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Abstract

Directed connectivity inference has become a cornerstone in neuroscience following the recent
progress in neuroimaging and elctrophysiological techniques to characterize anatomical and
functional networks. This paper focuses on the detection of existing connections from the ob-
served activity in networks of 50 to 150 nodes with linear feedback in discrete time. Through
the variation of multiple network parameters, our numerical results indicate that directed
connections - in the time domain - are more accurately estimated based on the coefficients
obtained from multivariate autoregressive (MVAR) than Granger causality analysis, which
is based on the error residuals of the same MVAR linear regression. Based on these findings,
we propose a non-parametric significance test for connectivity detection, which achieves a
good control of false positives (type 1 error) and is robust to various network topologies.
When generating surrogate distributions, we compare the effects of circular shifts, random
permutations and phase randomization of the observed time series, each breaking down co-
variances in a specific manner: the MVAR estimates from those shuffled covariances build
a null-hypothesis distribution for each connection, from which the original connectivity esti-
mate can be compared. We apply our method to multiunit activity data recorded from Utah
electrode arrays in monkey and examine the detected interactions between 25 channels for a
proof of concept. The results unravel a non-trivial underlying connectivity structure, which
differentiates the effect of incoming and outgoing connections.

1 Introduction

In recent years, there has been a growing interest in developing multivariate techniques to
infer causal relations among time series. The initial formulation of the problem goes back to
the seminal work by Granger in 1960’s [20] motivated by the analysis of the pairwise influence
between economic time series. In this work, Granger decomposes the cross-spectrum of two
autoregressive time series into two directional components that account for the potential
causal influences between each other. A general solution of the problem in multivariate
scenarios was developed a decade later by the introduction of multivariate autoregressive
(MVAR) processes, which allow the estimation of causal relationships between nodes in
networks with feedback based on their observed activity [2, 18, 19, 27]. The MVAR was
further combined with spectral analysis to develop the directed transfer entropy function
[22, 23], which has been employed to analyze connectivity patterns in neurobiological systems
[3, 49]. Estimating directed networks has been regarded in a number of scientific disciplines,
gaining central relevance in the field of genetics, in which the inference of gene regulatory
networks is a cornerstone. In this field, the growth of inference methods has been specially
notorious over the last decade [8, 52].
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In neuroscience, this inference problem has been transposed to analyse interactions be-
tween neuronal populations from spiking activity or neuroimaging measurements such as
fMRI, EEG and MEG [43, 34, 31, 30, 40, 26]. Two types of estimation procedures may be
distinguished: measures relying on an underlying interaction model such as Granger causal-
ity analysis [13] and dynamic causal modeling (DCM) [16] on the one hand; and model-free
measures such as transfer entropy [38] and directed information [29], which make minimal
model assumptions on the other hand. Although model-free approaches have proven useful
to describe neural propagation at spike-train level [41, 46], certain assumptions are required
when estimating interactions at the neuronal population level, in which broader spatial and
temporal scales contribute to shaping the signals. Motivated by data-driven practical prob-
lems, methodological refinements of Granger causality analysis (or MVAR-based methods)
have considered additive noise [48] or measurement noise via state-space models [15, 5].

In this article we compare connectivity estimation techniques for the MVAR, dynamic
model in the time domain (not frequency), under the specific angle of the application to
brain network activity. As a generative model, the MVAR process is canonically related to
Granger causality analysis: the linear regression in the upper right inset of Fig. 1A provides
both coefficients and residuals, the latter being viewed as the remaining uncertainty in the
prediction of the target time series by its source(s). By comparing the residuals of two linear
regressions - one involving a supposed source node and one without it - in a log ratio, Granger
causality estimates the effective contribution of one node onto another in a network [6].
Since these log ratios asymptotically converge to known distributions, parametric statistical
tests have been developed to assess the significance of Granger’s estimates [4]. Instead, our
proposed method directly assesses the significance of the MVAR coefficients to infer the
existence of network connections. To do so, we propose a non-parametric significance test in
the regression coefficients space. Previous literature on non-parametric testing for Granger
causality has resorted to surrogate data generated by trial shufflings [10, 32], bootstrap
procedures [11] or by phase randomization in frequency-domain measures [12, 25]. Here we
focus on within-trial surrogate tests for time-domain coefficients and compare them across
standard techniques [39, 14, 50]. In the context of recurrent networks, we provide numerical
evidence that these tests can achieve a good control of the false-alarm rate and might improve
the miss rate by properly adapting the null distribution to each connection. The focus of
the present analysis is on the case where we observe more time samples (a few thousands
per node) than the network size (about a hundred nodes). Within this regime, we test the
robustness of the detection method for a broad range of network parameters and various
topologies.

2 Methods: multivariate autoregressive model and in-
teraction estimation

The activity in the MVAR process - a.k.a. noise-diffusion discrete-time network - is described
by the following equation:
zt = Azt 4 ¢ (1)

where the matrix A describes the interactions between coordinates of the vector z! = (z!)
with time ¢ being an integer and node index 1 < ¢ < N. Here we constrain our study to
the case where ¢! is Gaussian (possibly cross-correlated noise), whose realizations are time
independent for successive time steps. Without loss of generality, we assume that all variables
¢! have zero means, giving the same property for all z;. We only consider MVAR processes
of order 1 in a first place, but will extend the work to the case of order 2 in a later section.


https://doi.org/10.1101/100669
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/100669; this version posted March 17, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

2.1 Granger causality analysis

Granger causality analysis is usually presented using time series and the estimation of non-
zero coefficients in A from observed activity over a period 1 < ¢t < T relies on the linear
regression of the activity z! of a given node i at time ¢ by the past activity of a subset S of

network nodes:
.I‘: = Z Aijl‘;_l + e (2)
JjES
for 2 < ¢ <T. When T is large, the coeflicients a;; converge toward A;;. We define the

residual € as the standard deviation of the €' for the ordinary least-square (OLS) regression
in Eq. (2)

e(w?5t§T|x}§tST4) = 2:(@)2 , (3)

t

with a notation similar to conditional probabilities; the superscript ¢ indicates the consid-
ered time range and the subscripts indicate the nodes involved. To detect the existence of
connection 7 — 4 in a network, two types of Granger causality analysis exist: ‘unconditional’
and ‘conditional’ [18, 19]. , they consider the comparisons of the following residuals:

2<t<T ) 1<t<T—1
(l’i |z )

GRu(r; — z;) = In 2<i<T| 1<i<T—1\ |’ (4)
e(xi_ = i )

e(xZStST pIStST-1 )
GRC(xj —x;) = ln[ i 1,- j—1,j41,- N ]

2<#<T | 1<t<T—1
e(z; TN )

For both GRu and GRe, which have a univariate target node x;, the usual parametric test
for significance relies on the F statistics, which performs better for small number of samples
[4]. The null hypothesis of no interaction for GRu(x; — x;) corresponds to m =T, p = 1,
ngy = 1 and n, = 2 using the notation in [4]

2<H<T | 1<t<T—1 2<I<T | 1<t<T—1
e(xf* lz; == )_5(%’77 lz; 5~ ) ¢, 1,T = 3)
2<t<T| 1<t<T—1 . = [exp(GRuj;) — 1] > — (5)
E(xi__ ‘ ij ) T-3

with o the desired sensitivity and ¢ the inverse survival function of the F-distribution [51].
The equivalent for GRc corresponds to n, = N, yielding

2<t<T| 1<t<T—-1 2<t<T | 1<t<T-1
e(@= e 20 ) — (@ e 2 e v) (e, LT — N — 1) 6
2<I<T| 1<i<T—1 T_-N_1 . (6)
G(xi xl,---7j711j+17...’N)

We also use non-parametric tests for GRe by performing a circular shift (see details below
in Section ‘Generation of surrogate time series’) on the observed driver (source) time series
for all tested connections. This provides a null distribution for the log ratio, with which the
actual estimated log ratio can be compared.

2.2 Multivariate autoregressive (MVAR) estimation

To detect the existence of connections A;; > 0, another possibility is to estimate the coefli-
cients themselves, which can be done using the covariances of the observed activity variables
zt [27]:
A 1 t+ - t -
e D DR CAEE N[ B 7)

s
max 1<t<T —Trmax
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where T' denotes the number of successive samples indexed by ¢, 7 € {0,1} is the time shift
(here Timax = 1) and the observed mean activity for each node is ; = % >, xt. The Yule-
Walker equation gives a consistency equation for the theoretical covariance matrices (without

hat) in terms of the connectivity A in the dynamics described by Eq.(1):
Q'=4Q". (8)

The estimation of network interactions relies on evaluating A from Eq. (8) for the empirical
covariance matrices defined as Eq. (7) and calculated for a given time series:

A=QNQY) ™. 9)

Note that this OLS estimate corresponds to the linear regression related to e(x%gtgjz; xigt%\j; 71)
and is also to the linear model with maximum likelihood under the assumption that the ob-

served process is Gaussian.

2.3 MVAR of order 2

Eq. (1) can be extended to the case where the activity vector z' is determined by the two
previous time steps:
xt — Alxt—l +A2xt—2 +Ct . (10)

For the second order, we use Tyayx = 2 in Eq. (7) and the estimation of A! and A? via the
Yule -Walker equation is given by [27, p. 86]

A=Q" (@), (11)

with the block matrices

A = (A a2y, (12)

@ = ((Ql)T 0
@ = (o @),

The coefficients of A' and A? can thus be estimated using a matrix multiplication and an
inversion involving the covariances, as with the first-order case in Eq. (9).

2.4 Generation of surrogate time series

In this paper, we consider circular shifts (CS), random permutations (RP) and phase ran-
domization (PR) to shuffle the time points of the observed time series. From the original z!

with 1 <t < T,
e CS draws a random integer ¢ty € {1,--- ,T} and returns (xfo, coalal ,xﬁo_l);
e RP draws a random permutation o of {1,---,T} such that each integer appears once

(and only once) and returns x?(t);
e PR calculates the discrete Fourier transform F(z!) of the original x!, then multiplies
each of the T coefficients of F(z!) by exp(2m1¢’) with ¢! randomly chosen in [0, 27],

and performs the inverse transform.

Importantly, these operations are applied to each time series independently of the others.
In addition, we consider the replacement of all time series in the network by 7" normally

distributed variables with a standard deviation equal to the mean of the standard deviations

of ! along the time axis, then averaged for all nodes. We refer to these surrogates as STD.
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2.5 Experimental setup and processing of electrode measurements
to extract MUAe activity

All procedures were carried out in accordance with the European Communities Council Direc-
tive RL 2010/63/EC, the US National Institutes of Health Guidelines for the Care and Use of
Animals for Experimental Procedures, and the UK Animals Scientific Procedures Act. Two
male macaque monkeys (5 - 14 years of age) were used in the experiment; only the data for the
first one is used here. A surgical operation was performed under sterile conditions, in which
a custom-made head post (Peek, Tecapeek) was embedded into a dental acrylic head stage.
Details of surgical procedures and post-operative care have been published previously [47].
During the surgery microelectrode chronic Utah arrays (5*5 grids), attached to a CerePort
base (Blackrock Microsystems) were implanted into V1. Electrodes were 1 mm in length in
line with procedures described in [45]. Stimulus presentation was controlled using CORTEX
software (Laboratory of Neuropsychology, NIMH, http://dally.nimh.nih.gov/index.html) on
a computer with an Intel Core i3-540 processor. Stimuli were displayed at a viewing distance
of 0.54 m, on a 25” Sony Trinitron CRT monitor with a resolution of 1280 by 1024 pixels,
yielding a resolution of 31.5 pixels / degree of visual angle (dva). The monitor refresh rate
was 85 Hz for monkey 1, and 75 Hz for monkey 2. A gamma correction was used to linearize
the monitor output, and the gratings had 50% contrast. Monkeys performed a passive view-
ing task where they fixated centrally while stationary sinusoidal grating of either horizontal
or vertical orientation and 2 cycle per degree spatial frequency, were presented in a location
that covered all receptive fields recorded from the 25 electrode tips. Stimuli were presented
500 ms after fixation onset for 150 ms. Raw data were acquired at a sampling frequency
of 32556 Hz using a 64-channel Digital Lynx 16SX Data Acquisition System (Neuralynx,
Inc.). Following each recording session, the raw data were processed offline using commer-
cial (Neuralynx, Inc.). Signals were extracted using Cheetah 5 Data Acquisition Software,
with bandpass filtering set to allow for spike extraction (600-9000 Hz) and saved at 16-bit
resolution.

In the present study, we focus on the period starting 200 ms before and finishing 200 ms
after the stimulus onset, for 4 conditions (vertical gradings with pre/post cue in the recep-
tor/opposite field) that will not be compared in details. The electrode recordings is firstly
down-sampled from 32556 Hz to 1000 Hz. A high-pass filter above 400 Hz is then applied -
3rd-order Butterworth filter at 0.8 of the Nyquist frequency [51] - followed by a smoothing
of 4 ms to extract the envelope of the resulting signal, by retaining the 250 time points of
1000-ms period surrounding the stimulus onset.

3 Benchmark of detection performance for synthetic data

The workflow of the benchmark for the estimation procedure is schematically represented in
Fig.1A. We first consider a MVAR process defined by Eq. (1) with given connectivity matrix
A and input covariances (obtained by mixing independent Gaussian processes) to generate
the activity of the network. From the observed activity over a period of duration T, we
estimate the coefficients matrix A using the covariances as described in Eq. (9). We also
perform the linear regressions of each node activity over the past activity of given subsets of
nodes corresponding to the unconditional (GRu) and conditional (GRc) Granger causality
analysis, from which we calculate the ratios of residuals in Eq. (4). Actually, these estimates
correspond to the same OLS regression (top right in Fig. 1A) and the difference resides in
the spaces where they lie: coefficients versus residuals.

For each method, the level of predictability can be measured by the relationship between
the estimated values and the original connectivity values, as illustrated in Fig. 1B (left). To
discriminate between existing and absent connections, one can apply a common threshold
for all connections (top thread); by sliding this threshold, we obtain the ROC curve with
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Figure 1: Network model and connectivity estimation. A: For a given directed con-
nectivity A and input covariances X (left), the network activity (middle) is simulated using
Eq. (1). From the observed time series, the existing interactions in the original connectivity
can be estimated (right): Granger causality analysis uses the residuals of linear regressions (e
in the upper right equation; see Methods for details about the residuals used in the log ratio),
whereas MVAR corresponds to the coefficients. Note that MVAR can be obtained using the
empirical covariance matrices Q° and Q', see in Eq. (7) for 7 = 0 and 1. B: The left panel
compares the estimated values to the original values for all connections in the network. The
upper thread displays the distributions of estimated values for existing and non-existing con-
nections in the original network. Using a sliding threshold (vertical dashed gray line) on the
estimated values, one can calculate the ROC curve (right). The lower thread compares the
estimated value for a single connection to a null distribution. From this, the choice whether
the connection exists or not is made for each individual connection, yielding a single pair of
true-positive and false-alarm rates.
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the rate of false alarms on the x-axis and true positives on the y-axis. The area under the
curve indicates in a single value how well the ranking of estimated value performs for the
detection of connections in the original connectivity. Alternatively, an individual test can be
made for each connection in the network, for example by comparing the estimated value to
a null distribution (bottom thread). Here again, we obtain two rates of false positives and
negatives.

3.1 Coefficients from linear regression potentially predict better ex-
isting connections than residuals

We start with the comparison between the predictability of coefficients and residuals for MV,
GRu and GRec for all connections in a given network. To do so, we simulate 500 randomly
connected graphs, which are simulated with different sizes (N = 50 to 150 nodes), density and
connectivity weights (uniformly drawn in a randomly chosen range [wmin, Wmax]); here inputs
are not correlated: the (; are independent across node indices in Eq. (1). For each network
configuration, we evaluate the accuracy for connection detection via the area under the ROC
curve (see the upper thread in Fig. 1B). Fig. 2A displays this ROC-based accuracy as a
function of the number of observed time samples (x-axis) represented by violin plots for 500
randomly connected networks. When considering many samples (10*), all methods perform
well. However, for smaller sample sets, the MVAR method exhibits superior performance
than GRu: as measured by the Mann-Whittney test, p < 1074%, p < 107 and p < 107 for
the three values of observed samples, respectively.

Although error residuals ratios are in a different space from the true coefficients in A,
one expects some degree of correlation between them, such that Granger causality analysis
effectively detects connections. In Fig. 2B, both GRu and GRc estimates have a ranking
similar to the original A weights (as measured by the Spearman correlation) for 7" = 10000
observed time samples, but this weakens dramatically for 7" < 3000. In contrast, the ranking
for estimated MVAR coefficients reflects much better the original A for 7' < 3000. In the
studied networks, GRu performs slightly better than GRc. As analyzed in previous studies,
this can be consequence of the balance between redundant and synergistic activity exhibited
by the simulated network nodes [44]. To shed light into the effect of the network structure,
we next examine how the ROC-based performance in Fig. 2A depends on the controlled
network parameters.The four panels in Fig. 2C display the trends of the values for the 500
networks as a function of the network size N, the network density, the minimum weight in the
original network (wp;, mentioned above) and the mean sum of incoming weights per node.
For illustration purpose, the 500 networks are grouped in quartiles for each parameter. Not
surprisingly, the estimation accuracy of all methods decreases as a function of the network
size N and density, and increases as a function of the minimum connectivity weight and
the mean incoming weight per node. More interestingly, in challenging configurations with
small weights, MVAR consistently shows a superior performance by a larger gap compared to
Granger causality analyses. These findings support the use of coefficients to robustly detect
connections in recurrently connected networks. Note that GRu performs on average slightly
better than GRc here: the discrepancy decreases as a function of the network density, which
may follow from lower redundancy in the recurrent network [44].

3.2 A robust non-parametric significance test for MVAR

We have so far examined the performance of different estimation methods based on the ROC
curve, which considers a single threshold for all connections in a network and integrates the
information about false alarms and true detection over the whole range of estimated values.
However, in the context of real data, the decision for the existence of a connection typically
relies on comparing the value of the connection estimate with a given statistical threshold.
For GRu and GRec, such parametric tests have been developed, for example, based on the
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Figure 2: ROC accuracy and computation time. A: Area under ROC for estimated
A obtain from Granger (unconditional for GRu and conditional for GRc) and MVAR. The
x-axis indicates three sample size T for the observed network activity. The boxplots indicate
the median (horizontal bar in the middle of the box) as well as the upper and lower tail
spreads (standard deviation) over 500 simulated networks of various sizes and connectivity
strengths. B: Match of the ranking between GRu, GRc and MVAR estimates and the
original connectivity weights A, as measured by the Spearman correlation. The plotted
values correspond to the 500 networks in A and the x-axis indicates the sample size. C:
Effect of network parameters on ROC-based detection performance. Influence of network
size N, connectivity density, sum of recurrent connectivity strengths, minimum weight wupin
in A, mean noise on the diagonal of ¥ and mean off-diagonal noise in ¥ on the ROC-based
accuracy in Fig. 2A. In each graph, the network configurations have been grouped in quartiles
according to the parameter plotted on the x-axis, and the corresponding group mean and
standard deviations are indicated; the curves are displaced horizontally to favor the legibility.
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F statistics [4]. Equivalently, it is sufficient to know how the values of the estimates for
absent connections are distributed, in order to select a desired rate of false alarms (type-1
error). In this section, we develop a significance test for the MVAR estimates by providing
a null-hypothesis distribution for absent connections.

Our approach relies on the fact that covariances reflect the underlying connectivity: we
thus construct the null distribution estimates by performing a random permutation for each
of the observed time samples, as described in Fig. 3A; other methods will be tested in a later
section. From the resulting covariance matrices, we evaluate a surrogate connectivity matrix.
This procedure destroys the information in both surrogate covariance matrices, except for
the variances on the diagonal of Q° alone. The core result underlying our surrogate approach
is illustrated in Fig. 3B: the distribution of surrogate estimates (thick black line) is compared
against the distribution of existing (red) and absent (blue) connections in a simulated random
network model: the surrogate distribution in black provides a good approximation for the
distribution of estimates for non-existing connections in blue.

We consider two options - corresponding to the two threads in Fig. 1B - to test the
existence of a connection from an MVAR estimate while keeping the false alarm rate under
control.

e The global test relies on the null distribution corresponding to the black histogram in
Fig. 3C, which is obtained by grouping together all SN? matrix elements of all matrices
for S = 200 surrogates. From that surrogate distribution, we perform a detection test
by setting a threshold corresponding to a percentage of the right tail equal to the desired
false-alarm rate (here 2%), as illustrated by the vertical gray dashed line.

e Instead, the local test uses for each connection the surrogate distribution of S values,
corresponding to the same matrix element in each of the S surrogates. From that
distribution in red in Fig. 3C, the detection threshold is defined similarly (vertical dark
red dashed line).

The rationale behind these two choices lies in the trade-off between taking into account
spatial heterogeneity in the network and gaining larger sample size, as illustrated by the
distinct thresholds in Fig. 3C. Note also that the F statistical test for Granger causality
analysis corresponds to a global threshold on the log ratio values. When varying the desired
false-alarm rate, the two tests perform well, as illustrated in Fig. 3D by their location close
to the ROC curve (circles and triangles for local and global, respectively).

To assess the effect of the small variability observed in Fig. 3D over the randomness
of network configurations, we simulate 500 randomly connected networks with the same
parameters as in Fig. 2, except for the size 50 < N < 90 and the presence of input cross-
correlations. Note that, from Fig. 2, the chosen size N corresponds to a situation where
Granger causality analysis performs relatively well as compared to MVAR. The control of
the false-alarm rate is displayed in Fig. 3E for both local and global tests with various numbers
S of surrogates. The control of false-alarm rates is close to perfect across various values for
all S and both tests (local and global), demonstrating the robustness of the proposed method
for randomly connected networks. Following, we fix the desired false-alarm rate to 2% and
evaluate the miss rate (true negatives) of both methods depending on the actual weight
strength: in Fig. 3F, connections are grouped in terciles for each network configuration.
Interestingly, the local test improves with the number S of surrogates (right panel), whereas
the global test exhibits a constant performance for all S (left panel). Note that the advantage
of the local test over the global test particularly concerns connections with small weights,
which are difficult to detect, in line with Fig. 2C (see influence of the minimum original
weight).

Because GRu does not take all nodes into account, the presence of spatially correlated
noise (indicated by the purple dashed arrows in Fig. 1A) dramatically affects the false-alarm
rate when using the parametric significance F-test [4], as shown in Fig. 4A by the dark
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Figure 3: Non-parametric test to assess significance based on random permuta-
tions. A: Schematic illustration of time rolling applied on the observed time series to gener-
ate the surrogate covariances. B: Pooled distributions of estimated weights for the existing
(in red) and absent (blue) connections. The thick black curve indicates the distribution of
connections over 100 surrogates, which closely matches the blue distribution. C: For a given
connection, we compare two methods: for ‘local’ in red, the null distribution corresponds to
the matrix elements for the same connection in 200 surrogates; for ‘global’ in black, the null
distribution is the pooled distribution for all N? elements of the 200 surrogate matrices (same
as in B). The dark red and gray dashed lines indicate the detection thresholds correspond-
ing to the 4% tail for those two options. D: The performance of the two non-parametric
methods for the thresholds described in B and C is displayed on the ROC curve for a desired
false-alarm rate ranging from 1 to 5%. Triangles indicate the local test and circles the global
test. E: Comparison of the desired (% of the tail of null distribution) and actual rate of false
alarms for the local and global tests when varying the the number S of surrogates (see figure
in legend). Error bars indicate one standard deviation for 500 random networks; importantly,
inputs for these networks have cross-correlation, unlike Fig. 2. F: Influence of the strength
of original weight on the detection performance for a desired false-alarm rate set to 2%. In
both panels, lighter colors indicate smaller numbers of surrogates S, in red for the local test
and gray for the global test (see legends).
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Figure 4: Comparison of our surrogate-based method with Granger causality anal-
ysis. A: Comparison of the parametric tests for GRu (blue curve) and GRe (cyan) with the
non-parametric methods for GRe (green) and MVAR (red for local test and gray for global).
The x-axis indicates the strength of input correlations (i.e., pink noise) in the simulated net-
work. The desired false-alarm rate is set to 2% as in Fig. 3F and the number of observed
time samples is 7' = 3000. Error bars indicate one standard deviation over the 500 random
networks as in Fig. 3E. B: Comparison of the miss rate improvement with respect to GRc for
the 500 networks in A as a function of the number S of surrogates (x-axis). Red indicates the
local test, gray the global test and green GRc. C: Comparison of the computational cost for
the surrogate-based method and parametric tests as a function of the number T of observed
samples (left) and network size (right).

blue dashed curve. This is solved by the “complete” linear regression in GRe, achieving a
quasi perfect control irrespective of the input correlation level for both parametric and non-
parametric tests (cyan and green dashed curves, respectively), as our non-parametric tests
do (Fig. 3E). However, the miss rate improves (i.e., decreases) for both local and global tests
on average as compared to the parametric GRc over the 500 considered random networks
in Fig. 4B. For S > 200, it even becomes better in all cases. Note that the seemingly
small false-alarm improvements of about 7% actually corresponds to more than 50 existing
connections per network here. However, the non-parametric test for GRc performs worse
than the parametric test for GRc in this case.

From Figs. 3F and Fig. 4B, we conclude that the local test is preferable to the global
test provided S > 200 surrogates are generated. However, the computational cost increases
with S, as illustrated in Fig. 4C by the red curves. Note that GRc (in cyan) takes the same
time to calculate as S = 50 surrogates. However, our non-parametric method scales better
than GRc when the network size increases. The non-parametric test for GRc takes longer
time to compute, but further optimization of the calculations could be made that were not
incorporated here.
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3.3 Comparison of generation methods for surrogates for non-parametric
MVAR

The fact that the OLS MVAR estimates can be obtained via the two covariance matrices
(with and without time shift, see Fig. 1A) hints at possible methods to generate surrogate by
destroying the information in these covariances. Methods to generate surrogate time series
have been widely used in the past: circular shifts of the time series [14], random permutation
[50] and phase randomization [39] to generate a null distribution for the ratios in Eq. (4); they
are referred to here as CS, RP and PR, respectively. We thus consider these three methods
(cf. box in Fig. 5), as well as surrogate time series that only preserve the mean standard
deviation averaged over the network (STD), so as test to which extent it is important to
preserve the spatial heterogeneity of the nodes’ activity. See Methods for details about the
calculations.

The control of false alarms for local tests in Fig. 5A and B is better for CS and RP, whereas
the detection of true connections is similar for the four methods over 500 random networks
of size N = 70. However, CS fails to detect self connections (Fig. 5C). The reason is that,
because CS surrogates preserve the autocovariances in the time-shifted covariance, they fail to
build a proper null distribution for self-connections. The influence of the number of samples
used in the estimation is similar for all methods, as illustrated in Fig. 5D. The comparison
with STD (purple), which averages the covariance statistics over the whole network, suggests
that the local test makes a good use of the heterogeneous information across nodes. As a
conclusion, we retain RP as the best option.

3.4 Influence of network topology

In this part, we test and compare the robustness of global and local surrogate-based detection
tests to specific connections and topological configurations. Here, T" = 3000 observed samples
and we compare the local and global tests with S = 400 surrogates for 500 networks of each
type. In all cases, the simulated networks have the same size N = 70, but vary in connectivity
density, distribution of recurrent weights and level of input cross-correlation. We compare the
miss rate for unidirectional, reciprocal and self connections in the random networks examined
until now (and a desired 2% of false alarms). Fig. 6A shows that the miss rate is similar in
unidirectional and reciprocal connections with the local test, which performs slightly better
than the global test (as in Fig. 3F).

Now we consider more elaborate network topologies than the random connectivity (Erdos-
Rényi) considered so far, namely modular and hierarchical networks. In Fig. 6B, we simulate
500 modular networks with two groups (green and blue) linked by hubs (red, about 5 to
15% of the nodes). Interestingly, intra-group and hub-group connections have a similar miss
rate with regard to using local and global surrogates. In Fig. 6C, we simulate hierarchical
networks of three layers, for which connections either link the center and an intermediate
node, or link an intermediate node and a leaf, or are self connections. This network type is
much sparser than the two types in A and B, yielding a quasi perfect detection performance
for all types of connections (miss rate < 0.1 in Fig. 6C). In all cases, the local test performs
better than the global test. However, the control of false-alarm rate is similar for both tests
with all topologies, as can be seen in Fig. 6D.

Finally, we consider a network with both excitatory and inhibitory connections (with a
inhibitory ratio equal to 5 to 50% of all) and perform the test by defining a threshold on both
tails of the null distributions. As can be seen in Fig. 6E, the positive/negative nature of the
connection weights affect neither the false-alarm nor the miss rate. However, the performance
is poorer than with excitatory connections only.

We conclude that, in those networks with spatial heterogeneity as with randomly con-
nected networks, the local test with an individual null distribution per connection performs
better than the global test. Recall that an improvement of the miss rate by 1% in a network
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Figure 5: Comparison of the local test for 4 surrogate generation methods. Sur-
rogates are generated by independently performing for each original time series 1) random
permutations, 2) circular shifts, 3) phase randomization and 4) replacing the original by a
new random time series with the mean standard deviation averaged over all of the original
time series in the network. A: Comparison of the control of the false-alarm rate for various
thresholds on the tail of the distributions of 400 surrogates (% indicated on the x-axis). The
error bars correspond to the variability over 500 random networks similar to Fig. 3 with
T = 3000 observed time samples and the local test. B: Influence of the number S of sur-
rogates on the detection performance for the 4 surrogate methods (x-axis). The violin plots
indicate the distribution of false-alarm rates (left panel) and miss rates (right) for the 500
networks in A with a desired false-alarm rate set to 2% (dashed line in the left panel). Lighter
to darker colors correspond to 50, 100, 200 and 400 surrogates, respectively. C: Same as the
miss rate in B, but only for self connections. D: Influence of the number 7" of observed time
samples on the miss rate for S = 400 surrogates.
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with a density of 20% actually corresponds to N20.2/100 ~ 10 existing connections here, so
the plotted improvements concern about 50 connections.

3.5 Applicability to second-order MVAR processes

As explained in Methods, an MVAR, process whose state depends on the two previous time
steps can be estimated with the covariances with time shifts 7 = 0, 1 and 2; see Egs. (11)
and (12) for details. Here we simply focus on random connectivity for the two corresponding
matrices A' and A2, with size N that is randomly drawn between 30 and 80; we construct
Al and A? such that a connection j — ¢ cannot be in both matrices, but at most in one. The
existing connections are detected with the non-parametric local test relying on RP surrogates
for each matrix separately, as a proof of concept. The control of false alarms in Fig. 7TA
and the overall detection performance in Fig. 7B suggest that our surrogate method can
be extended satisfactorily to higher-order MVAR processes. Note that the improvement by
generating more surrogates is rather weak here. Importantly, there is no difference between
the detection in A' and A2, as demonstrated in Fig. 7C. Last, the network size worsens the
miss rate in Fig. 7D, which affects more dramatically the global test as compared to the local
test.

4 Application to experimental data

4.1 Multiunit activity data obtained from Utah electrode array in
monkey

Now we consider data recorded from a monkey performing a visual task, where the stimulus
corresponds to vertical gratings covering all recorded V1 receptive fields from the Utah arrays
(see Methods for details). We aim to provide a proof of concept for the connectivity analysis
for this type of data, so as to complement the more classical analysis based on the activity
of individual channels; therefore we do not focus on comparing the 4 stimulus conditions or
additional details.

The multiunit activity envelope (MUAe) is obtained as described in Methods. In Fig. 8A,
the resulting MUAe is represented for two out of the 26 channels (red and purple) for two
trials in the top and middle panels, 400 ms before and 600 ms after the stimulus onset. The
typical analysis of MUAe activity consists of averaging over 200 trials, which exhibits a peak
immediately after the stimulus for the two channels in the bottom panel. Among the 26
channels, about a third show a large increase in activity after the stimulus onset as compared
to before (namely, a post-stimulus mean activity larger by more than three standard devia-
tions compared to the pre-stimulus activity); almost all channels show a moderate increase
of one standard deviation. One channel is discarded for a much larger activity (by 5 times)
than all others.

To investigate further the temporal information conveyed by MUAe jointly for pairs of
channels, we calculate the pairwise covariances between them, after centering the MUAe ac-
tivity individually for each trial. We firstly verify that the model can be applied to these data,
by examining the MUAe autocovariances in Fig. 8B, which exhibit a profile corresponding
to an exponential decay up to two time shifts (i.e., 8 ms for the downsampling every 4 ms),
namely a straight line in the log plot. This suits an autoregressive model with large positive
values on the diagonal of the connectivity matrix A, which generates this type of profiles.

The two connectivity matrices for the 25 channels estimated using the MVAR, method
before and after the stimulus are illustrated in Fig. 8C for condition 1: we find larger off-
diagonal values for the period after the stimulus than before. This is actually true for all
conditions, as indicated by the more spread distributions in red as compared to gray in
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Figure 6: Robustness to network topology. A: Detection performance for unidirectional,
reciprocal and self connections in 500 the randomly connected networks used so far in Fig. 3.
B: Detection performance for modular topology schematically represented in the left: each of
the 500 networks comprises of two groups connected by hubs. The connections are separated
depending on whether the connect group nodes or hubs, as indicated by the diagram on the
left. C: Similar to B with a hierarchical topology, where connections are grouped in 3 subsets:
from center to intermediate nodes; from intermediate nodes to leaves; self connections. The
results concern 500 such networks, which all have very low density. D: Control of false-alarm
rate for the local (left) and global (right) significance tests and the three network topologies;
the plot is similar to Fig. 3E. E: Control of false-alarm rate and miss rate for networks with
both excitatory and inhibitory connections.
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Figure 7: Connectivity detection for second-order MVAR process. A: Control of
false-alarm rate for the local test with .S = 100, 200 and 400 in both connectivity matrices
Aland A2, corresponding to each time step. Error bars correspond to the variability over
500 network configurations with random connectivity and 7' = 3000 observed samples. B:
Influence of the number T of observed samples (x-axis) on the miss rate for the 500 networks
in A. Lighter to darker red indicates the number of surrogates S. C: Details of the detection
performance for A' and A? separately, as well as connections in either A' or A2. The number
of observed samples is indicated on the x-axis as in B. D: Influence of the network size N on
the detection performance in C for the local and global tests with S = 400 surrogates.
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Fig. 8D. The channels appear to be coordinated at the considered time scale of 4 ms and
their collective interaction scheme is affected by the stimulus presentation.

4.2 Significance test for real data: interactions related to stimulus
presentation

We then use the local and global tests based on 1000 surrogates (with random permutation) to
retain only significant interactions from the estimates in Fig. 8C: this leaves a few interactions
for the pre-stimulus period in Fig. 9A (left panel), 8 out of 650, which is of the order of the
desired false-alarm rate set to 1% (namely, the extreme 0.5% of each tail). In contrast, many
more post-stimulus interactions survive the significance tests in the right panel: interestingly,
almost all these connections are unidirectional. The counterpart for circular shift for Fig. 9B
involve 24 connections in common with Fig. 9A. Over all conditions, common post-stimulus
interactions number 22 to be compared with 7 for the pre-stimulus period (both with a
standard deviation of 4); this corresponds to 3.5% of all possible connections. Almost all
detected interactions are unidirectional, as illustrated in Fig. 9C for both local and global
tests for the post-stimulus period. Varying the threshold on the tail of the null distributions,
we see that the number of detected interactions is close to the desired false-alarm rate for the
pre-stimulus period in Fig. 9D (dark red and black curves, respectively). In contrast, post-
stimulus interactions are many more for both local and global tests (light red and grey). The
global test detects fewer interactions than the local test, indicating the necessity to take into
account the disparities across channels. Around 57% of post-stimulus interactions detected
by the global test (largest values in absolute value) are found by the local test.

Finally, we check the relationship between the strengths of significant interactions and
the increase of average MUAe observed in Fig. 8A. In Fig. 9E, the plotted dots correspond to
the sum of incoming (left panel) and outgoing (right panel) significant interactions for each
node in the post-stimulus period. The summed interaction values positively correlate with
the MUAe difference (post minus pre) only for the outgoing connections: p < 1072 with a
coefficient of 0.28. In contrast, incoming connections exhibit a negative correlation, but with
p > 0.1. This suggests a gain increase of the neuronal populations due to the stimulus, which
may drive propagating activity through their anatomical connections and induce effective
interactions between channels. If the detected interactions were a result of a noisy detection
test, there would likely be no difference between incoming and outgoing interactions, nor
significant relationship. Our results thus suggest a non-trivial connectivity that does not
reflect observation noise.

5 Discussion

5.1 Beyond Granger causality analysis: properly integrating the
network feedback in the connectivity detection

In this work we analyzed the advantage of detecting directional connections in MVAR-like
models by using the OLS autoregressive coeflicients (instead of the error residuals ratios)
and performing non-parametric significance tests based on time-series randomizations. To
our understanding the improvement of the method presented here is due to several facts.
First, the detection in Fig. 2 - with a common sliding threshold for all connections - is more
robust for the regression coefficients than Granger causality analysis based on residual log ra-
tios for recurrent networks with relatively large density (0.1 —0.3%), which may imply many
redundancy and convergence patterns of connections [13, 44]. Second, MVAR-based detec-
tion performs better than conditional Granger causality analysis with either the parametric F
statistics or non-parametric test based on circular shifts of the observed time series (Fig. 4B).
Finally, the use of connection-specific significance testing achieves higher accuracy than para-
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Figure 8: Application to multiunit activity (MUAe) data. A: Example of two trials
(top and middle panels) of multiunit activity envelope (MUAe) for two channels of recordings
using Utah electrode array in the primary visual cortex of a monkey (in arbitrary units; see
text for further details). The bottom panel represents the average over 200 trials (with
standard-error mean for the thickness of the curve). The stimulus is presented at time point
100 (actually 400 ms, since the smoothing corresponds to a smoothing window of 4 ms).
B: Autocovariances of MUAe signals for time shifts up to 12 ms averaged over 200 trials
plotted with a log y-axis: comparison of signals before (gray) and after (red) the stimulus
presentation. C: MVAR estimates of the connectivity between the 25 channels for the MUAe
activity 200 ms before and after stimulus presentation (i.e., 50 time points each), averaged
over 200 trials. The scaling has been optimized to enhance the legibility off-diagonal elements.
D: Comparison of the distribution of connectivity weights (off-diagonal elements in D) for
the 4 conditions. Gray and red indicate before and after the stimulus, respectively.
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Figure 9: Detection of significant connections. A: Examples of significant connections
with the time-rolling surrogate method; left and right panels correspond to pre- and post-
stimulus periods, respectively. The p-value corresponds to the upper and lower 0.5% tails of
1000 surrogates (local test). Many more connections are found for post- than pre-stimulus
period. B: Matrix of post-stimulus interactions where green pixels indicate symmetric and
purple asymmetric significant connections; other are left blank. C: Comparison of number of
asymmetric connections versus symmetric connections for the local (red) and global (gray)
tests over the 4 conditions. D: Ratios of detected connections for pre- and post-stimulus
periods with the desired false-alarm rate equal to 1 to 5% corresponding to both local and
global tests. E: Sum of incoming (left) and outgoing (right) significant weights for each
channel (dots) for the pre- and post-stimulus period in gray and red, respectively, plotted
against the mean MUAe for the 4 conditions.
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metric testing, especially when asymptotic assumptions do not hold (e.g., small number of
time samples), as illustrated by the local non-parametric test in Figs. 3F and 4B. Note that
performing connectivity estimation in the regression coefficients space brings an additional
advantage for network studies: the estimated connectivity weights can be interpreted and
compared across the whole network, for example using graph theory [42].

Our approach for generating surrogate distributions can be encompassed in the family of
constrained randomization methods [39, 37]. Here we have shown that random permutation
provides a good estimation of all types of connections (Fig. 5) in false-alarm and miss rates.
Comparatively, the circular-shift method performs as well except for self connections that
are not detected at all; this also holds for non-random topologies (results not shown). Hence,
preserving the autocovariance structure in the generation of surrogates does not provide a
substantial advantage here (Fig. 5B-C). Both methods show a good control for the false-alarm
rate in comparison to phase randomization [39] and a control Gaussian approximation over
the whole network (STD), which lead to an excess of about 1% of false alarms (i.e., ~ 50
connections for a network of 70 nodes). These results show the importance of choosing a
surrogate method adapted to the detection problem. For distinct dynamics governing the
nodal activity such as nonlinearities, conclusions may differ and further research along these
lines is necessary.

As mentioned earlier, the use of an individual null distribution for each connection (local
test) gives better results for the miss rate (by a few %) than lumping together all matrix
elements of all surrogates (global test), provided sufficiently many surrogates are generated.
When computation time is not an issue (as in the present study, see Fig. 4C), these results
support the choice of the local test over the global test to attain between accuracy in the
true-positive detection. This may be especially true for specific topologies or networks with
both excitatory and inhibitory connections, see Fig. 6. In other words, the local test incor-
porates to a better extent the network heterogeneities in order to build the null distribution
for each connection. The present study was limited to ordinary least-square (OLS) estimates
for MVAR, but there exist alternative estimators such as the locally weighted least-square
regression [36] that may perform better for particular network topologies. The extension of
the presented surrogate techniques to the case where observations are sparser than connec-
tions - implying that the covariance matrix is not invertible - is another interesting direction
to explore [9].

The problem of multiple comparison is intrinsic to brain connectivity detection as the
number of testable connections across brain regions is massive [35]. In this context, different
approaches have been developed to control the family-wise error rate in the weak sense.
For instance, many studies on neuroimaging data [17, 33| or electrophysiology [24] have
resorted to procedures that control the false discovery rate (FDR) [7], namely, the expected
number of falsely declared connections among the total number of detections. These methods
make decisions on single connections relying on the entire sequence of p-values computed for
each connection and yield substantial statistical power gains over more conservative methods
such as Sidék-Bonferroni [1]. With the ever growing application of graph theory to brain
connectivity, new methods have been proposed that exploit the clustered structure of the
the declared connections [53, 21] to propose cluster-based statistical tests [28] that attain
similar performance to FDR methods. The present work can therefore be understood as a
primary step before performing any or several multiple-correction procedures. By defining an
accurate null model of inexistent connections, p-value estimates per connection are improved
and cluster-based surrogate distributions can be better approximated, which is expected to
empower the overall control of false positive rates in network connectivity analysis.

5.2 Applications to real electrophysiological and neuroimaging data

Here we have applied the method to MUAe recorded from macaque area V1. Our point was
to verify the applicability of our network connectivity analysis to this type of data rather
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than addressing biological questions, which is beyond the scope of the current manuscript.
Looking at individual trials Fig. 8A, it is rather surprising that the variable MUAe activity
convey temporal information due to causal interactions that can be detected. This variability
is therefore not an absolute limitation to temporal coordination, although the latter only
becomes apparent over multiple trial repetitions. The research of optimal preprocessing - in
particular the filtering to obtain MUAe - to obtain a robust detection of interactions is left
for a later study.

More generally, we target adequate preprocessing of multivariate time series - activity
aggregation over hundreds of voxels for fMRI and MUAe for electrode recordings - such that
the autocovariance profiles match the exponential decay of the dynamic model with linear
feedback that underlies the connectivity analysis: provided it resembles an exponential decay
over a few time shifts as in Fig. 8B, we expect our approach to be applicable. In theory,
stationarity of the time series remains a critical issue as we need sufficiently many observed
samples to obtain precise covariances from which we evaluate the connectivity estimates. On
the other hand, despite the non-stationary nature of the MU Ae signals illustrated in Fig. 8A,
we obtain significant interactions that preferentially arise for channels exhibiting an increase
of MUAe, but are not merely a consequence of it: the method provides information about
the directionality of the interactions in Fig. 9B to E.
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