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Abstract. Sequencing of human genomes is now routine, and assembly
of shotgun reads is increasingly feasible. However, assemblies often fail to
inform about chromosome-scale structure due to lack of linkage informa-
tion over long stretches of DNA – a shortcoming that is being addressed
by new sequencing protocols, such as linked reads from 10X Genomics.
Here we present ARCS, an application that utilizes the barcoding infor-
mation contained in linked reads to further organize draft genomes into
highly contiguous assemblies. We show how the contiguity of an ABySS
H. sapiens genome assembly can be increased over six-fold using moder-
ate coverage (25-fold) Chromium data. We expect ARCS to have broad
utility in harnessing the barcoding information contained in Chromium
data for connecting high-quality sequences in genome assembly drafts.
Availability: http://www.bcgsc.ca/platform/bioinfo/software/arcs
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1 Introduction

The Chromium sequencing library preparation protocol from 10X Genomics
(10XG, Pleasanton, CA) builds on the Illumina sequencing technology (San
Diego, CA) to provide indexing/barcoding information along with short reads to
localize the latter on long DNA fragments, thus benefiting the economies of scale
of a high-throughput platform. As sequence reads from 20 to 200 kb molecules are
barcoded/linked, applications of the technology has mainly focused on phasing
variant bases in human genomes ([1] and [2]). The ability to generate linked reads
with 10XG is akin to that of Illumina TruSeq [3]. The latter technology provides
useful complementary information to whole genome shotgun assembly projects,
as the pseudo-long reads it generates may help resolve long repeats. However,
to generate pseudo-long reads, TruSeq requires high coverage data of the co-
localized reads for a priori fragment assemblies (by default, transparent to the
user), essentially generating low fragment coverage data for its target genome.
Hence, TruSeq may be prohibitively expensive for providing mammalian-sized
genomes with adequate fragment coverage. Conversely, the Chromium platform
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typically provides low-coverage for each single barcoded molecule, limiting its
utility for individual fragment assembly. Though, it makes up for this limitation
in throughput, providing higher fragment coverage.

Recently this data type has been utilized for scaffolding a draft genome as-
sembly [4], using a software designed to scaffold sequences using contiguity pre-
serving transposition sequencing (CTP-seq) and Hi-C data, another long-range
information data source [5]. In their paper, Mostovoy and colleagues [4] showed
12-fold improvement in contiguity of a human genome assembly draft using
GemCode sequencing (precursor to Chromium, from 10XG) at 97-fold coverage,
demonstrating the potential of the technology for scaffolding draft genomes.
Here we present ARCS, the Assembly Round-up by Chromium Scaffolding algo-
rithm, a method that leverages the rich information content of high-volume long
sequencing fragments to further organize draft genome sequences into contigu-
ous assemblies that characterize large chromosome segments. We use the recent
Genome In A Bottle (GIAB) human genome sequence data [6], and compare
ARCS to fragScaff, the only other technology shown in a publication to utilize
10XG linked reads for scaffolding genome assembly drafts [4]. We also present
similar benchmarks to Architect, a recently published scaffolder [7] shown to
work on Illumina TruSeq synthetic long sequences’ underlying short reads (read
clouds) and suggested to be adaptable to Chromium data. We show how our
implementation yields assemblies that are more contiguous and accurate than
fragScaff and Architect over a wide range of parameters while using less time
and compute resources. We note that ARCS scaffolding of pre-existing human
genome drafts using two different linked-reads datasets yields assemblies whose
contiguity and correctness is on par with or better than those assembled with
newly released 10XG Supernova de novo assembler [8].

2 Methods

We used two human Chromium read datasets for scaffolding, including one from
individual NA12878 and GIAB HG004 NA24143. For the genome assembly con-
tig and scaffold baselines, we first downloaded Illumina whole genome shotgun
(WGS) 2x250 bp paired-end sequencing data and Illumina 6 kbp mate-pair data
for an Ashkenazi female (NA24143). ABySS-2.0 [9] was used to assemble the
whole-genome shotgun paired-end and mate-pair reads into contigs and scaffolds
and Chromium reads were aligned to those sequences. Using these alignments as
input, we ran and benchmarked ARCS (v1.0.0), Architect (v0.1) and fragScaff
(v140324) to further scaffold contig and scaffold baseline sequences 3 kbp and
longer, as recommended [4], while investigating the effects of multiple parameter
combinations on scaffolding (Table S1), reporting contiguity length metrics and
breakpoints from sequence alignments to the reference human genome, which
serves as a proxy for counting large-scale misassemblies in both contigs and
scaffolds.
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Fig. 1. ARCS algorithm. 1) 10XG Chromium reads (blue, green, orange, and purple
arrows) are aligned to the draft genome. 2) Sequences are split in half by length and
the ends of each are considered the head (H) or tail (T) regions (represented with grey
boxes, length of the ends controlled by ARCS parameter -e). The number of read pairs
derived from the same barcode and aligning to the head (H) or tail (T) regions of the
sequence are tallied. These tallies are stored in memory using a map data structure,
where the key is the barcode sequence. The value maps a tuple of the sequence ID
and H or T to the count of the number of read pairs of that barcode which map to
the corresponding region of the sequence. 3) The number of barcodes supporting each
link orientation (H-H, H-T, T-H, T-T) between sequence pairs is tallied. The tallies
are stored in memory using a map data structure, where the key is a pair representing
the two potentially linked sequences, and the value is a vector of integers representing
the number of barcodes supporting each possible link orientation. For a given barcode
to contribute linking evidence, the distribution of reads of that barcode aligning to
the H or T regions of both sequences in the potential pair must significantly differ
from a uniform distribution. A dot file is then generated which encodes the linkage
evidence, where links (edges) between two sequences (nodes) are only added if the link
orientation with the maximum support is predominant.
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2.1 ARCS algorithm

The pipeline collectively referred to as ARCS first pairs sequences within a draft
assembly, then lays out the pairing information for scaffolding. In the sequence
pairing stage (Fig. 1), input alignments in BAM format are processed for sets of
read pairs from the same barcode that align to different sequences. These form a
link between the two sequences, provided that there is sufficient number of read
pairs aligned (-c, set to 5 by default). Each link represents evidence that one
barcode/molecule connects both sequences. To account for barcode sequencing
errors, only barcodes within a specified multiplicity range (-m) are considered
(default 50-10000 for Chromium). The multiplicity refers to the read frequency
of each barcode and the range, a specific slice of reads that are considered by
ARCS. In our experience, this distribution is wider for GemCode and should
be set to 50-10000. As we are interested in ordering and orienting sequences,
we consider reads that align to the 5’ and 3’ end (-e) bases of each sequence.
This parameter effectively sets the maximum length of regions, at the end of
sequences, where Chromium reads align. Reads whose alignments fall outside of
these regions are not considered and thus, adjusting -e to a lower value to account
for shorter contigs is important as it will have for effect to mitigate ambiguity
when creating an edge between any two sequences. In addition, as the BAM file
is read, only reads that align to a sequence with at least the specified sequence
identity (-s, set to 98 by default), map in proper pairs and are unique alignments
are considered. This ensures that only high-quality alignments provide evidence
for the subsequent linking stages, as alignments involving reads with long repeat
regions or chimeric reads will be skipped.

The relative orientations of sequences are inferred through the read alignment
positions. First we determine, using read alignments, subsets of reads with the
same barcode that co-locate within one end of the sequence (Fig. 1, step 1); Each
sequence is split in half by length and one end region arbitrarily labeled head
(H), the other tail (T). The number of read pairs of the same barcode aligning
to the head or the tail of a sequence (within -e bp or less of the end) is tallied
as the BAM file is read. A map data structure tracks, for a given barcode, the
number of reads that map to the H or T of a sequence (Fig. 1, step 2). Once the
alignment file is read into memory, every possible pair of sequences which have a
sufficient number of aligned reads from a given barcode (-c) are considered. For
each sequence in a potential pair, a binomial test is used to calculate whether
the observed distribution of reads aligning to the 5 or 3 end of a sequence is
significantly different from a uniform distribution (threshold p=0.05, parameter
-r). Likewise, the number of linking barcodes/indices that support each of the
four link orientations (H-H, H-T, T-H, T-T) is tallied in a map data structure
for each potential sequence pair (Fig. 1, step 3). Using the link orientation tallies
for each sequence pair, a graph data structure is constructed, where the nodes
are sequences, and the edges represent links between them. An edge is formed
only if the link orientation, defined by the order of sequence pairs head and tail
regions, is the most represented combination across supporting barcodes.
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After the sequence pairing stage completes, ARCS outputs a single file in
the graph description language (gv) format. The gv file is converted using sup-
plied python scripts (makeTSVfile.py), to a tab-separated value (tsv) file listing
all possible oriented sequence pairs, the number of supporting barcodes with
gap sizes arbitrarily set at 10 bp. Since positional information of reads within
the molecule of origin is not known, estimates of gap sizes are not possible. At
the layout stage, the latter tsv file is read and scaffolds constructed using the
algorithm implemented in LINKS (v1.7 and later), as described [10]. Because
linked sequence pairs may be ambiguous (a given sequence may link to multi-
ple sequences), sequences are joined only if the number of links connecting a
sequence pair is equal or greater than a minimum (LINKS parameter -l, default
of 5). Ambiguous pairings are resolved when the ratio of barcode links of the
second-most to top-most supported edge is equal or below a threshold (LINKS
parameter -a, default of 0.3; we recommend higher values such as -a 0.7 and 0.9
when running LINKS within ARCS).

ARCS is implemented in C++ and runs on Unix.

2.2 Data sources

Two human Chromium datasets were downloaded, including one from individual
NA12878 and GIAB HG004 NA24143 (Table S2). The Illumina WGS 2x250 bp
paired-end sequencing data of an Ashkenazi mother (NA24143) was downloaded
from https://github.com/genome-in-a-bottle/giab data indexes/blob/master/AshkenazimTrio/
sequence.index.AJtrio Illumina 2x250bps 06012016 under accession number NIST
HG004 NA24143 SRS823307.

The Illumina 6 kbp mate-pair sequencing data from that individual was
downloaded from https://github.com/genome-in-a-bottle/giab data indexes/blob/
master/AshkenazimTrio/sequence.index.AJtrio Illumina 6kb matepair wgs 08032015.

We downloaded the corresponding 10X Genomics 2x128 bp barcoded paired-
end sequencing data for that individual [6] from https://github.com/genome-in-a-bottle/
giab data indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio 10Xgenomics
ChromiumGenome GRCh37 GRCh38 06202016.

The 156-fold coverage NA12878 10XG Chromium data was downloaded from:
http://support.10xgenomics.com/de-novo-assembly/datasets/msNA12878, which
we assembled with the 10XG Supernova v1.1 de novo assembler (available at
http://support.10xgenomics.com/de-novo-assembly/software/downloads/latest),
as described [8].

2.3 Data analysis

Prior to assembly, the adapters from the mate-pair reads were removed using
NxTrim v0.4.0 [11] (with parameters -norc -joinreads -preserve-mp), which also
classifies reads as mate-pair, paired-end, single-end or unknown. Only reads clas-
sified as mate-pair were used for scaffolding of contigs with ABySS. Both paired-
end and mate-pair reads were corrected with BFC v181 [12] (with the parameter
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-s3G). Contigs and scaffolds were assembled with ABySS v2.0 [9] with the com-
mand: abyss-pe name=hsapiens np=64 k=144 q=15 v=-v l=40 s=1000 n=10
S=1000-10000 N=7 mp6k de=–mean mp6k n=1 lib=pe400 mp=mp6k, where
pe400 and mp6k are variables listing all files containing paired-end sequencing
and MPET reads, respectively.

The 10XG Chromium sequencing data was converted from a BAM file to a
FASTQ format. Briefly, the read barcodes were extracted from the RX tag in
the BAM file and appended to the read name following an underscore character
(eg. NAME BARCODE). Read pairs were only added to the FASTQ file if the
corresponding alignment had a sequence identity of at least 90% and were aligned
in proper pairs. Chromium reads were then aligned to the contigs and scaffolds
using BWA mem v0.7.13 (default values, adjusting t for multiple threads) [13]
and sorted by name.

Based on recommendations, the input to fragScaff also included a n-base bed
file, generated by the provided script fasta make Nbase bed.pl, and a repeat
bed file generated by performing a blastn v2.4.0 alignment [14] of the input
assembly to itself (with parameters word size 36, -perc identity 95, -outfmt 6),
which was then processed by the provided script blast self alignment filter.pl.
The scripts that ran on the data described above are available at ftp://ftp.
bcgsc.ca/supplementary/ARCS, along with the commands and parameters we
ran and set with each tool and corresponding assemblies.

The NG50 and NGA50 length metrics reported were calculated using a
genome size of 3,088,269,832 bp.

Benchmarking was done on a DELL server with 128 Intel(R) Xeon(R) CPU
E7-8867 v3, 2.50GHz with 2.6TB RAM.

3 Results

3.1 Scaffolding with the NA24143 GIAB Chromium data

Wemeasured the contiguity (NG50 and NGA50 length metric) and correctness of
resulting assemblies after ARCS, Architect and fragScaff scaffolding of baseline
assemblies (Table S3). During this process, we tested the effect of various param-
eters, including the scaffolding-specific -a, -u and –rc-rel-edge-thr (abbreviated
rel) parameters in the corresponding tools. Generally, these parameters affect
scaffolding stringency by evaluating the validity of the linkages. Mostovoy et al.

[4] reported their best assembly using fragScaff parameters -j1 and -u3, prompt-
ing us to explore similar values of -j and -u on our dataset. These parameters
are described as the mean number of passing hits per node to call the p-value

cutoff and modifier to the score to consider the link reciprocated in fragScaff
and are the parameters previously optimized [5]. In Architect, the parameters
-rc-abs-thr, -rc-rel-edge-thr and -rc-rel-prun-thr control the minimum number of
reads from a given barcode aligning to sequences required to create an edge in
the scaffold graph, the relative barcode support needed for creating edges and
the relative barcode support needed for pruning edges, respectively.
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Fig. 2. Contiguity and correctness resulting from scaffolding (a) contig or (b) scaf-
fold baseline assemblies with 10XG Chromium reads using fragScaff (orange), Archi-
tect (green), and ARCS (blue). We show the effect of the scaffolding parameters -u

(fragScaff), –rc-rel-edge-thr (abbreviated rel, Architect) and -a (ARCS). The Y-axes
show the range of NGA50 to NG50 lengths to indicate the uncertainty caused by real
genomic variations (captured by breakpoints analysis) between individual NA24143
and the reference genome GRCh38. The X-axes show the number of breakpoints that
occur when aligning the resulting assembly to the reference.

To assess correctness, we aligned the assemblies to the primary chromo-
some sequences of the human reference GRCh38 and counted the number of
observed breakpoints using abyss-samtobreak [9]. At the contig level (Fig. 2a),
we observe that while the ARCS and fragScaff assemblies (highest contigu-
ity achieved at -a0.9 and -u2, in that order) have similar sequence contigu-
ity (NG50 of 303,034 vs. 304,926 bp, respectively), the ARCS assembly has
less than one third the number of breakpoints compared to fragScaff (2,030 vs.
6,345). In context, the corresponding ARCS and fragScaff assemblies have 16.3%
and 263.4% more breakpoints than the baseline contig assembly, respectively
(Tables S3-S5). This indicated that, while the resulting fragScaff assemblies
were highly contiguous, they might harbor substantially more misassemblies.
Architect scaffolding of the baseline contig assembly did not yield apprecia-
ble gains despite extensive parameter tuning (Fig. 2a and Table S6). Contig-
level scaffolding took more than 5 hours and over 5 days for fragScaff and
Architect, respectively (Table 1; complete benchmark results are available at:
ftp://ftp.bcgsc.ca/supplementary/ARCS/benchmarks).

At the scaffold level (Fig. 2b), we observe that ARCS achieves a greater se-
quence contiguity and correctness than Architect and fragScaff (NG50 (Mbp) /
breakpoints, 19.5 / 3,027 vs. 5.0 / 3,076 vs. 13.1 / 3,438 in that order) when
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comparing amongst the most contiguous assemblies for each tool (Tables S4-S6).
This is despite there being roughly one order of magnitude fewer misassemblies
between fragScaff and ARCS assemblies that used the scaffold as opposed to con-
tig baseline sequences for scaffolding (411 vs. 4,315 breakpoints, respectively).
These assemblies respectively harbor 3.6%, 5.2% and 17.6% more breakpoints
than the baseline scaffold assembly, which suggests that ARCS and other scaf-
folders for 10XG data work best when the draft to re-scaffold is more contiguous.
To see whether these 411 additional breakpoints in the fragScaff vs. ARCS as-
semblies are large-scale misassemblies, we aligned the corresponding assemblies
to the reference human genome and plotted the alignments (Fig. 3). As ob-
served, fragScaff scaffolding of the baseline scaffold sequences yields more inter-
chromosomal translocation misassemblies (Fig. 3a) when compared to ARCS
(Fig. 3b). We note that increasing the fragScaff -j parameter (mean passing
links across nodes) while relaxing -u (score cut-off multiplier) yields assemblies
whose contiguity rival that of ARCS (16.9 vs 19.5 Mbp NG50, respectively), but
at the cost of increased misassemblies (Tables S4 and S5). Architect scaffolding
of both contig and scaffold baseline assemblies yielded a marginal increase in
contiguity figures (Fig. 2 and Table S6), which we can only speculate on. Apart
from the tool design, which is intended for Illumina TruSeq read clouds [7], it
is possible that the sequencing depth of the 10X Genomics linked reads used in
our study (25-fold) may not be adequate to observe appreciable gains with this
tool.

Table 1. Total wall-clock time and peak memory usage for ARCS (-c5 -e30000 -r0.05
-l5 -a0.3), Architect (-t10 or -t5 –rc-abs-thr5 –rc-rel-edge-thr0.4 –rc-rel-prun-thr0.2)
and fragScaff (-C5 -E30000 -j1 -u4) scaffolding applied to baseline contig and scaffold
assemblies.

Scaffolder Baseline Number of Wall-clock time Peak memory

assembly threads (h:mm) (GB)

ARCS contig 1 1:12 9.4
Architect contig 1 141:18 11.1
fragScaff contig 64 6:37 8.1
ARCS scaffold 1 0:55 3.4
Architect scaffold 1 6:07 9.6
fragScaff scaffold 64 1:59 14.1

We also compared the resource efficiency of all three tools over the parame-
ter range tested (See ftp://ftp.bcgsc.ca/supplementary/ARCS/benchmarks) and
report its runtime and memory usage on the most contiguous assemblies of base-
line scaffold sequences (Table 1). ARCS outperforms Architect and fragScaff for
run time on both contigs and scaffolds (average 3 fold faster than fragScaff) and
memory usage on scaffolds (4 times less memory when compared to fragScaff). It
should be noted that the run time of Architect and fragScaff increases quadrat-
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Fig. 3. (a) A Circos [15] assembly consistency plot of conservative fragScaff (-C5 -

E30000 -j1 -u4) and (b) ARCS (-c5 -e30000 -r0.05 -l5 -a0.3) scaffolding of the baseline
scaffold assembly. Scaftigs from the largest 175 (fragScaff) and 177 (ARCS) scaffolds,
consisting of 75% of the genome are aligned to GRCh38 with BWA mem. GRCh38
chromosomes are displayed on the left while scaffolds are displayed on the right. Con-
nections show the aligned regions between the genome and scaffolds. The open circles
along chromosomes indicate the centromeres, while the black regions on chromosomes
indicate gaps in the reference.

ically with the number of input sequences, making them inefficient choices for
assemblies with a large number of input sequences (more than 250,000). Running
Architect on the baseline contig assemblies took roughly 6 days (141 h) for most
parameter combinations. In contrast, equivalent runs of this tool on the scaffold
baseline assemblies were faster (6 h) due to having 20 times less sequences to
process (Table S3). The execution speed of ARCS on the contig and scaffold
baseline assemblies was consistent, both finishing in approximately 1 hour (1 h
12 m and 55 m, respectively).

3.2 Scaffolding with the NA12878 Chromium data

Recently, 10XG released their de novo assembly software called Supernova,
which implements a scaffolding stage and is developed specifically for assem-
bling Chromium data [8]. The authors presented a variety of human genome
assemblies, each yielding N50 contiguity lengths 15 Mbp or higher, factoring
in scaffolds 10 kbp and larger. We re-capitulated the Supernova experiment on
156-fold Chromium sequencing data for the NA12878 individual (Table S2), and
corroborate their results (Table S7). When applying a scaffold sequence length
cut-off on par with that used in our study (500 bp), we report N50 length met-
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rics corrected for genome size (NG50) in the megabase range (14.7e6 bp), which
is consistent with what was maximally achievable with ARCS using either the
same dataset (NG50=18.3e6 bp) or the lower-coverage GIAB Chromium dataset
(NG50=19.5e6 bp) that used the same scaffolding parameters. A Supernova as-
sembly of 51-fold raw GIAB chromium reads produced a similarly contiguous
assembly (NG50=13.5e6 bp).

Despite the NA12878 Chromium read data used with ARCS having sub-
stantially deeper coverage (5x deeper, Table S7 datasets 5 vs. 3), we observe
that ARCS performs consistently across both human NA12878 and NA24143
datasets. Perhaps more interesting is the observation that there are only marginal
gains in N50 length contiguity when using the higher coverage Chromium dataset
(21.8e6 vs. 22.2e6 bp when using NA24143 GIAB vs. NA12878 data, with param-
eters -e 30,000 -r 0.05 -c 5 -l 5 -a 0.9) in spite of making 406 additional merges
(Tables S2 and S7). This indicates that, under the conditions tested herein, with
the draft assembly utilized and parameters set, the solution may work optimally
with less data. We do stress the importance of knowing the distribution of reads
within each barcode as it may vary between datasets, which is what is observed
for NA24143 and NA12878 (Fig. S1). In our experience, this distribution is wider
for GemCode and should be set to 50-10000 to include the bulk of the data while
discarding outliers.

While we show that the contiguity of a H. sapiens contig assembly can be
increased over six-fold with the use of 10XG data with only a marginal increase
in probable errors with an average ± S.D. of 196 ± 77 total breakpoints com-
pared to the baseline contig assembly, there are limitations to the method. As
mentioned by Adey et al. [5], when using a barcode-based approach, it is diffi-
cult to confidently place short input sequences due to a lower number of indexed
read pools aligning to the sequence. In addition, as the barcoded molecules may
be over 100 kbp in length [16], it is possible that they span several entire short
input sequences, preventing ARCS from extracting orientation information from
read alignment positions, as they do not preferentially align to one end. Barcode
reuse across molecules or incorrect alignment of linked reads due to repeats can
also introduce false linkages at the sequence pairing stage, resulting in incorrect
merges during the scaffolding stage.

With Chromium, 10X Genomics improved upon the GemCode protocol by in-
creasing the number of fragment partitions and curbing barcode reuse. While
the positional information of linked reads within a given fragment is not known,
making it challenging for estimating gap or overlap sizes in genome assemblies,
it remains an attractive technology for scaffolding draft genomes. This is espe-
cially true when the technique is applied to later stages of scaffolding, when the
contiguity of the draft sequence assembly is high. To our knowledge, ARCS is
the first publicly available stand-alone application for scaffolding draft genomes
that is designed specifically for 10X Genomics Chromium reads.
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