feachem, et al. 2010; Bousema and Drakeley 2011; 

White and Imwong 2012; Mueller, et al. 2013), long-term sustained malaria control will put parasite 

populations under substantial stress and may lead to at least partial fragmentation of parasite 

subpopulations. While human movement is a major factor for the spread of infections at large scales 

and will also counteract population differentiation in the Solomon Islands, at the microepidemiological 

scale, the predominant clustering of infections is between household and most sibling and clonal 

parasites were found within 100-300 m i.e. within the usual flight distance of vectors in the Pacific 

(Charlwood, et al. 1988). Given the highly heterogeneous nature of mosquito-borne disease 

transmission (Perkins, et al. 2013; Stoddard, et al. 2013), this fine scale spatial clustering thus indicates 

that most infections persist and spread locally.  

 

Across the Southwest Pacific, diversity amongst P. vivax populations was predominantly partitioned by 

country of origin reflecting the limited mixing of these populations. Southwest Pacific P. vivax 

populations have also been shown to be genetically distinct from other worldwide populations (Koepfli, 

et al. 2015; Hupalo, et al. 2016; Pearson, et al. 2016). Only minimal population structure between PNG 

and Solomon Islands was previously reported for the small number of samples collected in Tetere 
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between 2004-5 (Koepfli, et al. 2013; Jennison, et al. 2015). The differences with these earlier studies 

can be attributed to a much larger sample size from multiple Solomon Islands locations, and the 

intervening intensification of antimalarial interventions in the region. This is supported by the 

comparison of two time points (Tetere 2004-5 and 2013) that revealed a decline in polyclonal 

infections, corresponding with decreasing diversity and effective population size and an increase in 

multilocus LD and population structure. Although no pre-2013 samples were available from Ngella, 

evidence from malaria surveys indicate a 90% reduction in cases from 1992 to 2013 (Solomon Islands 

National Vector Borne Diseases Control Program, unpublished data), consistent with the pattern of 

population structure observed being a direct result of malaria control. Thus, sustained intervention has 

likely resulted in the inbred and fragmenting parasite populations observed. 

 

The genetic structure of malaria parasite populations in relation to variable transmission has previously 

been investigated primarily with P. falciparum or with P. vivax populations over large spatial scales 

(e.g. between countries or distant locations within countries) (Ferreira, et al. 2007; Imwong, et al. 2007; 

Arnott, et al. 2013; Koepfli, et al. 2013; Abdullah et al. 2013; Jennison, et al. 2015; Koepfli, et al. 

2015). The high-resolution analyses of P. vivax population structure in the central zone of Solomon 

Islands, a region spanning around 100 km, revealed population structure among different island 

provinces. This region, which contains the most populous provinces, has historically had the highest 

malaria transmission in the country (Avery 1977) and continues to have the highest API nationally 

(National Vector Borne Diseases Control Program 2013). Ngella P. vivax populations were found to 

have moderate levels of differentiation from populations of the other island provinces. Ngella is well 

connected to the higher endemicity areas of the Central Solomon Islands zone, as a direct and popular 

shipping route exists between Guadalcanal and Malaita Provinces via Ngella. This suggests that despite 

a significant level of human movement among these three provinces, importation of P. vivax cases into 

Ngella is sufficiently reduced to impact P. vivax gene flow. Whilst within country population structure 

has not been observed previously in the Southwest Pacific, it has been found in Malaysia (Abdullah, et 

al. 2013), where prevalence of P. vivax has traditionally been described as focal, and has recently 

reduced; and in South America (e.g. Peru (Van den Eede, et al. 2010; Delgado-Ratto, et al. 2016), 

Venezuela (Chenet, et al. 2012), Colombia (Imwong, et al. 2007) and Brazil (Ferreira, et al. 2007) 

where P. vivax has likely been introduced multiple times with adaptation to local vectors likely to have 

resulted in founder effects and influenced gene flow (Taylor, et al. 2013). At reduced transmission in 

an African setting, P. falciparum populations were shown to be more inbred and with genetic 
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relatedness rapidly increasing within the first year of intensified control as a result of inbreeding, 

however this would be dependent on the structure and effective population size at baseline (Daniels, et 

al. 2015). Notably, it has taken at least 20 years for Solomon Islands P. vivax populations to show signs 

of instability. Structured parasite populations within Ngella (20-50km) were subdivided into four 

genetic clusters distributed unevenly among Anchor/Bay/South (combined), North Coast and the two 

villages in the Channel region. The Channel villages lay in an extensive mangrove system on both sides 

of a channel, however, the area has comparable prevalence and proportions of polyclonal infections to 

other Ngella areas, showing that the population structure is likely to be influenced by the ecology and 

isolation of this region. Population structure was also observed among neighbouring villages of the 

North Coast. Thus, P. vivax population structure in Ngella seems to be organized as a hierarchical 

island model, consisting of a metapopulation of several sub-populations (Slatkin and Voelm 1991).  

 

Despite marked reductions over time in one population (Tetere), relatively high genetic diversity and 

high effective population sizes remain in Solomon Islands P. vivax populations in the context of 

inbreeding and population structure. High P. vivax genetic diversity at low transmission was first 

recognized in Sri Lanka (Gunawardena, et al. 2014) and has also been observed together with 

significant LD in Peru (Chenet, et al. 2012), Malaysia (Abdullah, et al. 2013)and Indonesia (Noviyanti, 

et al. 2015). Despite a substantial range of transmission intensities, the genetic diversity observed for 

PNG and Solomon Islands were similar while hypoendemic Vanuatu had much lower levels of 

diversity, indicating that P. vivax transmission must reach very low levels before genetic diversity is 

impacted. LD and population structure can however signal changes in transmission intensity much 

earlier. The presence of identical haplotypes shared among Ngella parasites and significant multilocus 

LD is consistent with considerable levels of inbreeding due to increasingly clustered transmission of 

clonal or highly related, perhaps relapsing infections. In most endemic regions, identical P. vivax 

haplotypes are rare and were seen only at very low transmission in Central Asia where the P. vivax 

population is nearly clonal or at low transmission in the Amazon (Koepfli, et al. 2015). With 

decreasing transmission and polyclonality, opportunities for recombination between diverse strains are 

reduced. Focal inbreeding in and around households can explain the presence of LD in the context of 

high diversity, which is measured at the village level.  

 

Relapse, which has been shown to account for up to 80% of P. vivax infections in the high transmission 

setting of PNG (Robinson, et al. 2015), is undoubtedly a major contributor to the observed population 
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structure. For some time after a reduction in transmission, the re-activation of parasites from a pool of 

genetically diverse hypnozoites from numerous past infections provides opportunities for the exchange 

and dissemination of alleles, thus sustaining genetic diversity in the population. However, as the 

hypnozoite reservoir is depleted, focal clusters will be composed of more recent infections and 

subsequent relapses with highly related strains (Bright, et al. 2014). If diversity is measured at larger 

scales (i.e. village or region) this could explain high diversity in the context of significant LD. In 

addition, as transmission declines to very low levels, imported infections can become an important 

source of new, inbred foci. Thus relapse is likely to sustain residual transmission and maintain diverse 

meta-populations with high evolutionary potential. Other biological characteristics of P. vivax that are 

likely to sustain transmission and resilience to intervention include the rapid and continuous 

gametocyte production coupled with efficient transmissibility at lower gametocyte loads that drives 

high rates of human-to-vector transmission (Boyd and Kitchen 1937; Jeffery and Eyles 1955) and the 

rapid acquisition of clinical immunity early in life and low density of infection (Mueller, et al. 2013) 

that would lead to a larger population reservoir of asymptomatic carriers (Harris, et al. 2010; 

Waltmann, et al. 2015). However, unlike relapse, these do not fully explain the patterns of population 

structure that we have observed in the context of declining transmission. 

 

As national malaria control programs switch from control to elimination strategies, widespread 

application of control interventions eventually becomes unfeasible and spatially targeted interventions, 

more cost effective. In order to optimally plan intervention such as reactive case detection (van Eijk, et 

al. 2016) or focal mass drug administration (Gerardin, et al. 2016), it is essential to know the spatial 

scales required to deploy interventions for maximum impact. In line with a recent review (van Eijk, et 

al. 2016) we have previously shown that risk of P. vivax infection was enhanced by approximately 40% 

if an individual was living in a household with at least one other infected co-inhabitant, suggesting that 

within-household transmission may be important (Waltmann, et al. 2015). Spatial studies of other 

mosquito-borne infections, such as dengue virus (Harrington, et al. 2005; Mammen, et al. 2008; 

Stoddard, et al. 2013) or filarial worms (Michael, et al. 2001), have demonstrated that transmission 

occurs within communities, often around homes. These spatial studies have employed various data 

types and approaches, including profiling of human DNA in mosquito blood meals (Michael, et al. 

2001; De Benedictis, et al. 2003), cluster analysis around index cases (Mammen, et al. 2008) or index 

case contact tracing (Stoddard, et al. 2013). Spatial characteristics of P. vivax malaria transmission 

have not been previously investigated using population genetics data. Within villages, the results show 
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significantly more genetic relatedness between parasites of the same household than between parasites 

of different households. The finding of more highly related parasites among people living in the same 

household than among the general population, indicates that co-inhabitants may be infected by more 

inbred strains either due to spatial clustering of transmission or by the bites of the same, infected 

mosquito(es).  

 

Despite the principal vector in Solomon Islands, Anopheles farauti, feeding outdoors (Russell, et al. 

2016), much of the exposure to infective bites remains highly clustered around homes. This vector 

behaviour is considered to be a major challenge for elimination, but our data suggests that interventions 

focused on index households (e.g. reactive case detection or focal mass drug administration) could 

make a substantial impact. Whilst not all sibling or “clonal” parasites were found in the same 

household, they circulate in close proximity since high genetic relatedness was observed within 

approximately 100 - 300 meters, after which point it substantially decreased. These village 

“neighbourhoods” of parasite lineages appear to emanate from within-household co-transmission of 

highly related parasites. This radius of high genetic relatedness is consistent with the mosquito flight 

path (Charlwood, et al. 1988; Russell, et al. 2016). Thus, the fine scale patterns of population structure 

detected are likely to be driven by mosquito movement, rather than that of the human host. This data 

provides a basis to identify and attack residual pockets of transmission. The findings highlight that 

improved malaria surveillance and intervention can be local in nature, an approach previously 

recommended (Greenwood 1989; Stoddard, et al. 2013). Spatial decision support systems have been 

already proposed for the elimination provinces of Temotu and Isabel (Kelly, et al. 2013). The data 

suggests that a 300 meter response perimeter around index households could be included as part of a 

reactive, hypnozoite-targeting intervention against P. vivax.  

 

In summary, the results demonstrate P. vivax population structure at all spatial scales with hampered 

gene flow and inbreeding within parasite populations after long term sustained malaria control. These 

findings have significant public health implications showing that albeit more resistant to control efforts 

than P. falciparum (Alonso and Tanner 2013; WHO 2015a), P. vivax populations eventually will 

become increasingly inbred and fragmented if control pressure is maintained over an extended period. 

These results emphasize the need for interventions to be sustained for very long periods, well beyond 

the time frame required for P. falciparum. Given the proposal to eliminate malaria from the Asia-

Pacific by 2030 (APLMA 2014), intensive control pressure must be maintained to capitalize on these 
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successes and avoid rebound. Enhanced control efforts including targeted control in and around 

hotspots of transmission will help to reach these goals. 

 

Materials and Methods 

Study sites and Plasmodium vivax isolates 

Historically, the Southwest Pacific region, in particular PNG and Solomon Islands, has endured some 

of the highest P. vivax transmission anywhere in the world and a P. falciparum incidence comparable 

to that of Sub-Saharan Africa (Gething, et al. 2011; Gething, et al. 2012; Organisation 2013). Sustained 

control efforts in the Solomon Islands over the past 20 years have reduced transmission to very low 

levels (Harris, et al. 2010; PacMISC 2010; Waltmann, et al. 2015) not seen since the end of the last 

malaria elimination program in the mid 1970s. At the time of sampling, transmission in this region 

ranged from moderate to high in PNG, low in Solomon Islands and very low in Vanuatu (Gething, et 

al. 2012).   

 

A total of 887 isolates from PNG (n=443), Solomon Islands (n=420) and Vanuatu were used for the 

current study (n=24) (Table S1). These included previously published genotyping data from PNG 

collected in 2005-6 (n=486) and Solomon Islands in 2004 (Tetere 2004-5, n=45) (Koepfli, et al. 2013; 

Jennison, et al. 2015) in addition to 398 newly typed P. vivax isolates from multiple sites in the 

Solomon Islands collected in 2012-2013 (Waltmann, et al. 2015) and 24 from Espiritu Santo, Vanuatu 

collected in 2013 (Figure 1A). Importantly, the dense sampling of the central region of the Solomon 

Islands allowed analyses at a wide range of spatial scales. The 2012-13 Solomon Islands samples are 

from three neighbouring island provinces, namely Malaita (Auki, n=13), Guadalcanal (Tetere, n=39) 

and Central Province (Ngella, n= 323, Figure 1B). The 323 Ngella haplotypes spanned all three islands, 

including five distinct geographical areas: Bay (n=83), South (n=35), Channel (n=46), North (n=136) 

and Anchor (n=23, Figure 1C) comprising 19 villages and 190 households. Of all the households 

included in the Ngella survey, 93 had only one P. vivax-infected member, 69 had two, 23 had three, 

five households had four infections and one household had five members infected. The Tetere 2013 

(Wini et al., unpublished), Auki (Wini et al., unpublished), and Vanuatu (Boyd et al., unpublished) 

samples were collected as part of antimalarial drug efficacy trials. 

 

Further details of the samples and study sites are summarised in Table S1 and Text S1. The study was 

approved by The Walter and Eliza Hall Institute Human Research Ethics Committee (12/01, 11/12 and 
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13/02), the Papua New Guinea Institute of Medical Research Institutional Review Board (11-05), the 

Papua New Guinea Medical Research Advisory Committee (11-06), the Solomon Islands National 

Health Research Ethics Committee (12/022) and the Vanuatu Ministry of Health (19-02-2013).  

 

Multiplicity of Infection (MOI) 

To determine multiplicity of infection (MOI) in each population and to allow the selection of low 

complexity infections (MOI = 1 or 2) for the population genetics analyses, MS16 and msp1F3 

genotyping data were used (Koepfli, et al. 2013; Jennison, et al. 2015). These data were previously 

available for the PNG (Koepfli, et al. 2013; Jennison 2015), Tetere 2004-5 (Koepfli, et al. 2013), and 

Ngella datasets (Waltmann, et al. 2015). The MOI in the Tetere 2013, Auki 2013, and Vanuatu P. vivax 

populations was assessed for this study, according to protocols previously described (Karunaweera, et 

al. 2008; Koepfli, et al. 2011). 

 

Multilocus microsatellite genotyping 

All confirmed low complexity infections (MOI = 1 and 2) were then genotyped with nine genome-wide 

and putatively neutral microsatellites loci (MS1, MS2, MS5, MS6, MS7, MS9, MS10, MS12 and 

MS15) (Karunaweera, et al. 2008). A semi-nested PCR was employed, whereby a multiplex primary 

PCR was followed by nine individual secondary reactions, with a fluorescently labelled forward 

primer, as previously described (Koepfli, et al. 2013; Jennison, et al. 2015). PCR products were sent to 

a commercial facility for GeneScan™ fragment analysis on an ABI3730xl capillary electrophoresis 

platform (Applied Biosystems) using the size standard LIZ500.   

 

Data analysis 

Electropherograms resulting from the fragment analysis were visually inspected and the sizes of the 

fluorescently labeled PCR products were scored with Genemapper V4.0 software (Applied 

Biosystems), with the peak calling strategy done as previously described (Jennison, et al. 2015). Raw 

data from the published dataset was added to the new dataset and binned together to obtain consistent 

allele calls. Automatic binning (i.e. rounding of fragment length to specific allele sizes) was performed 

with Tandem (Matschiner and Salzburger 2009).  After binning, quality control for individual P. vivax 

haplotypes and microsatellite markers was conducted to confirm the markers were not in linkage 

disequilibrium (LD) and to identify outlier haplotypes and/or markers (i.e. haplotypes or markers which 

are disproportionately driving variance in the dataset).  For isolates with an MOI=2, the dominant 
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alleles were used to construct dominant clone haplotypes as previously described (Jennison, et al. 

2015). 

 

Allele frequencies and input files for the various population genetics software programs were created 

using CONVERT version 1.31. Allele frequencies and genetic diversity parameters (number of alleles 

(A), expected heterozygosity (HE) and allelic richness (RS)) were calculated in FSTAT version 2.9.3.2. 

Effective Population Size (Ne) was calculated using the stepwise mutation model (SMM) and infinite 

alleles model (IAM), as previously described (Anderson, Haubold, et al. 2000). Mutation rates for P. 

vivax were not available and thus the P. falciparum mutation rate was used (Anderson, Su, et al. 2000). 

For SMM, Ne was calculated as follows: 

𝑁! =

!
!
  𝑥 !

!!!!!"#$

!
− 1

𝜇  

where HE mean is the expected heterozygosity averaged across all loci. 

For the IAM, Ne was calculated using the formula: 

𝑁! =
𝐻!!"#$

4 1− 𝐻!!"#$
𝑥
1
  𝜇 

 

 

 

As a measure of inbreeding in the populations studied, multilocus LD (non-random associations 

between alleles of all pairs of markers) was estimated using the standardized index of association (IA
S) 

in LIAN version 3.6. IA
S compares the observed variance in the number of shared alleles between 

parasites with that expected under equilibrium, when alleles at different loci are not in association 

(Haubold and Hudson 2000). The measure was followed by a formal test of the null hypothesis of LD 

and p-values were derived. Only unique haplotypes with complete genotypes were used and Monte 

Carlo tests with 100,000 re-samplings were applied (Haubold and Hudson 2000). The number of 

unique haplotypes was assessed using DROPOUT (McKelvey and Schwartz 2005). To confirm that LD 

was not artificially reduced by false reconstruction of dominant haplotypes, the analysis was also 

performed for the combined dataset of dominant and single haplotypes, and for single infections only. 
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MS2 and MS5 both localize to chromosome 6 and MS12 and MS15 to chromosome 5 thus, analyses 

were repeated on datasets where MS5 and MS15 were excluded (chosen due to a greater degree of 

missing data) using the remaining seven loci spanning seven chromosomes. Where sample size 

permitted (n > 5), multilocus LD was also estimated at village level.  

 

To investigate geographic population structure, we first calculated three measures of genetic 

differentiation, namely FST, GST and Jost’s D, for all pairwise comparisons of the predefined 

populations. FST was estimated using FSTAT. GST (Nei and Chesser 1983) and Jost’s D (Jost 2008) 

were estimated using the R package DEMEtics, as previously described (Gerlach, et al. 2010). 

Population structure was further confirmed by Bayesian clustering of haplotypes implemented in the 

software STRUCTURE version 2.3.4 (Pritchard, et al. 2000), which was used to investigate whether 

haplotypes cluster into distinct genetic populations (K) among the defined geographic areas. The 

analyses were run for K=1-20, with 20 independent stochastic simulations for each K and 100,000 

MCMCs, after an initial burn-in period of 10,000 MCMCs using the admixture model and correlated 

allele frequencies. The results were processed using STRUCTURE Harvester (Earl and Vonholdt 

2012), to calculate the optimal number of clusters as indicated by a peak in ΔK according to the method 

of Evanno et al. (Evanno, et al. 2005). The programs CLUMPP version 1.1.2 (Jakobsson and 

Rosenberg 2007) and DISTRUCT 1.1 (Rosenberg 2004) were used to display the results.  

 

As our dataset comprised substantial numbers of infections from the same household it was possible to 

investigate fine-scale (within and between households) clustering of infections. To do this we assessed 

the extent of allele sharing, PS among P. vivax haplotypes, calculated as the number of alleles shared 

between a pair of haplotypes divided by the number of loci for which data was available for that pair of 

isolates. The formula is as follows: 

𝑃𝑠!,! =
𝑘! = 𝑘!!

!!!

𝑘  

Where: 

i and j = the two haplotypes compared 

k = the number of markers 

Note: the number of missing markers is subtracted from the denominator 
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PS was also measured for each individual microsatellite locus to confirm the patterns. First, we 

computed the number of identical alleles observed between two pairs of infections. Next, the minimum 

number of alleles available in each of the pairwise comparisons is considered as the denominator. For 

example, if for a given marker x, infection i has three detected alleles and infection j has two detected 

alleles and they have in common one allele, the proportion of alleles shared is 1/2 (50%). Therefore the 

formula for PS, for each marker, is as follows: 

  𝑃𝑠!,! =
  𝐴 𝐵

min 𝐴 , 𝐵  

 

The analyses per haplotype included dominant and single haplotypes. For the per marker analyses, 

households with only one infected individual were excluded and the dataset included all observed 

alleles for each P. vivax infection. Permutation tests were used to formally assess the difference in the 

allele sharing within households compared to that among households.  

 

Parasites which shared between 20-49% of their alleles were considered half-siblings, those which 

shared 50-89% of alleles were classified as full-siblings and (nearly) clonal parasites were those which 

shared 90-100% of their alleles.   

 

For the haplotype data, the test statistic D, which is the difference between the mean PS within 

households and the mean PS between households, was calculated. The sampling distribution of D under 

the null hypothesis (allele sharing within households is equal to the allele sharing between households, 

H0: D=0) was computed using 10,000 permutations and compared to the observed D and the p-value 

(the proportion of statistics, including the original, that are larger than the observed D) derived. For the 

per marker analyses, PS was calculated by using the minimum number of alleles available in the 

pairwise comparison for each marker individually as the denominator. For example, if for a given 

marker x, individual i has three detected alleles and individual j has two detected alleles and they have 

in common one allele, the proportion pi j of alleles shared is 1/2 (50%). The dataset for this analysis 

excluded households with only one infected individual. Permutation tests (10,000 re-samplings) were 

employed to test for the observed difference in pairwise allele sharing (D) within and between 

households.  
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To investigate the spatial scale of haplotype clustering, the physical distance (in metres) was calculated 

for all pairs of isolates. Distance distributions were then calculated for each level of relatedness (i.e. 0-9 

shared markers). Significant differences in the distance distributions were then compared using a Mann 

Whitney U test. All statistical analyses were done using Mathematica and GraphPad Prism.  
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Tables 
Table 1: Genetic diversity of P. vivax populations in the Southwest Pacific 

Country Province Population 
n 

haplotypes 
A±SEM HE±SEM RS±SEM 

Ne (95% CI)  

SMM 

Ne (95% CI)  

IAM 

Papua 

New 

Guinea 

East Sepik 229 13.44±0.38 0.81±0.006 8.75±0.20 16059 (6901, 36582) 6811 (2927, 15515) 

Madang 175 15±0.39 0.84±0.005 9.62±0.20 24293 (10439, 55337) 8234 (3539, 18757) 

Simbu 39 8±0.46 0.81±0.011 7.37±0.38 15539 (6678, 35397) 6713 (2885, 15291) 

Solomon 

Islands 

Guadalcanal 

Tetere 

2004-5 
45 9.44±0.53 0.84±0.009 8.44±0.43 23220 (9978, 52893) 8061 (3464, 18362) 

Tetere 

2013 
39 7.78±0.3 0.79±0.009 7.05±0.24 11766 (5056, 26802) 5963 (2562, 13583) 

Central 

Islands 

(Ngella) 

 

 

 

Bay 83 12.33±0.27 0.81±0.006 9.20±0.15 16112 (6924, 36703) 6821 (2931, 15538) 

South 35 9.11±0.34 0.82±0.012 8.50±0.32 16599 (7133, 37811) 6911 (2970, 15744) 

Channel 46 9.33±0.35 0.79±0.009 8.10±0.28 11500 (4942, 26196) 5907 (2538, 13456) 

North 136 13.89±0.28 0.85±0.004 9.73±0.17 26387 (11339, 60107) 8564 (3680, 19509) 

Anchor 23 6.56±0.38 0.79±0.019 6.51±0.37 10771 (4629, 24535) 5752 (2472, 13103) 

Malaita Auki 13 5.33±0.54 0.80±0.026 NA 13170 (5659, 30000) 6250 (2686, 14238) 

Vanuatu Sanma 
Espiritu 

Santo 
24 5.56±0.34 0.72±0.022 5.45±0.33 4056 (1743, 9239) 4131 (1775, 9411) 
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Table 2. Estimates of inbreeding in P. vivax populations of Solomon Islands and Vanuatu. Data 
from PNG and Tetere 2004-5 were previously published (Koepfli, et al. 2013; Jennison 2015).  
 

Population 
All haplotypes, all loci MOI = 1, all loci 

n IA
S p n IA

S p 

Tetere 2004-5 21 0.012 0.1800 0 NA§ 
 

Tetere 2013 31 0.022 0.0042 16 0.033 0.0183 

Auki 9 0.081 0.0050 6 0.054 0.1300 

Ngella 165 0.026 <0.00001 61 0.043 <0.00001 

Bay 32 0.041 0.0008 9 0.092 0.0052 

Halavo 21 0.073 0.0002 6 0.146 0.0014 

Bokolonga 5 0.315 0.00002 1 NA§ 
 

Channel 29 0.074 <0.00001 9 0.087 0.0053 

Hanuvavine 21 0.101 <0.00001 5 0.189 0.0020 

South 17 0.068 0.0003 7 0.163 0.0005 

Koilovala 10 0.049 0.0474 5 0.100 0.0592 

Vuranimala 5 0.238 0.0014 2 NA§ 
 

Anchor 14 0.069 0.0009 8 0.046 0.0948 

North 73 0.038 <0.00001 28 0.076 <0.00001 

Vura 34 0.058 <0.00001 14 0.067 0.0010 

Polomuhu 23 0.066 <0.00001 10 0.199 <0.00001 

Tavulea 16 0.097 <0.00001 1 NA§ 
 

Vanuatu 22 0.157 <0.00001 10 0.1690 <0.00001 
§NA = analysis not possible due to sample size constraints. 
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