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How is speech understood despite the lack of a deterministic relationship between the sounds              

reaching auditory cortex and what we perceive? One possibility is that unheard words that are               

unconsciously activated in association with listening context are used to constrain interpretation.            

We hypothesized that a mechanism for doing so involves reusing the ability of the brain to                

predict the sensory effects of speaking associated words. Predictions are then compared to signals              

arriving in auditory cortex, resulting in reduced processing demands when accurate. Indeed, we             

show that sensorimotor brain regions are more active prior to words predictable from listening              

context. This activity resembles lexical and speech production related processes and, specifically,            

subsequent but still unpresented words. When those words occur, auditory cortex activity is             

reduced, through feedback connectivity. In less predictive contexts, activity patterns and           

connectivity for the same words are markedly different. Results suggest that the brain             

reorganizes to actively use knowledge about context to construct the speech we hear, enabling              

rapid and accurate comprehension despite acoustic variability.  

 

A long history of lexical priming studies in psychology demonstrates that hearing words activates              

associated words ​1​. For example, in a lexical decision experiment, the prime ‘pond’ results in faster               

reaction times to the subsequent presentation of ‘frogs’, compared to unrelated words. Whether             

explained in terms of spreading activation among semantically related words ​2​, and/or generative            

prediction​3,4​, primes may serve as part of a solution to the problem of how humans so easily perceive                  

speech in the face of acoustic variability. Despite more than 50 years of searching, speech scientists                

have found ​no​ consistent acoustic information that can account for perceptual constancy of speech              
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sounds ​5,6​. Primed words might help mitigate this problem by serving as ​hypotheses​ to test the identity                

of upcoming speech sounds, thereby constraining interpretation of those indeterminate or ambiguous            

patterns as specific categories ​6–9​. For example, the sentence context ‘The pond was full of croaking...’               

primes ‘frogs’. This can serve as an hypothesis to test whether there is enough evidence to interpret the                  

following acoustic pattern as an /f/ despite the uniqueness of that particular ‘f’.  

We propose that the neural implementation of this ‘hypothesis-and-test’ mechanism involves           

the ‘neural reuse’​10 of processing steps associated with speech production​6,11,12​. These steps, ‘selection’,             

‘sequencing’, ‘prediction’ and ‘comparison’, are implemented in a sensorimotor speech production           

network. When someone wants to speak, a word must first be selected from among competing               

alternatives say (e.g., ‘frogs’ over ‘toads’). The selection is then sequenced into a series of articulatory                

movements associated with smaller speech units (e.g., /f/, /r/, etc.). Through feedback or ‘efference              

copy’, the brain predicts the sensory goals of these vocalizations ​13​, increasing sensitivity to acoustic              

patterns related to predicted outcomes in auditory cortex (AC) ​14,15​. This allows for vocal learning and               

continuous adjustment of vocalizations in real time ​16,17​. For adjustments to occur, the predicted sensory              

goal must be compared to the actual information arriving in AC. If an ‘error signal’ is generated,                 

forward and backward propagation continue in the speech production network until it is suppressed              

(i.e., until adjustment is achieved). 

Building on theories of speech perception that posit a central role for motor representations, we               

hypothesize that a parallel set of operations is reused to achieve perceptual constancy during speech               

perception (Figure 1). As priming studies demonstrate, listening context results in the activation of              

related though unpresented words. To serve as an hypothesis, the word with the most activation is                

implicitly selected and sequenced. This occurs as in speech production but without overt vocalization.              

The subsequent production steps, prediction and comparison, make sense of why these steps facilitate              

perceptual constancy. Specifically, sequenced speech units activate the sensory goals corresponding to            

predicted words. Those goals are ‘tested’ by comparing them to signals arriving in AC. When the                

hypothesis is accurate, processing demands are reduced because no ‘error signal’ is generated and              

feedforward and feedback propagation need not occur or continue.  

Consistent with this proposal, behavioral evidence suggests that speech production systems are            

involved in making use of sentence context. For example, hearing “The pond was full of croaking...”                

influences tongue position, affecting the subsequent forced production of a word (like “toad”)             

compared to “frogs”​18​. Generally, prediction appears to play a role in the neurobiology of perceiving               
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speech​11,19–21​. Furthermore, speech production associated networks seem to play ubiquitous roles in            

speech perception ​22 and more predictable speech results in a decrease in AC activity compared to less                

predictable speech​11​. However, inferences about the role of prediction in the neurobiology of speech              

perception have been based entirely on differences between responses to more versus less predictable              

words once they have been presented. Thus, the general mechanisms supporting prediction have not              

been observed. And, though it has long been hypothesized that speech production processes are              

important for dealing with the indeterminacy of the speech signal​7,23​, and contemporary models of              

speech perception increasingly incorporate an active hypothesis-and-test like mechanism ​6,24–26​, this          

specific mechanism has also never been observed as it would be engaged before predictable words.  

-------------------------------------------------- 

Insert Figure 1 about here 

-------------------------------------------------- 

Thus, we tested the described hypothesis-and-test model in two functional magnetic resonance            

imaging (fMRI) studies, one involving experimental manipulation of sentences and the other natural             

language observation. First, we hypothesized that when listening context permits the preactivation of             

words, sensorimotor brain regions associated speech production will be engaged to activate ​specific             

words ​before​ those words are heard compared to less predictive contexts. For example, speech              

production regions would be more activate before ‘frogs’ in the ‘pond’/’croaking’ sentence compared             

to ‘frogs’ in the sentence ‘The woman talked about the frogs’. Second, we hypothesized that, if the                 

result of using listening context is a reduction in processing demands, AC will be less active in                 

predictive compared to less predictive listening contexts at the time the more predictable word is               

spoken.  

fMRI study one 
To test these hypotheses, 12 participants (N=7 females, 4 males, 1 unreported; average age of               

those reporting = 29.28, SD = 6.18) underwent fMRI while listening to experimentally manipulated              

sentences that sometimes contained disfluencies. Disfluencies included both unfilled pauses (with no            

sound) and pauses filled with the occasional ‘um’. To explain these pauses, participants were told that                

sentences were recordings of an actor at various stages in the process of memorizing his lines and,                 

therefore, spanned a range of fluency from imperfect to well rehearsed. Disfluencies were included so               

that brain responses to sentence context could be statistically separated from the response to words               
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associated with that context.  

There were three sentence types, filler sentences and high- and low-predictability sentences.            

Unanalyzed filler sentences contained either no disfluencies or one unfilled or filled pause at the               

beginning or middle of the sentence. Analyzed high- and low-predictability sentences each consisted of              

a sentence frame (with an ‘um’ following the first word), a subsequent pause of variable duration with                 

at least one ‘um’ and then a final word (Figure 2a). The final words were acoustically the same in both                    

high- and low-predictability sentences. Predictability of these words was based on the sentence frame              

content, established in another experiment, and were otherwise balanced for intelligibility, phonetic            

content and length​27​. We used natural or ‘passive’ listening in this and study two because our                

hypotheses involve sensorimotor systems and an overt task would require confounding motor            

responses. Brain imaging data were analyzed using a deconvolution/regression model and hypotheses            

were tested by statistical contrasts of resulting activity during the filled pauses and final words as                

described next.  

-------------------------------------------------- 

Insert Figure 2 about here 

-------------------------------------------------- 

Activity before final words 
Examining the time period before the final words addresses the question of what, if any, brain                

regions are involved in exploiting words preactivated by listening context. If processes and regions              

associated with speech production are ‘reused’ prior to the final word, both of the following contrasts                

should activate speech production related regions (Figure 2b): 

 

1) High-Predictability Filled Pause > Low-Predictability Filled Pause 

2) High-Predictability Filled Pause > High-Predictability Final Word 

 

The rationale by the hypothesis-and-test model (Figure 1) is as follows: 1) Specific words are               

more likely to be preactivated during the sentence frames and used by the speech production network                

during the filled pause for high-predictability sentences than low-predictability sentences. 2) If the             

result of engaging the speech production network during the high-predictability filled pauses is a              

decrease in processing demands, there should be less need for these regions during the              
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high-predictability final words.  

The intersection of contrasts 1) and 2) showed activity in sensorimotor regions typically thought              

to be involved in speech perception and production​22​. These include bilateral posterior superior             

temporal cortices, inferior parietal lobule (IPL), the pars opercularis (POp; ‘Broca’s area’),            

supplementary motor area (SMA), pre- and primary motor cortices and the cerebellum (Figure 3 left               

column and white outline; Table S1). To examine the perceptual, motor and cognitive processes              

engaged during the filled pauses, we correlated the spatial pattern of activity from this time window                

with 12 meta-analyses of neuroimaging data, returning a single correlation coefficient per pair​28,29​. The              

assumption is that if the spatial pattern during high predictability filled pauses resemble, e.g., the               

pattern from studies of oral/facial movements, that some element of the latter process is engaged at this                 

time period. Indeed, though all the participants ostensibly heard during pauses was ‘um’, brain activity               

for the high-predictability filled pause was more correlated with activity associated auditory and word              

processing and oral/facial and speech production movements than activity from the low-predictability            

filled pauses (Figure 4a).  

-------------------------------------------------- 

Insert Figure 3 about here 

-------------------------------------------------- 

-------------------------------------------------- 

Insert Figure 4 about here 

-------------------------------------------------- 

Activity during final words 
Examining the time period following the filled pauses addresses the question of what the              

neurobiological consequences of using words preactivated by listening context are. If speech            

production regions are ‘reused’ in a predictive manner to constrain interpretation of acoustic patterns              

arriving in AC, both of the following contrasts should evince greater brain activity (Figure 2b):  

 

3) Low-Predictability Final Word > High-Predictability Final Word 

4) Low-Predictability Final Word > Low-Predictability Filled Pause 

 

The rationale as inferred from the hypothesis-and-test model (Figure 1) is as follows: 3) It               
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would not be until the low-predictability final words begin that AC could start processing those words.                

In contrast, prediction would have already been engaged during the high-predictability filled pauses.             

This would result in a reduction in processing demands during the high-predictability final words,              

associated with less activity. 4) The low-predictability final words would also produce more activity              

than the low-predictability filled pauses. This is because the low-predictability sentence frame could             

not be used to engage speech production related processes and, thus, should result in less activity                

during the low-predictability filled pauses.  

The intersection of contrasts 3) and 4) showed a large amount of activity primarily in AC,                

lacking or having a significant reduction of activity in many of the regions in 1) and 2) that might be                    

described as being related to speech production. (Figure 3 right column; Table S2). To determine the                

processing roles most associated with the distribution of activity during final words, we again              

correlated the spatial pattern of activity with 12 neuroimaging meta-analyses. The high predictability             

final words were less robustly correlated with oral/facial and speech production movements compared             

to the high-predictability pauses (Figure 4b).  

We conducted two additional analyses. First, we tested the hypothesis that ​specific words are              

preactivated and selected from high-predictability sentence contexts. To do this, we trained a support              

vector machine (SVM, ​30​) on the high- and low-predictability final words. We then tested its accuracy                

at classifying activity during the high- and low-predictability filled pauses (the time windows in which               

participants heard only ‘um’s or nothing). The logic was that, if words are preactivated and selected                

from the high-predictability sentence context, a classifier should ‘confuse’ activity ​before​ the word in              

the high-predictability case with the activity for the word heard in the low-predictability case (i.e., it                

should classify high-predictability filled pauses as low-predictability final words). It should not confuse             

activity from the high-predictability filled pauses with the high-predictability final words because, by             

our model, those words do not need to be processed fully.  

Before testing the specificity hypothesis, we first determined if a classifier could distinguish             

between the activity patterns associated with high- and low-predictability words. We trained a SVM on               

half of the high- and low-predictability final words and tested it on the other half and vice versa.                  

Indeed, high- and low-predictability final words could be distinguished with classification accuracies            

being 57.01% and 58.90% respectively (with no difference in accuracy; ​M​ difference = -1.89%; t(23) =                

-0.93, p = 0.36). To test the specificity hypothesis, we trained an SVM on all of the high- and                   

low-predictability final words and tested it on the high- and low-predictability filled pauses. Indeed, the               
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the high-predictability filled pauses were ‘accurately’ classified as low-predictability final words           

60.99% of the time compared to 39.77% for the low-predictability filled pauses ( ​M​ difference =               

21.22%; t(11)=3.30, p=0.007). Activity supporting this classification was determined by a group level             

one sample t-test using the weighted linear support vectors from each participant. Activity was in AC,                

primarily posterior superior temporal cortex (STp), parietal, POp, insula, SMA and motor and             

somatosensory cortices (Figure 3 black outline; Table S3).  

Second, we used exploratory network analysis to test the hypothesis that preactivated words             

serve as ‘hypotheses’ that are ‘tested’ through feedback (or efference copy) to AC in high-predictability               

contexts. Specifically, we used bivariate autoregressive modeling ​31 to find the feedforward and            

feedback connectivity between each voxel in the brain with every other voxel in the brain separately for                 

the high- and low-predictability filled pause and final word time period. We then counted the number                

of significant feedforward and feedback connections associated with each voxel and used t-tests to              

determine if there was a significant difference in the number of feedforward or feedback connections               

between the high- and low-predictability sentences. The logic is that, if context is used to constrain                

processing in AC, these regions should be the recipient of a significantly greater number of feedback                

connections during high-predictability sentences. Indeed, when comparing the high- and          

low-predictability sentences, the low-predictability sentences resulted in significantly more         

feedforward connections throughout the brain (Figure 5 seed-to-target, blue; Table S4). In contrast,             

there was significantly stronger feedback connectivity for the high- compared to low-predictability            

sentences in primary AC, posterior superior temporal cortices, IPL, somatosensory and premotor            

regions (Figure 5 target-to-seed, red; Table S4).  

-------------------------------------------------- 

Insert Figure 5 about here 

-------------------------------------------------- 

To summarize, results cohere well with the proposed hypothesis-and-test model (Figure 1) and             

two overarching hypotheses. Affirming hypothesis one, results suggest that sensorimotor regions           

involved in speech production are engaged more in high compared to less predictable listening contexts               

before the onset of the words made predictable by that context (Figure 3 left column white outline).                 

Though participants heard only meaningless sounds during this time window, activity patterns in part              

resemble activity that occurs when people listen to and produce meaningful words (Figure 4).              

Furthermore, a machine learning approach showed that those patterns resemble the ​specific​ words             
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participants would hear next (Figure 3 left column black outline). Affirming hypothesis two, when final               

words are actually presented, activity in AC is significantly decreased for more compared to less               

predictive sentences contexts (Figure 3 right column). Even though participants were listening to the              

same final words in both cases, it seems as if little meaningful word processing was happening for the                  

high-predictability final words (Figure 4). This reduction in speech processing in high-predictability            

contexts corresponds to AC becoming the stronger feedback recipient of influences from other brain              

regions (Figure 5).  

fMRI study two 
Study one stimuli were unnatural in a number of ways that lead us to test the same two                  

overarching hypothesis using a real-world stimulus. First, context is not only verbal and sentential as in                

study one: natural context includes discourse speech-associated mouth movements and co-speech           

gestures. These movements are used by the brain in the process of speech perception and language                

comprehension​11,20,32,33​. Second, though filled pauses are more characteristic of natural speech than            

completely fluent sentences, the duration of these pauses is likely shorter and more linguistically              

variable than in study one. This delay might have encouraged participants to use an overt guessing                

strategy, or biased them toward anticipatory lexical processing. Participants did not verbally report             

trying to predict the final word of sentences nor did they know what the experiment was about in a post                    

scan questionnaire (perhaps because of the cover story and filler sentences). Nor is there reason to                

expect that implicit, as compared to more overt, prediction would result in qualitatively different              

activity patterns. Nonetheless, study one stimuli lead to the question of whether observed activity              

patterns will generalize to stimuli with other naturally varying contexts with typical delays and              

disfluencies.  

To extend results to more natural speech and variable forms of context, we had fourteen               

participants (6 females, 8 males; average age = 24.6, SD = 3.59) watch a television game show with                  

natural audiovisual dialogue. To be able to test the two overarching hypotheses also tested in study one,                 

we first conducted a separate web-based crowdsourced experiment to determine which words in the              

show were high- and low-predictability. Participants rated each word for how predictable it was based               

on what had come before it in the show. Resulting scores ranged from 4.70 - 99.58 on a 100 point scale                     

and the median/mean predictability score was 62.00/62.31. We then median split all the words into two                

categories, high- (median to maximum) and low-predictability (minimum to median) words.  
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In order to determine the distributions and differences in brain activity for these word              

categories, a new method to analyze neuroimaging data from natural continuous stimuli was needed.              

First, we use a model free multivariate approach, spatial and temporal independent component analysis              

(stICA) ​34,35​, to separate the brain data into a set of networks and corresponding timecourses for each                

participant. Each of these unmixed networks is theoretically involved in processing some specific             

aspect of the show, including the high- and low-predictability words. Note that this unmixing cannot be                

done with traditional analysis approaches unless one has a priori knowledge about what in the show                

drove every response in the resulting data (an impossibility that is typically resolved by using               

reductionist and constructed stimuli like those in experiment one).  

To identify which of the resulting networks is associated with processing high- and low-              

predictability words, a ‘reverse correlation’ approach called ‘turnpoints analysis’ is employed ​32,36,37​. In            

particular, an stICA network is said to process high- or low-predictability words if those words occur                

more when the brain response in each associated network timecourse is rising than when falling.               

Conversely, a component is said not to process those words if they occur more when the response is                  

falling than rising. This is determined by counting the number of times words aligned with rising                

(called peaks) or falling responses (called valleys) and comparing resulting counts using a chi-square              

test.  

This comparison is done on each network timecourse at zero lag and at increments of 1.5                

seconds for six lags. This nine second time window is chosen because it is assumed that stICA network                  

timecourses follow principles of the ‘canonical’ hemodynamic response function (HRF) used in the             

analysis of most fMRI data. In particular, the HRF for a ~500ms word in isolation (without any                 

context) would be about nine seconds long. The HRF for this word would not begin to rise until about                   

two seconds after its onset. It would then rise and reach a peak about two seconds later and decrease                   

and return to baseline about five seconds after this. All resulting stICA networks associated with high-                

and low-predictability words at peaks > valleys and valleys > peaks are separately combined by               

summation, resulting in four network maps per lag per participant.  

Finally, group analyses were done using SVM classifiers and analysis of variance (ANOVA).             

SVMs were used to determine if network maps can be used to distinguish between whether participants                

were listening to high- or low predictability words and, if so, what brain regions support those                

classifications. SVMs were trained on half of the participants high- and low-predictability network             

maps and tested on the other half of the participants at each lag. To support the validity of this approach                    
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and extend results, we also conducted more traditional group analysis by univariate three-way repeated              

measures ANOVA of network maps, with predictability, lags and participants as factors. 

Activity before words 
To review, hypothesis one maintains that activity in sensorimotor brain regions occurs before             

word onset for high- but not low-predictability words, corresponding to the selection, sequencing and              

prediction of forthcoming speech sounds from context. This hypothesis was tested with the lag              

spanning 0-1.5 seconds, corresponding to the onset of words. By typical assumptions about the HRF               

reviewed above, accurate classification and this time window suggests that the classifiers can predict              

which category of word was to be heard ​before​ it could have been heard. Indeed, SVMs could                 

accurately distinguish high- and low-predictability words at 0-1.5 seconds (Figure 6 bottom left).             

Classification was based on a distributed set of sensorimotor networks associated with            

high-predictability words. This included two large bilateral STp clusters in addition to parietal, SMA              

and premotor cortices and the caudate and cerebellum. At valleys classification was based in pre- and                

primary motor cortices (Figure 6; Table S5). Based on standard assumptions about the HRF, activity in                

valleys at this lag suggests that high-predictability word responses in the latter regions had peaked and                

were in the decreasing amplitude phase of the HRF. That is, processing in these regions began before                 

peaks in STp cortices. In contrast, classification associated with low-predictability words was mostly             

limited to small clusters in pre- and primary motor cortices (Figure 6; Table S5). These results were                 

largely confirmed by second order contrasts for predictability following ANOVAs at this time window              

with the exception that there was no significant activity associated with low-predictability words             

(Figure S1). 

-------------------------------------------------- 

Insert Figure 6 about here 

-------------------------------------------------- 

Activity during words  
To review, the second hypothesis maintains that there is a reduction in activity in AC for high-                 

compared to low-predictability words corresponding to a processing savings following accurate word            

prediction. Indeed, at lags of 3-9 seconds, the ability of the SVM to accurately determine whether                

participants had been listening to high- and low-predictability words was based on a distributed set of                

regions mostly associated with a decrease in brain responses for high-predictability words and an              
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increase for low-predictability words (Figure 6; Table S3). Decreases in responses for            

high-predictability words were in sensorimotor regions, including bilateral STp, IPL, POP, SMA,            

insula and pre- and primary motor cortices. There was also a large increase in response in visual                 

cortices. Increases in responses for low-predictability words was mostly in bilateral STp. Frontal and              

parietal activity patterns for low-predictability words was less extensive than those associated with             

high-predictability words. The general pattern of activity for low-predictability words is much like             

what would be expected of a typical HRF for a word in isolation as described above: little to no activity                    

until two seconds and a peak at four seconds, followed by a slow decrease in activity. Again, this                  

pattern of results were largely confirmed by second order contrasts in predictability following ANOVA              

at these time windows (Figure S1; Table S5). The interaction of predictability and time further confirm                

the overall pattern of activity before and after high- and low-predictability words as involving mostly               

sensorimotor regions (Figure S1 white outline; Table S6).  

To summarize, study two affirms that study one results generalize to real-world stimuli with              

multisensory context and natural speech timing. Supporting hypothesis one, sensorimotor networks           

associated with speech production were engaged prior to high-predictability word onsets. In contrast,             

there was little or no activity in these networks for low-predictability words at this time window                

(Figure 6 0.0-1.5 seconds). This pattern of activity prior to word onset also suggests that processing of                 

high-predictability words involves feedback from frontal production related to auditory regions.           

Supporting the second hypothesis, there was a large decrease in brain activity associated with              

high-predictability words throughout sensorimotor brain networks following word onset. There was a            

concomitant increase of activity in visual networks that, speculatively, might correspond to increased             

visual sampling of the video because of freed up processing demands associated with having already               

predicted the subsequent word. In contrast, low-predictability words seem to be primarily associated             

with positive activity in mostly auditory networks that peak at a later time (Figure 6 1.5-9.0 seconds).  

Thus, in two studies, results support an hypothesis-and-test model of speech perception (Figure             

1). By this model, the speech production system is ‘reused’ so that words activated or primed by                 

listening context through probabilistic associations can be selected, sequenced and used to predict             

forthcoming speech sounds. Indeed, both studies showed that temporally evolving sensorimotor brain            

networks involved in speech perception and production are active in advance of words when context               

can be used to predict those words. Patterns of activity in those networks are associated with specific                 

language processes and even specific words, namely those that are to be heard next. Furthermore, AC                
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became the feedback recipient of information from the rest of the brain generally and frontal speech                

production related regions more specifically in more predictive contexts. Thus, results confirm that             

specific unheard ‘hypotheses’ are generated by the brain from contextual associations. The model then              

proposes that these hypotheses are ‘tested’ by comparing them to incoming information to constrain              

interpretation of variant acoustic patterns. If this is true, accurate predictions (as would derive from               

high predictive contexts) result in a reduction in processing demands and associated brain activity.              

Indeed, in both studies, at the time the to be heard words are actually heard, there is a subsequent and                    

large reduction in brain activity in high-predictability contexts. Thus, results support the contention of              

this model that, when it is available, context is used as a constraint to achieve perceptual constancy in                  

the process of speech perception. As context is abundant during natural language use, results suggest               

that a great deal of the speech we hear is an active knowledge based construction, built more from our                   

associations with context than from the incoming auditory information itself.  

Results have implications not only for how we perceive speech but also for models of the                

organization of language and the brain. Most classical and contemporary models of the neurobiology of               

language are static, with speech perception and language comprehension proposed to occur in a fixed               

region (like ‘Wernicke’s area’)​38 or fixed sets of connected regions (like the ‘dorsal’ and ‘ventral               

stream’)​39,40​. The results of our two studies, however, show that the general patterns of activity and                

network connectivity for words, even for exactly the same words, are remarkably different as a               

function of the context encountered by listeners. If different patterns of activity are associated with               

different contexts, and contexts are always changing during real-world language use, it implies that the               

organization of language and the brain is much less static and more dynamic than existing models can                 

accommodate. Indeed, studies of the network organization supporting resting states, auditory tone            

processing and natural language all suggest that language and the brain is dynamic and distributed               

throughout the brain​22,32,41–43​. These studies and our results thus suggest that more research pertaining to               

how the brain uses context is needed in order to build a more complete and accurate model of the                   

neurobiology of language ​12​. A model that is more predictive of actual language behavior​12,44 might help               

us to improve the generally poor outcomes in aphasia therapy​45​, a pressing concern given that aphasia                

results in the worst health related quality of life​46​.  

 

Supplementary Information ​is linked to the online version of the paper at www.nature.com/nature. 
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Figure Legends  
Figure 1 ​Hypothesis-and-test model of speech perception. Sentence context results in the activation of              

associated words that serve as hypotheses about subsequent sounds. Brain regions for producing             

oral/facial movements (red/white/blue) are used to ‘test’ hypotheses. The hypothesis with the most             

activation (1 red) is selected and sequenced into segments, involving parietal/somatosensory (2 red)             

and pre- and primary motor cortices (3-4 red). This results in a prediction of the               

somatosensory/acoustic consequences of producing those segments through feedback (5-6 red).          

Predictions are compared to arriving auditory information, with processing savings when accurate            

compared to less constraining contexts (7 blue). 

Figure 2 ​Design and analysis logic of fMRI study one. a) Participants listened to randomly presented                

sentences. Analyzed sentences had sentence frames, serving as context, making the final words either              

high- or low-predictability. Sentence frames were separated from the final word by both filled (‘um’)               

and unfilled pauses of variable duration to permit hypothesis testing. b) Graphical depiction of              

hypothesized results. The y-axis is percent (%) signal change of brain activity in auditory and speech                

production related regions. Numbers refer to statistical contrasts described in the text pertaining to the               

filled pauses (1/2; red) and final words (3/4; blue).  

Figure 3 ​fMRI study one activity by predictability. Left column brains show greater activity during               

filled pauses following high-predictability sentence frames (1/2 in Figure 2b). The right column shows              

greater activity during final words following low-predictability sentence frames and filled pauses (and             

implies the converse, less activity for high-predictability final words; 3/4 in Figure 2b). Black outlines               

are regions supporting accurate classification by a support vector machine of high- but not              

low-predictability filled pauses as words when trained on final word activity. White outlines are              

regions overlapping those involved in making oral/facial movements (from Figure 1). 

Figure 4 ​Correlation of study one results with fMRI meta-analyses. Radial plots of the correlation               

coefficients from the correlations of the spatial patterns of activity from high- and low-predictability              

filled pauses (red) and final words (blue) with the patterns from 12 fMRI meta-analyses corresponding               

to labels. Abbreviations: Aud = Auditory; Som = Somatosensory; SP = Speech Production; OFM =               

Oral/Facial Movement (shown in Figures 1 and 3); Pho = Phonology; Wor = Words; Sem = Semantics;                 

Syn = Syntax; Ate = Attention; WM = Working memory; Mem = Memory; Rea = Reasoning. 

Figure 5 ​fMRI study one network connectivity by predictability. Brain images show a significantly              
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greater number of seed-to-target (‘feedforward’; left) or target-to-seed (‘feedback’; right) connections           

for high- (red) and low-predictability (blue) filled pauses and final words.  

Figure 6 ​fmri study two word predictability turnpoints analysis. Turnpoints analysis as described in the               

text was done on each participant to find independent component networks corresponding to high- and               

low-predictability words in a television game show. Support vector machine (SVM) classifiers were             

trained to distinguish those word categories on half the participants and tested on the other half. SVMs                 

were done at six time windows (‘Seconds’; top) for networks corresponding to words when brain               

responses were rising (‘Peaks’; red) and falling (‘Valleys’; blue). Classification accuracy is given in the               

bottom row (min = 57.14; ​M​  = 84.82; max = 100.00).  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
 

 

 

  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101113doi: bioRxiv preprint 

https://doi.org/10.1101/101113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
Speech reorganization       22 

Methods 
Two functional magnetic resonance imaging (fMRI) studies were conducted. Study one used            

experimental manipulation of stimuli. Study two involved natural observation of brain activity from             

watching a television game show.  

fMRI study one 
Participants. ​There were 12 participants (7 females, 4 males, 1 unreported; average age of those               

reporting = 29.28, SD = 6.18). Each was a native English speaker, right-handed as determined by the                 

Edinburgh Handedness Inventory​47 with normal or corrected to normal hearing and vision and no              

history of neurological or psychiatric illness. The study was approved by the Institutional Review              

Board (IRB) of Weill-Cornell Medical College and participants provided written informed consent.  

Stimulus and task. ​Participants listened to 40 high- and 40 low-predictability sentences and 43 filler               

sentences, as described in the manuscript. Stimuli were presented in a randomized rapid event related               

design, separated by an intertrial interval of variable duration. To be able to analyze activity associated                

with the filled pauses and final words, optimal stimulus randomizations were created using the              

programs ‘RSFgen’ and ‘3dDeconvolve’ from the AFNI program set​48​. Specifically, we ran one million              

iterations of ‘RSFgen’ to generate randomized stimulus functions using the Markov chain option to              

specify stimulus transition probabilities. The latter was needed because sentence frames must be             

followed by filled pauses and then final words. Randomizations were evaluated for efficacy using the               

the regression/deconvolution program ‘3dDeconvolve’​49 in AFNI and the four most efficient designs            

were selected (one for each run).  

Each of the recorded sentences was then reconstructed using the timings specified by these              

designs. This required splicing in prerecorded and natural sounding ‘um’ strings and room noise              

present at the time of the original recordings. Sentences were recorded in a room with some audible                 

noise (the hum of a computer fan) so that there would be no audible evidence of splicing (namely                  

clicks). After editing, sentence frames all occurred in a three second window. There were no significant                

differences in the resulting analyzed high- ( ​M​ = 5.14, ​SD = 3.89) and low-predictability ( ​M = 5.25, ​SD                  

= 4.05) filled pause durations ( ​t​ (39) =0.13, ​p = 0.89). There were also no differences in the duration                  

and acoustic properties of the analyzed high- and low-predictability final words because they were the               

same word from the low-predictability version of the original sentence pairs. All final words occurred               

in a 1.5 second window.  
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Following scanning participants were asked questions about the stimuli to assess whether they             

attended during scanning. In particular, they read 24 sentences without the final word, 12 they had been                 

presented in the scanner and 12 the had not been presented. They were asked 1) to complete the                  

sentence 2) whether they had heard the sentence in the scanner and 3) their confidence that they had                  

heard the sentence. Four participants were not given the questionnaire. Overall, the remaining eight              

participants were 61.77% confident in their answers. They were 75.20% accurate at identifying             

sentences that were actually presented in the scanner and 73.44% accurate at identifying sentences that               

were not actually presented in the scanner.  

Imaging parameters. ​Brain imaging was performed at 3 Tesla (GE Medical Systems, Milwaukee,             

WI). A volumetric MPRAGE sequence was used to acquire anatomical images on which landmarks              

could be found and functional activation maps could be superimposed (Voxel size = 1.5x0.9x0.9 mm;               

Sagittal Slices = 120; FoV = 24). Functional imaging used an EPI sequence sensitive to BOLD contrast                 

(Voxel size = 3.45 x 3.45 x 5; Axial Slices: 25; FoV = 220; Base resolution = 64; Time of Repetition,                     

TR = 1500; TE = 30; Flip Angle = 75). There were four consecutive functional runs, each lasting six                   

minutes and 21 seconds. Each run began with a 10.5 second silent period to allow magnetization to                 

reach a steady state and these images were discarded.  

Preprocessing. ​Unless otherwise noted, preprocessing was done with AFNI software​48​. Anatomical           

images were corrected for intensity non-uniformity, skull stripped​50​, non-linearly registered to an MNI             

template and inflated to surface based representations using Freesurfer software​51​. Freesurfer was used             

to create an average anatomical image from all participants from both studies one and two. All results                 

were displayed on this average surface using the SUMA component of AFNI​52 

Functional images from the four runs were spatially registered in 3D space by Fourier              

transformation. A correction was applied for slice timing differences and spikes (signal intensities             

greater than 2.5 standard deviations from the mean) were removed. We then corrected each run for                

head movement by registration to the mean of of the middle run and aligned the results to the MNI                   

template aligned anatomical images. We masked each run to remove voxels outside of the brain and                

created two sets of timeseries to be used in further analysis. In the first set, we blurred each run to a                     

smoothness of 6 mm​53 and normalized each run (by making the sum-of-squares equal to one). In the                 

second set, we linearly, quadratically and cubically detrended each run, normalized and concatenated             

them. We submitted the latter to independent components analysis (ICA) to locate artifacts in the               

data​54​. In particular, resulting components were automatically labelled as not artifacts, possible artifacts             
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and artifacts using SOCK ​55​. Each was reviewed by hand for accuracy. There were an average of 207.33                 

components and 157.17 artifactual components (75.81%) across participants. The independent          

component time course associated with each of these was removed from the timeseries at each voxel                

using linear least squares. Finally, we blurred the resulting timeseries to a smoothness of 6 mm.  

Regression/deconvolution analyses. ​The four blurred and normalized timeseries (set one) were used            

to estimate the hemodynamic response for the high- and low-predictability filled pauses and final              

words in each voxel using ‘3dDeconvolve’ from AFNI ​49​. In particular, we used a deconvolution              

approach to produce an unbiased estimate of the time course for these stimuli following stimulus onset                

with piecewise cubic-spline basis functions. These were separated by 1.5 second intervals and covered              

a 15 second time window. Thus, each condition produced four timeseries, each with 12 coefficients (or                

timepoints) per voxel. In addition, the model included the ICA based artifact time courses as regressors,                

and a regressor each for the mean signal, linear, quadratic and cubic trends.  

Overlap analysis. ​To test hypotheses described in the manuscript, each of the resulting four estimates               

of the hemodynamic response was used to calculate a paired t-test at each timepoint following stimulus                

onset. Specifically, we performed paired t-tests for high- vs. low-predictability filled pauses;            

high-predictability filled pauses vs. high-predictability final words; low- vs. high-predictability final           

words and; low-predictability final words vs. low-predictability filled pauses. Each timepoint for            

contrasts 1-4 described in the manuscript was thresholded. To correct for multiple comparisons, we              

used an individual voxel threshold for each overlapping image that equaled p < .005 when combined                

and a cluster size threshold of 10.5 voxels. These were determined by Monte Carlo simulation to                

correspond to a corrected alpha value of .05 using ‘3dClustSim’ (note that we use a version of this                  

program that fixes a previous bug). Finally, we collapsed over time by summation.  

Classifier analysis. ​To discover if words are activated during the high-predictability filled pauses, we              

conducted the classification analyses described in the manuscript. In particular, the deconvolution            

analysis was rerun but by splitting the high- and low-predictability filled pauses and final words into                

even and odd stimulus presentation onsets. This resulted in eight timeseries. We trained a support               

vector machine (SVM) classifier on the even high- and low-predictability final word timeseries and              

tested it using the odd high- and low-predictability final word timeseries and vice versa. We similarly                

trained a SVM on the high- and low-predictability final word timeseries and tested it with the high- and                  

low-predictability filled pause timeseries. Analyses used ‘3dSVM’ ​30​. Group analysis was done using a             

one sample t-test as described. Thresholds were determined using a mask of the overlap of high- and                 
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low-predictability filled pauses versus baseline, an individual voxel p-value of .05 and a cluster size of                

14, resulting in a corrected alpha level of .05 as determined by ‘3dClustSim’.  

Network analysis. ​We conducted network analysis by first creating a mask that was the sum of                

contrasts 1)-4) as described in the manuscript and their converse to reduce the total number of                

computations. We then did exploratory bivariate autoregressive modeling with two lags at each of the               

10,113 voxel in this mask. Resulting path estimates (and associated t-statistics) give a measure of the                

potential connectivity between each seed voxel and the rest of the voxels in the brain (seed-to-targets)                

and from the rest of the brain to the seed voxel (targets-to-seed). We minimally thresholded each image                 

at p = .05 uncorrected with a cluster size of five voxels and counted the number of active voxels at each                     

voxel across all 10,113 resulting maps. We used paired t-tests to contrast high- vs low-predictability               

filled pauses for each lag and for both seed-to-targets and targets-to-seed separately. Thresholds were              

determined using the mask used to constrain computations, an individual voxel p-value of .005 and a                

cluster size of 10, resulting in a corrected alpha level of .05 as determined by ‘3dClustSim’. Results as                  

displayed in Figure 5 are collapsed over lag. of the overlap of high- and low-predictability filled pauses                 

versus baseline 

Neuroimaging meta-analyses. ​We correlated the spatial patterns of results form study one with             

neuroimaging meta-analyses conducted using the BrainMap database ( ​http://brainmap.org/ ​).        

Specifically, we queried that database for experiments meeting a set of common metadata criteria and               

sets of criteria specific to 12 perceptual, motor and cognitive processes. These queries returned x/y/z               

stereotaxic coordinate space “locations”, that is, centres of mass or peaks of functional brain activity               

reported in neuroimaging papers​56–58​. Locations that were originally published in the Talairach            

coordinate space were converted to Montreal Neurological Institute (MNI) space​59,60​. Then Activation            

Likelihood Estimation (ALE) meta-analyses were done by modelling each MNI location as a             

three-dimensional probability distribution and quantitatively assessing their convergence across         

experiments. Significance was assessed by ten thousand permutations of above-chance clustering           

between experiments ​61–64​. All resulting ALE maps were false discovery rate (FDR) corrected for             

multiple comparisons to p < 0.05 and further protected by using a minimum cluster size of 84 mm​3                  

(10.5 voxels).  

The BrainMap database was searched (in March, 2016) for a set of common criteria associated               

with all 12 meta-analyses. In particular, experiments contributing to analyses included only “normal”             

participants who were right handed and older than seventeen and locations must be activations only.               
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These common search criteria were combined with searches for for 1) audition and 2) somesthesis in                

the behavioral domain of perception. They were combined with searches for 3) attention; 4) memory;               

5) phonology; 6) reasoning 7) semantics; 8) syntax; and 9) working memory in the behavioral domain                

of cognition. They were combined with a search for stimulus types that were auditory 10) words. They                 

were combined with a search for 11) speech production in the behavioral domain of action. Finally,                

they were combined with a search for 12) oral facial movements that variously involved overt               

oral/facial responses of breath-hold, drink, smile, swallow or the paradigm classes of breath holding,              

chewing/swallowing, eating/drinking, swallowing and taste without auditory stimuli. It was not the            

intention that these meta-analyses represent independent constructs but, rather to examine the            

correlation of our experimental results with a wide range of studies examining various processes. We               

used ‘3ddot’ in AFNI to correlate the spatial distribution of activity from the overlap of contrasts 1) and                  

2) and their converse and the overlap of 3) and 4) and their converse (Figure 3) with these 12                   

meta-analyses (resulting in 48 correlations) to provide a description of the processes engaged during              

the high-predictability filled pauses and final words.  

fMRI study two 
Participants. ​There were 14 participants (6 females, 8 male; average age = 24.6, SD = 3.59 years). All                  

other participant criteria were the same as in study one. None of the study two participants took part in                   

study one. IRB approval for scanning was the same as for study one whereas approval for the                 

predictability rating study was from Hamilton College.  

Stimulus and task. ​Participants listened to and watched 32 minutes and 24 seconds of an episode of a                  

television game show (“Are You Smarter Than A 5th Grader”; Season 2, Episode 24, Aired 2/7/08).                

The episode was edited down to be approximately 30 minutes without decreasing intelligibility. The              

show was further divided into six segments so that we could check on participants and give them                 

breaks. This show was chosen because it had a number of desirable properties including: 1) Natural                

dialogue between the host, contestant, and, to a lesser extent, six peripheral individuals (i.e., no actors);                

2) Naturally occurring temporal jittering of dialogue and contextual information, allowing stimulus            

features to be resolved using fMRI; and 3) A built-in behavioural assay to assess participants               

knowledge of the items or events discussed in the video and to determine whether participants were                

attending. Participants who completed this assay following the experiment (N=10) were on average             

98% accurate and 82% confident in their answers when asked the contestant’s answers to 11 questions                
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during the show. The contestant on the show answered all questions correctly except the last.               

Participants were 80% accurate when asked the contestant’s answer to the final question after having               

seen the show despite that only 30% indicated that they had known the answer to the question before                  

viewing the show (z(9)=2.2473; p < 0.02).  

Stimulus annotation and word predictability. ​Praat​65 and ELAN software were used to annotate the              

onset and offset time of words in the TV show episode watched by participants. Following annotation,                

the words were resampled to 4 ms time steps so that events could be aligned to fMRI timeseries                  

generated by the fMRI analyses and compared to EEG data whose sampling rate was 250 hz (not                 

discussed in this manuscript). Resampled word annotations were entered as a table into a MySQL               

database ( ​http://www.mysql.com/ ​) along with metadata about how predictable each word was based on             

the context preceding it. These were determined in a separate experiment using Amazon’s Mechanical              

Turk (​www.MTurk.com ​) and Qualtrics survey software (​http://www.qualtrics.com​).  

Specifically, six groups of native English speaking participants rated words in one of six              

transcripts (N = 291 participants; M = 48.50 and SD = 8.26 participants per transcript). Multiple groups                 

were used to break the task up in the same way as the fMRI experiment (with six functional runs) and                    

because the time required to rate more than one transcript would have been too great (each took about                  

1.5 hours). None of the MTurk participants participated in the fMRI experiment. Participants rated each               

word in the transcript that they were assigned on a continuous Liket scale. The scale was labeled 0 to                   

100 in intervals of 10 and also included the words “Strongly Unpredicted” (at 0), “Unpredicted” (at                

25), “Medium Predicted” (at 50) “Predicted” (at 75) and “Strongly Predicted” (at 100 on the scale).                

Participants were given instructions to indicate how predicted each word was based on what they had                

previously read and were provided examples of how to do so with the Likert scale. After reading and                  

rating a word they advanced to the next word and were not able to see prior or upcoming words. If                    

participants were not in the transcript one group, they read all the preceding transcripts in the correct                 

temporal order before they started rating.  

To get reliable estimates of word predictability from the MTurk groups, the original groups              

were narrowed down by discarding participants who consistently made extreme word ratings. This was              

done by making a box plot of the ratings for each word for all participants and marking individual                  

participants as outliers if they rated any given word below Q1 - 1.5×IQR or above Q3 + 1.5×IQR. The                   

number of outlying words were then summed for each of the participants. Those participants whose               

ratings produced more outliers than the median number of outliers were excluded from the estimate of                
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word predictability. This left us with 119 or 40.89% of the the original number of participants (M =                  

19.83 and SD = 1.33 participants per transcript; 65 males; age M = 34.13 and SD = 11.44). Intraclass                   

correlation coefficient (ICC) confirmed that trimmed groups were relatively consistent (ICC M = 0.57              

with ICC range of 0.48 - 0.64). We then simply averaged the remaining participants ratings for each                 

word. The resulting minimum rating was 4.70, Q1 was 41.25, the median was 62.00, the mean was                 

62.31, Q3 was 85.50 and the maximum rating was 99.58. We defined high-predictability word as those                

words from medium to maximum predictability and low-predictability words as those from the medium              

to lowest predictability.  

Imaging parameters and preprocessing. ​There were six consecutive functional runs with durations,            

in minutes:seconds of 5:36, 5:45, 5:42, 5:42, 4:51 and 5:51. Each run began with a 10.5 second black                  

screen that faded out to allow magnetization to reach a steady state and these images were discarded.                 

All parameters and preprocessing steps were the same as in study one. With regard to the ICA based                  

artifact discovery, there were an average of 237.29 components and an average of 177.79 artifactual               

components (74.93%) per participant.  

Turnpoints analysis step one. ​To find independent brain networks without a priori hypotheses about              

where they are or what they are doing, each participant's preprocessed and smoothed timeseries (with               

artifacts removed) was submitted to both spatial and temporal independent component analysis            

(stICA) ​34,35​. Number of components were estimated using an automatic heuristic strategy​34​. The            

independent component (IC) time-course for each of the resulting components was then resampled to              

have a 4 ms time step (to match the stimulus annotations and sampling rate of an EEG study not                   

discussed here) and entered as a table into the MySQL database containing the annotations.  

Turnpoints analysis step two. ​To determine which networks from step one were involved in              

processing high- and low-predictability words, we performed a ‘turnpoints peak and valley analysis’​32             

on the IC time-courses from the stICAs. A ‘turnpoint’ is defined as the point at which the time series                   

transitions from ‘peak’ or ‘valley’ extrema points. Three successive data values are required to define a                

turnpoint: xt-1, xt, xt+1. Across a time series with n observations of xt for t = 2, …, n-1, a turnpoint xt                      

is a peak if xt-1< xt> xt+1 or a valley if xt-1> xt< xt+1. That is, a peak is an observation that is both                        

preceded and followed by a value lower than itself and a valley is an observation that is both preceded                   

and followed by a value higher than itself.  

The R statistical package ( ​http://www.r-project.org/ ​) was used to querie the MySQL database            

and retrieve the high- and low-predictability word timeseries and an IC timecourses. If a high- or                
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low-predictability word occurred when the IC time-course was rising (i.e., the time period between a               

valley and a peak) and did not occur when the response was decaying (i.e., the time period between a                   

peak and a valley), then that timecourse and the associated spatial map were said to function to process                  

that word. This was determined statistically using χ2 tests on the counts of an annotated feature at                 

peaks and valleys measured in units of time. The unit of time in this case was 1.5 seconds (the TR). For                     

example, if 100 words occurred at peaks and 10 at valleys and each word was exactly 450 ms long the                    

values entered into a one-way χ2 would be 30 and 3 TRs. The expected counts under the null                  

hypothesis would be 16.5 and 16.5 and χ2 = 22; p < 2.6x10-06. These χ2 tests were done over an                    

extended time window (i.e., 0-9 seconds) in steps of 500 ms rather than at a fixed time. This was done                    

because 1) of predicted differences in the timing of processing between high- and low-predictability              

words, 2) cognitive processing is extended over time and 3) a canonical hemodynamic response for an                

500 ms word would extend over a window of approximately this length. Significance for components               

was set at p < .005.  

Turnpoints analysis step three. ​At the conclusion of the last step, all significant stICA components               

involved in processing high- and low-predictability words have been found for each participant in a               

moving time window. Each map is z-score transformed and combined by summation into one map for                

each the high- and low-predictability words, for each the peaks and valleys, for each participant, for                

each of three consecutive 500 ms time steps (to correspond to the 1.5 second TR), resulting in four                  

maps per participant for each of the resulting six time steps. Next, SVMs ​30 were trained using the high-                  

and low-predictability word images for peaks and valleys separately from half the participants. We then               

tested the SVM using the other half of the participants and vice versa. In total we trained and tested                   

four SVMs at each time point. The first half of the participants at peaks had a min = 64.29; M = 83.33                      

and max = 100.00 classification accuracy. The second half of the participants at peaks had a min =                  

57.14; M = 86.91 and max = 100.00 classification accuracy. The first half of the participants at valleys                  

had a min = 64.29; M = 84.52 and max = 92.86 classification accuracy. The second half of the                   

participants at valleys had a min = 64.29; M = 84.53 and max = 100.00 classification accuracy. In                  

addition to accuracy, the results include those regions that contributed most highly to the classification               

across the training group.  
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Supplementary Information  

Table Captions 
Table S1 ​Filled pause activity locations (Figure 3 red). Abbreviations: AG = Angular Gyrus; AP =                

Anterior/Posterior; BA = Brodmann Area; IS = Inferior/Superior; L = Left hemisphere; R = Right               

hemisphere; RL = Right/Left; SMA = supplementary motor area; SMG = Supramarginal Gyrus.  

Table S2 ​Final word activity locations (Figure 3 blue). See Table S1 caption for abbreviations.  

Table S3 ​Activity locations supporting support vector machine (SVM) classification of high            

predictability filled pauses as low predictability final words (Figure 3 black outline). See Table S1               

caption for abbreviations.  

Table S4 ​Location of network activity for greater number of seed-to-target (‘feedforward’; Figure 5              

top) and target-to-seed (‘feedback’; Figure 5 bottom) connections for high- (Figure 5 red) and              

low-predictability (Figure 5 blue) filled pauses and final words. See Table S1 caption for abbreviations.  

Table S5 ​Activity locations supporting SVM classification of high and low predictability words at              

peaks and valleys at 0-1.5 and 4.5-6 seconds (Figure 6). Only clusters greater than or equal to 20 voxels                   

are included. P/V = activity at peaks or valleys; see Table S1 caption for other abbreviations.  

Table S6 ​Activity locations for analysis of variance (Figure S1) interaction term for factors              

predictability (high/low) and time (six time steps; displayed as white outline in Figure S1). Only               

clusters greater than or equal to 20 voxels are included. See Table S1 caption for abbreviations.  
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Table S1 
 

 Region Centre of Mass Minimum Maximum 

Voxels/mm​ 3 Anatomical BA RL AP IS RL AP IS RL AP IS 

479/30656 L Superior/Middle 
Temporal Gyrus 22/TE 3 -53 -17 9 -30 45 -17 -70 -68 40 

264/16896 R Superior Temporal 
Gyrus 22/TE 3 58 -16 4 75 9 -21 35 -40 24 

67/4288 R Middle Occipital Gyrus 18 31 -88 2 43 -72 -9 19 -96 20 

67/4288 L Inferior Frontal Gyrus 44 -42 8 26 -34 29 8 -50 -8 40 

64/4096 L Superior Frontal Gyrus 6 -14 -5 62 3 9 48 -26 -20 76 

64/4096 L Precentral Gyrus 6 -47 -5 53 -34 9 32 -62 -16 72 

45/2880 L Middle Occipital Gyrus 18 -24 -93 1 -10 -84 -9 -38 -104 8 

38/2432 L Superior Frontal Gyrus 8 -8 36 50 -2 49 44 -18 21 64 

30/1920 R Inferior Parietal 
Lobule/SMG  37 -34 29 47 -24 20 23 -40 36 

29/1856 R Precentral Gyrus 4/6 57 -5 46 63 5 40 47 -12 56 

26/1664 L Middle Occipital Gyrus 31 -22 -62 25 -18 -56 16 -30 -68 40 

19/1216 L Inferior Parietal 
Lobule/SMG 40 -55 -43 38 -50 -36 32 -62 -48 48 

17/1088 L Superior Parietal 
Lobule 7A -26 -52 49 -22 -40 40 -34 -64 56 

17/1088 L Superior Frontal Gyrus 6 -21 28 55 -14 33 48 -26 25 64 

16/1024 L Middle Temporal 
Gyrus; AG 39 -47 -65 24 -38 -60 20 -58 -68 28 

16/1024 L Postcentral Gyrus 7/5L -16 -48 62 -6 -44 60 -30 -56 64 

15/960 L Lingual Gyrus 17/18 -6 -58 2 -2 -48 -1 -10 -64 8 

15/960 L Middle Frontal Gyrus 9 -40 38 35 -34 45 32 -46 33 40 

13/832 R Middle Temporal 
Gyrus 37 48 -54 -2 55 -48 -9 47 -60 4 

12/768 R Cerebellum  6 -54 -4 11 -52 -13 3 -60 4 

12/768 R Cingulate Gyrus 31 21 -29 36 27 -24 32 15 -32 44 

12/768 L Cingulate Gyrus 24 -17 -17 46 -10 -16 40 -26 -24 52 

12/768 L Superior Frontal Gyrus 10 -17 58 20 -10 61 16 -22 53 28 

11/704 R Cerebellum  29 -66 -23 35 -64 -29 23 -68 -17 

11/704 R Cerebellum  7 -61 -37 15 -60 -41 -6 -64 -37 

11/704 R Superior Temporal 
Gyrus  53 -38 14 55 -32 12 51 -44 20 

11/704 R Anterior Cingulate 9 25 28 17 31 33 12 23 25 20 

11/704 R Medial Frontal Gyrus 10 1 57 -10 3 61 -17 -6 53 -5 
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Table S2 
 

 Region Centre of Mass Minimum Maximum 

Voxels/mm​ 3 Anatomical BA RL AP IS RL AP IS RL AP IS 

268/17152 R Superior 
Temporal Gyrus 22/TE 3 59 -25 3 71 -4 -21 43 -52 24 

192/12288 L Superior 
Temporal Gyrus 22/TE 3 -49 -25 9 -30 1 -13 -70 -56 28 

95/6080 L Middle Occipital 
Gyrus 18 -25 -87 7 -2 -76 -9 -46 -100 24 

57/3648 R Paracentral 
Lobule 4a 4 -41 63 19 -24 48 -18 -52 80 

55/3520 R Middle Occipital 
Gyrus 18 26 -87 13 39 -80 -5 11 -96 24 

37/2368 R Inferior Frontal 
Gyrus 45 40 9 30 51 21 20 27 1 44 

34/2176 L Middle Cingulate 
Cortex 6 -9 -10 44 -2 5 32 -22 -24 52 

26/1664 R Postcentral Gyrus 7/5L 14 -51 75 23 -44 64 3 -60 84 

24/1536 L Middle Temporal 
Gyrus 39 -49 -55 6 -38 -48 -1 -58 -60 12 

24/1536 R Thalamus  18 -27 16 27 -20 8 11 -32 28 

22/1408 R Superior Frontal 
Gyrus 6 7 22 53 11 33 44 3 13 64 

21/1344 R Postcentral Gyrus 2/3a 29 -30 36 39 -24 28 19 -36 44 

18/1152 L Cerebellum  2 -35 -9 11 -28 -13 -6 -44 -1 

18/1152 L Thalamus  -17 -20 18 -10 -16 12 -26 -24 28 

18/1152 R Precentral Gyrus 6 57 -2 47 63 9 36 55 -12 52 

16/1024 L Paracentral 
Lobule  -1 -26 77 7 -20 72 -6 -28 84 

14/896 L Cerebellum  -20 -79 -39 -14 -76 -45 -30 -84 -29 

13/832 R Middle Occipital 
Gyrus 19 40 -81 2 43 -76 -5 39 -84 8 

13/832 R Superior 
Temporal Gyrus 41/OP 1 40 -31 16 47 -28 12 35 -36 20 

12/768 L Postcentral Gyrus 1/5 -32 -42 71 -26 -36 68 -38 -48 76 

12/768 L Precentral Gyrus 6 -29 -23 64 -22 -20 60 -34 -28 68 

12/768 R Precentral Gyrus 6 39 -6 29 43 -4 24 31 -12 32 

11/704 L Lingual Gyrus 18 -8 -80 -9 -6 -76 -13 -10 -88 -1 

11/704 L Paracentral 
Lobule 4a -10 -42 70 -6 -36 64 -14 -48 76 

11/704 R Inferior Frontal 
Gyrus 45 44 27 23 51 29 20 39 25 28 
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Table S3 
 

 Region Centre of Mass Minimum Maximum 

Voxels/mm​ 3 Anatomical BA RL AP IS RL AP IS RL AP IS 

125/8000 R Superior Temporal 
Gyrus 22/TE 3 61 -27 3 71 -8 -9 47 -48 20 

51/3264 L Superior Temporal 
Gyrus 22/TE 3 -57 -23 7 -46 -8 -1 -66 -36 20 

20/1280 L Middle Cingulate 
Gyrus 6 -9 -7 42 -6 5 36 -14 -24 52 

18/1152 R Calcarine Gyrus 17 1 -87 9 7 -76 4 -2 -96 16 

17/1088 L Postcentral Gyrus 40/3b -41 -26 40 -34 -20 36 -46 -32 48 

15/960 L Inferior Frontal 
Gyrus/Insula 44/13 -34 21 8 -26 29 4 -42 13 12 

14/896 R Cuneus 18 11 -87 23 19 -80 16 3 -96 28 

14/896 R Paracentral Lobule 3a 10 -41 54 15 -36 48 7 -44 60 

14/896 R Inferior Frontal 
Gyrus 44 44 9 29 51 17 24 35 5 32 
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Table S4 
 

High Predictability - Target-to-Seed ('Feedback') 

 Region Centre of Mass Minimum Maximum 

Voxels/mm​ 3 Anatomical BA RL AP IS RL AP IS RL AP IS 

31/1984 L Inferior Parietal Lobule 40 -58 -47 39 -50 -40 32 -62 -52 52 

25/1600 R Postcentral Gyrus 42372 45 -28 60 51 -24 52 39 -36 68 

21/1344 R 

Superior 
Temporal/Postcentral 
Gyrus 43 62 -25 14 71 -8 12 55 -32 28 

19/1216 R Superior Temporal Gyrus 
41/TE 

1.0 51 -18 9 59 -12 4 43 -24 16 

15/960 L Postcentral Gyrus 42372 -39 -28 67 -34 -24 60 -42 -36 72 

14/896 L 
Superior Temporal 
Gyrus/SMG 41 -42 -31 14 -38 -24 12 -50 -40 20 

13/832 R Middle Frontal Gyrus 8 35 22 45 43 29 40 31 17 52 

11/704 L Inferior Frontal Gyrus 46 -48 46 1 -46 49 -5 -54 45 8 

8/512 R 
Inferior/Middle Frontal 
Gyrus 9/45 54 22 28 59 25 24 51 21 36 

7/448 L Inferior Parietal Lobule 6/1 -27 -71 41 -26 -68 36 -30 -76 44 

7/448 R Calcarine Gyrus/Cuneus 17/30 9 -69 11 15 -68 8 3 -72 12 

7/448 R Superior Temporal Gyrus 41 50 -32 13 51 -32 12 47 -36 20 

7/448 L Superior Temporal Gyrus 
41/TE 

1.0 -49 -20 6 -46 -16 4 -54 -24 8 

7/448 L 
Superior/Middle Temporal 
Gyrus 22/TE 3 -58 -17 2 -58 -12 -5 -58 -24 8 

7/448 R Postcentral Gyrus 3 55 -14 54 59 -12 52 51 -16 60 

7/448 L 
Medial Frontal 
Gyrus/SMA 6 -5 -4 58 -2 1 52 -6 -12 60 

6/384 R Calcarine/Lingual Gyrus 17 4 -91 -5 11 -88 -9 -2 -92 -5 

6/384 R Lingual Gyrus 19 14 -63 -6 15 -60 -9 11 -68 -5 

6/384 R Middle Temporal Gyrus 22 60 -39 5 63 -36 -1 59 -40 8 

6/384 R Precentral Gyrus 6 32 -13 72 35 -8 72 27 -16 72 

6/384 L 
Medial Frontal 
Gyrus/SMA 6 0 0 49 3 1 48 -6 -4 52 

6/384 R Precentral Gyrus 6 54 2 48 55 9 44 51 1 52 

6/384 R Inferior Frontal Gyrus 47 58 30 -3 59 33 -5 55 25 -1 

248/15872             

Low Predictability - Target-to-Seed ('Feedback') 

 Region Centre of Mass Minimum Maximum 

Voxels/mm
3 Anatomical BA RL AP IS RL AP IS RL AP IS 

16/1024 R Superior Medial Gyrus 10 3 56 13 11 61 8 -6 49 16 

15/960 L Inferior Parietal Lobule 39 -51 -61 39 -46 -56 32 -58 -68 44 

9/576 L Precuneus 23 1 -53 14 3 -48 8 -2 -60 16 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101113doi: bioRxiv preprint 

https://doi.org/10.1101/101113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
Speech reorganization       35 

7/448 R Precuneus  14 -57 20 23 -52 20 11 -60 24 

6/384 R Precuneus 7 1 -67 39 3 -64 36 -2 -68 44 

6/384 R Precuneus 7 1 -56 35 3 -56 28 -2 -60 40 

59/3776             

High Predictability - Seed-to-Target ('Feedforward') 

 Region Centre of Mass Minimum Maximum 

Voxels/mm
3 Anatomical BA RL AP IS RL AP IS RL AP IS 

26/1664 R Lingual Gyrus 18 12 -73 2 23 -60 -13 7 -80 16 

15/960 R Middle Frontal Gyrus 8 39 30 44 47 33 40 31 29 48 

14/896 L Lingual Gyrus 18 -7 -72 -1 3 -68 -5 -10 -76 4 

14/896 R Superior Temporal Gyrus 42/TE 3 63 -19 12 71 -16 8 55 -24 16 

12/768 R Cerebellum 19 39 -72 -15 43 -64 -17 35 -76 -13 

11/704 R Precentral Gyrus 42525 38 -26 70 43 -24 64 35 -28 76 

9/576 L Superior Temporal Gyrus 13 -54 -40 20 -46 -40 16 -62 -40 28 

8/512 L Superior Medial Gyrus 32 -6 22 37 -2 25 32 -10 21 44 

8/512 R Anterior Cingulate 32 10 38 20 15 41 20 7 33 24 

7/448 L Fusiform Gyrus 5/2 -42 -55 -16 -38 -52 -17 -46 -60 -13 

6/384 R Superior Medial Gyrus 9 8 54 34 11 57 32 7 49 36 

130/8320             

Low Predictability - Seed-to-Target ('Feedforward') 

 Region Centre of Mass Minimum Maximum 

Voxels/mm
3 Anatomical BA RL AP IS RL AP IS RL AP IS 

32/2048 R Inferior Frontal Gyrus 44 57 12 22 63 17 4 47 5 36 

11/704 R Inferior Parietal Lobule 40 40 -36 48 47 -32 44 35 -40 52 

10/640 R 
Insula/Superior Temporal 
Gyrus 

13/TE 
1.1 42 -19 5 43 -16 -1 39 -24 8 

9/576 L Cuneus 
19/SPL 

(7P) 1 -77 33 7 -72 32 -6 -80 36 

8/512 R 
Supramarginal 
Gyrus/Angular Gyrus 40 57 -50 28 63 -48 28 55 -56 32 

8/512 R Inferior Parietal Lobule 40 59 -36 32 67 -32 32 55 -40 36 

8/512 R 
Precentral/Middle Frontal 
Gyrus 6 38 -6 56 39 1 52 35 -12 64 

8/512 L Precentral Gyrus 6 -49 -1 51 -46 1 48 -54 -8 56 

7/448 R Inferior Parietal Lobule 40 59 -26 35 63 -24 32 55 -28 40 

6/384 R 
Middle/Superior Frontal 
Gyrus 5/1 29 19 57 31 21 56 27 17 60 

107/6848             
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Table S5 
 

    Region Centre of 
Mass Minimum Maximum 

Voxels/mm​ 3 Predictability Time P/V Anatomical BA RL AP IS RL AP IS RL AP IS 

404/25856 High 0-1 P R Superior Temporal 
Gyrus 

22/TE 
3 59 -23 5 75 5 -17 39 -52 24 

348/22272 High 0-1 P L Superior Temporal 
Gyrus 

22/TE 
3 -55 -25 10 -34 9 -17 -70 -68 32 

184/11776 High 0-1 P L Cerebellum  -8 -46 -8 15 -24 -25 -38 -72 12 

49/3136 High 0-1 P L Caudate  -14 -16 19 -6 9 16 -22 -32 24 
48/3072 High 0-1 P L Calcarine Gyrus 17/18 -6 -100 2 7 -92 -9 -18 -108 12 
25/1600 High 0-1 P L Cerebellum  -2 -41 -44 15 -36 -49 -14 -48 -41 
22/1408 High 0-1 P L Precentral Gyrus 6 -39 -13 65 -30 -4 60 -46 -24 72 
20/1280 High 0-1 P L Precentral Gyrus 4/6 -17 -25 70 -10 -20 64 -26 -28 80 

175/11200 High 0-1 V L Middle Occipital 
Gyrus 19 -17 -73 24 7 -52 4 -38 -100 44 

102/6528 High 0-1 V L Precentral Gyrus 6/44 -44 2 35 -34 17 20 -58 -20 56 

48/3072 High 0-1 V R Middle Temporal 
Gyrus 19 36 -77 26 47 -64 12 27 -92 40 

34/2176 High 0-1 V L Fusiform Gyrus 17/19 -30 -59 4 -26 -48 -5 -34 -68 16 
33/2112 High 0-1 V R Precuneus 7 11 -65 31 19 -52 20 3 -76 48 
30/1920 High 0-1 V R Caudate/Thalamus  9 -4 6 15 17 -1 3 -20 12 

22/1408 High 0-1 V R Precentral/Postcentral 
Gyrus 3/4p 41 -16 37 47 -8 32 35 -24 44 

22/1408 High 0-1 V R Superior Parietal 
Lobule 7 29 -70 48 35 -64 44 23 -84 56 

20/1280 High 0-1 V L Middle Temporal 
Gyrus 21 -64 -48 -7 -58 -44 -13 -70 -52 -1 

20/1280 High 0-1 V R Precentral Gyrus 6 55 -3 28 67 5 24 47 -8 36 
47/3008 Low 0-1 P R Cerebellum  2 -38 0 11 -28 -9 -6 -52 12 
38/2432 Low 0-1 P R Postcentral Gyrus 3b/6 53 -6 29 63 1 20 43 -20 36 
28/1792 Low 0-1 P L Postcentral Gyrus 3b -51 -12 29 -42 -4 20 -62 -16 40 

25/1600 Low 0-1 P L Superior Medial 
Gyrus 10 -5 51 7 7 61 -1 -14 41 16 

24/1536 Low 0-1 P L Precentral Gyrus 6 -51 2 44 -42 9 40 -58 -4 48 

20/1280 Low 0-1 P R Inferior Frontal 
Gyrus 9/44 63 11 22 71 17 16 59 5 28 

101/6464 Low 0-1 V R Middle Frontal Gyrus 10 35 53 4 55 65 -13 23 41 20 
90/5760 Low 0-1 V L Middle Frontal Gyrus 10 -27 61 5 -14 73 -9 -42 49 20 
58/3712 Low 0-1 V L Precuneus 7 -4 -66 56 7 -56 44 -14 -80 68 

42/2688 Low 0-1 V R Superior Frontal 
Gyrus 8 13 47 46 31 57 32 3 37 60 

25/1600 Low 0-1 V R Superior Parietal 
Lobule 7 35 -55 66 43 -40 60 27 -64 76 
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24/1536 Low 0-1 V L Paracentral Lobule 3/4a -4 -37 74 7 -32 68 -14 -44 84 
22/1408 Low 0-1 V R Lingual Gyrus 18 12 -70 -9 19 -60 -17 7 -76 -5 
22/1408 Low 0-1 V R Cingulate Gyrus 32 1 25 30 7 37 24 -6 13 36 

20/1280 Low 0-1 V R Superior Parietal 
Lobule 7 22 -66 51 27 -60 40 15 -72 60 

20/1280 Low 0-1 V R Superior Frontal 
Gyrus/SMA 6 2 7 68 7 17 60 -10 1 80 

1511/96704 High 4.5-6 P L Middle Occipital 
Gyrus 17/19 -2 -74 5 59 -32 -29 -70 -104 48 

378/24192 High 4.5-6 V L Middle/Superior 
Temporal Gyrus 22/TE3 -57 -19 10 -34 17 -25 -70 -60 52 

279/17856 High 4.5-6 V R Superior Temporal 
Gyrus 21/TE3 59 -17 5 71 9 -13 39 -48 28 

119/7616 High 4.5-6 V R Medial Frontal 
Gyrus/SMA 6 1 10 59 15 45 44 -14 -24 72 

113/7232 High 4.5-6 V L Inferior Frontal 
Gyrus 45/47 -53 23 20 -38 41 -1 -62 9 40 

52/3328 High 4.5-6 V R Inferior Frontal 
Gyrus 9/45 62 17 20 67 33 12 55 5 40 

32/2048 High 4.5-6 V R Inferior Frontal 
Gyrus 45 48 38 -3 59 45 -13 43 29 4 

26/1664 High 4.5-6 V L Cingulate Gyrus 32 0 8 38 7 21 28 -10 -4 44 
25/1600 High 4.5-6 V R Cerebellum  3 -40 -37 15 -32 -41 -14 -52 -33 
22/1408 High 4.5-6 V L Postcentral Gyrus 42524 -48 -22 55 -38 -16 52 -62 -28 64 

147/9408 Low 4.5-6 P R Middle Temporal 
Gyrus 

21/TE 
3 63 -24 -1 75 1 -17 43 -48 12 

136/8704 Low 4.5-6 P L Superior Temporal 
Gyrus 

21/TE 
3 -58 -11 -3 -42 13 -25 -74 -36 16 

66/4224 Low 4.5-6 P R Middle Frontal Gyrus 9 57 12 29 67 25 12 43 -4 40 

50/3200 Low 4.5-6 P R Inferior Parietal 
Lobule 40 51 -54 45 59 -44 32 39 -64 60 

47/3008 Low 4.5-6 P L Thalamus  -1 -13 16 15 1 4 -18 -24 28 
40/2560 Low 4.5-6 P R Precuneus 7 8 -68 47 15 -56 28 -2 -80 60 

32/2048 Low 4.5-6 P L Inferior Frontal 
Gyrus 45 -56 32 1 -50 49 -5 -62 17 8 

31/1984 Low 4.5-6 P L Middle/Inferior 
Frontal Gyrus 9/45 -51 20 25 -42 29 12 -62 13 36 

20/1280 Low 4.5-6 P R Inferior Temporal 
Gyrus 37 57 -49 -15 67 -36 -21 51 -60 -9 

33/2112 Low 4.5-6 V R Superior Temporal 
Gyrus 

41/TE 
1.1 44 -28 13 55 -16 4 35 -40 20 

29/1856 Low 4.5-6 V R Anterior Cingulate 24 1 32 15 11 49 12 -10 21 24 

26/1664 Low 4.5-6 V R Superior Temporal 
Gyrus 22 47 -11 -4 55 5 -13 39 -20 4 

24/1536 Low 4.5-6 V L Cerebellum  -2 -47 -1 7 -40 -5 -10 -52 8 

22/1408 Low 4.5-6 V R Right Thalamus  4 -22 4 7 -4 -5 -6 -36 12 
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Table S6 
 

 Region Centre of Mass Minimum Maximum 
Voxels/mm​ 3 Anatomical BA RL AP IS RL AP IS RL AP IS 

441/28224 L Superior Temporal Gyrus 22/TE 
3 -54 -13 6 -30 33 -25 -70 -52 36 

304/19456 R Superior Temporal Gyrus 22/TE 
3 59 -16 1 71 9 -21 35 -40 24 

88/5632 R Middle Occipital Gyrus 19 37 -75 12 55 -60 -5 19 -92 36 
76/4864 L Middle Occipital Gyrus 19 -42 -74 8 -34 -60 -5 -54 -92 20 
72/4608 R Inferior Parietal Lobule 40 45 -51 54 59 -40 36 27 -72 64 
64/4096 R Inferior/Middle Frontal Gyrus 45/46 47 42 2 55 49 -17 35 33 20 

52/3328 R Inferior Frontal 
Gyrus/Precentral Gyrus 44/9 49 4 30 59 29 24 43 -12 40 

45/2880 L Inferior Occipital Gyrus 17/18 -22 -85 -8 -10 -68 -13 -42 -100 -1 
43/2752 R Insula 13 30 -36 27 43 -16 20 19 -52 40 
28/1792 R Fusiform Gyrus 19 31 -61 -13 43 -44 -21 23 -72 -9 
27/1728 R Middle Temporal Gyrus 21 65 -49 -3 75 -36 -13 55 -60 -1 
25/1600 R Calcarine Gyrus 17 19 -98 -2 31 -92 -9 11 -104 8 
24/1536 L Middle Occipital Gyrus 18 -24 -88 17 -18 -84 12 -34 -96 28 

23/1472 R Superior/Middle Temporal 
Gyrus 39 43 -51 16 51 -36 12 39 -64 24 

22/1408 L Parahippocampal/Fusiform 
Gyrus 19 -26 -58 -8 -22 -48 -17 -34 -68 -1 

20/1280 L Postcentral Gyrus 3a -26 -32 38 -22 -28 28 -30 -40 44 
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Figure Legends  
Figure S1 ​fmri study two word predictability ANOVAs. Turnpoints analysis as described in the text               

was done on each participant to find independent component networks corresponding to high- and              

low-predictability words in a television game show. A three-way repeated measures ANOVA was done              

on the resulting maps separately when brain responses were rising (‘Peaks’; red) and falling (‘Valleys’;               

blue). Displayed are second order contrasts in predictability, at fixed levels of time. The white outline                

on the images in the ‘0.0-1.5’ column is the interaction of time and predictability.  
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Figure S1 
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