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Abstract:  18 

Genotype-phenotype relationships are determinants of human diseases. Often, we know little about why so many genes are involved 19 

in complex common diseases. We hypothesized that this multigene effect arises from the relationship between genes and physiological 20 

dynamics. We tested this hypothesis for arrhythmias as physiological dynamics define this disease. We integrated graph theory 21 

analysis of genomic and protein-protein interaction networks with dynamical models of ion channel function to identify the 22 

physiological dynamics of genome wide variation for five different arrhythmias. Regulatory networks for the cardiac conduction 23 

system and arrhythmias were constructed from GWAS and known disease genes. Electrophysiological models of myocyte action 24 

potentials were used to conduct extensive parameter variations to identify robust and fragile kinetic parameters that were then, using 25 

regulatory networks, associated with genomic determinants.  We find that genome-wide determinants of arrhythmias that represent 26 

many cellular processes are selectively associated with fragile physiological dynamics of ion channel kinetics. This association 27 

predicts disease propensity. Deep RNA sequencing from human left ventricular tissue of arrhythmia and control subjects confirmed 28 

the predictive relationship. Taken together these studies show that the varied multigene effects of arrhythmias arises because of 29 

associations with fragile kinetic parameters of cardiac electrophysiology. 30 

 31 

 32 

 33 

Significance Statement:  34 

Our understanding of the genetics of common diseases has advanced exponentially over the past decade. We now know that 35 

differences and variation in multiple genes contribute to disease susceptibility with significant heterogeneity in the phenotype. 36 

However, how genetic variation contributes to disease phenotypes remains unknown.  We hypothesized that the relationships between 37 

physiological dynamics and genetic architecture is a fundamental determinant of disease susceptibility and genetic heterogeneity. To 38 

test our hypothesis, we integrated mathematical models of cardiac electrophysiology with genetic network models of cardiac 39 

arrhythmias. We found that disease related genome variants were selectively associated with fragile kinetic parameters that predict 40 

disease propensity and identified several novel cellular processes associated with arrhythmogenesis.  41 

 42 
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INTRODUCTION 43 

The genetic architecture of many common diseases has been extensively studied over the past decade providing 44 

valuable insight into the etiology of disease (1, 2). Differences and variation in genetic architecture contribute to 45 

disease susceptibility (1-4). Despite tremendous advances in the genetic basis of these diseases our 46 

understanding of how and why genomic changes manifest as disease phenotype remains incomplete and our 47 

ability to predict disease risk is often inadequate. This is especially true for many complex progressive diseases 48 

including autoimmune disorders, neuropsychiatric diseases, diabetes and cardiovascular diseases.  The 49 

relationships between genotype and phenotype are complex because they are based on genetic heterogeneity, 50 

the environment and the dynamics of physiology resulting in nonlinear interactions between genes and gene 51 

products (1, 2, 5-7).  We sought to identify a simple principle as to why so many varied genomic determinants 52 

are involved in disease phenotype. We hypothesized that the involvement could be due to a selective association 53 

with fragile features of the physiological dynamics.  To test this hypothesis we used a model integration 54 

approach combining network models with multi-compartment ODE models. 55 

 Arrhythmias are complex diseases that most often arise from mutations in genes that encode ion 56 

channels ultimately leading to altered physiological dynamics. Nevertheless, recent evidence suggests that 57 

drivers of conduction abnormalities and arrhythmias can extend well beyond mutated channel proteins. For 58 

example, Wnt11 has been associated with the ECG PR interval in GWAS (8) and in a separate study was shown 59 

to pattern a myocardial electrical gradient through regulation of the L-type Ca
2+

 channel (9). Similarly, the 60 

transcription factor PITX2, has been associated with atrial fibrillation in GWAS (10) and was subsequently 61 

shown to regulate ion transport and impair calcium handling (11, 12). A multi-model approach that integrates 62 

physiological dynamics, cell regulatory networks and genetic architecture could provide insight as to why such 63 

varied genes are involved. Using canonical cell biological knowledge it is possible to schematically describe the 64 

relationships between cell regulatory networks to cardiac myocyte action potentials and consequently to 65 

conduction abnormalities. To mechanistically connect genomic variations to physiological dynamics we need to 66 

integrate two types of computational models: (1) network models that delineate the topology of regulation in 67 

terms of gene products (proteins) and their interactions and (2) dynamical models that describe the time course 68 

of physiological responses (i.e. ion channel function) in terms of protein function. Both types of models have 69 

been used to study arrhythmias.  Previous network analysis studies have shown considerable overlap in the 70 

human interactome between products of genes that can cause Long QT syndrome when mutated and targets of 71 

drugs that can cause adverse cardiac events (13, 14). This analysis generated the prediction, subsequently 72 

validated by clinical observations, that loperamide could cause arrhythmias (15). A different computational 73 

approach, combining statistical regression analysis with dynamical models of cardiac electrophysiology, at the 74 
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cellular and organ levels, also provided deep insight into the quantitative dynamic relationship between the 75 

cardiomyocyte action potential and the heart’s electrical activity (16). Systematic parameter sensitivity analysis 76 

of cardiomyocyte models generate precise predictions of how alterations in any cardiac ionic current may either 77 

exacerbate or mitigate pathological alterations to the electrocardiogram (16-20). This approach can 78 

quantitatively classify electrophysiological parameters as either fragile, meaning that small changes in 79 

parameters can cause large physiological alterations, or robust, meaning that cells or tissues can tolerate large 80 

changes to the parameter values without altering physiological responses.  81 

 To test our hypothesis that disease related genes might associate with the fragile features of 82 

physiological dynamics we integrated the network and dynamical models. We found that disease related 83 

genome variants were selectively associated with fragile kinetic parameters. Model integration also identified 84 

several cellular processes that could be associated with arrhythmogenesis. Using deep RNA sequencing data 85 

from human cardiac tissue from patients with arrhythmias we verified many key predictions from our integrated 86 

model including an association of arrhythmias with fragile kinetic parameters and the involvement of pathways 87 

such as propanoate metabolism. We combined multiscale data with unsupervised learning to identify genomic 88 

determinants of disease that correlate with fragile genes allowing us to demonstrate why genes belonging to 89 

many cellular processes are associated with increased disease propensity.  90 

 91 

RESULTS 92 

We studied the systems biology of arrhythmias through integration of graph theory and dynamical modeling, 93 

combined with transcriptomic analysis of human heart tissue, to better understand how genomic architecture 94 

can contribute to cardiac electrical phenotypes. Figure 1 shows a schematic of the computational and 95 

experimental methods used in this study. Initially, we compiled prior information from classical disease gene 96 

discovery and GWA studies to comprehensively catalog genomic determinants, including mutations, SNPs and 97 

other genomic variants, known to be associated with ECG characteristics and five types of arrhythmias. This 98 

database of genes was then used to build protein-protein interaction networks and identify potential novel 99 

disease mechanisms. Next, we used well known ordinary differential equation based models of the 100 

cardiomyocyte action potential to identify parameters (kinetic properties of gene products) that were either 101 

sensitive (fragile) or robust to modulation. Our approach surprisingly identified that fragile kinetic parameters 102 

are preferentially associated with disease related genomic determinants. The network analysis also generated the 103 

unexpected prediction that arrhythmia genes are closely associated with genes involved in previously unrelated 104 

cellular processes, including propanoate metabolism, the ubiquitin proteasomal degradation pathway, and 105 
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histone modification and chromatin remodeling. We then validated numerous predictions from our models 106 

using transcriptomic profiling of human left ventricular tissue from patients with arrhythmias.   107 

 108 

Networks from ECG and arrhythmia genomic determinants identify new biological associations  109 

We utilized published human studies to identify all known genes associated both with the ECG and five 110 

different arrhythmias: atrial fibrillation, QT-Opathies, Brugada, catecholaminergic polymorphic ventricular 111 

tachycardia (CPVT) and progressive cardiac conduction defect (PCCD) (Supplementary Fig. 1a-b). We 112 

identified relevant genes from classical disease gene discovery studies and mapped or reported genes from 113 

SNPs identified in genome wide association studies (GWAS). The full list of seed genes (153 for ECG and 109 114 

for arrhythmia networks) is provided in Supplementary Tables 1-2. Often the same gene/gene-products are 115 

involved in multiples phases of the ECG or different types of arrhythmias. These relationships are shown in 116 

Supplementary Figures 1c-e. Individual genes may contribute to multiple electrophysiological responses 117 

(pleiotropy) and multiple genes can affect individual phenotypes (epistasis) (21, 22). Examples include, 118 

SCN5A, the gene encoding for the cardiac voltage-gated sodium channel, associated with several ECG 119 

characteristics (PR interval, QRS duration and QT interval) and arrhythmias (atrial fibrillation, QT-opathies, 120 

Brugada syndrome and PCCD) (8, 21, 23-25), and cardiac transcription factors such as NKX2-5, SOX5, and 121 

TBX5. Many of the genes are known ion channels or channel associated membrane proteins, but other known 122 

functions include cardiovascular development and intracellular signaling. The overlap of individual ECG and 123 

arrhythmia network genes is shown as Venn diagrams in Supplementary Figure 2. 124 

Using genes associated with particular arrhythmias and ECG characteristics as seed nodes, we 125 

developed biological interaction networks by expanding around these nodes using protein-protein interactions 126 

(26, 27). Networks were constructed using direct protein interactions with seed genes and one intermediate node 127 

to connect the seed nodes. In the Supplementary Materials Section we describe the databases from which 128 

human protein interactions were imported and the methods used to expand ECG and arrhythmia network genes 129 

to 4190 and 4955 components, respectively. Representative networks for five separate arrhythmias and 130 

components of the ECG are shown in Supplementary Figure 3. 131 

Atrial fibrillation is the most common human cardiac arrhythmia with a rapidly increasing prevalence 132 

and incidence worldwide. The atrial fibrillation network is shown in Figure 2a with several highlighted clusters 133 

of densely connected nodes identified based on connectedness and biological function. For example, the cluster 134 

of red nodes (genes) in the top right corner of Figure 2 is enriched for genes involved in propanoate metabolism. 135 
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Functional gene enrichment of each arrhythmia network was used to identify biological processes potentially 136 

contributing to disease. Overrepresented gene ontology terms were determined from lists of genes that make up 137 

each network (28). Figure 2b shows a functional enrichment network of the most significant biological 138 

processes involved with atrial fibrillation. Nodes in the enrichment network indicate the most over-represented 139 

biological processes, with node size scaled using the betweeness centrality and color coded according to the 140 

biological process (metabolism, histone modification, etc.). Edges between nodes, with thickness scaled using 141 

edge betweeness, indicate that multiple genes contribute to each process. For example, genes within the atrial 142 

fibrillation network that are involved with Wnt signaling also contribute to heart development, chromatin 143 

modification and androgen signaling, among others. Supplementary Table 3 summarizes the most significant 144 

enrichment terms used to describe the set of network genes for all five arrhythmias. 145 

The biological functions of genes contributing to the arrhythmia networks can be classified into seven 146 

major groups; cellular signaling, transport (including ion channels), metabolism, protein turnover, gene 147 

expression, chromatin and histone modifications, and development. The similarities and differences between 148 

arrhythmia networks were identified and categorized for each of the seven major groupings (Supplementary 149 

Table 3). Significant overlap of enriched biological processes from genes involved with arrhythmias was found. 150 

This analysis revealed several cellular processes that have not been previously associated with 151 

arrhythmogenesis. For example, RNA splicing, ubiquitin degradation, membrane transport and metabolism, 152 

more specifically propanoate metabolism, were all enriched in multiple arrhythmia networks. The network 153 

models therefore generate potentially testable hypotheses by suggesting that these biological processes may be 154 

related to the pathophysiology of arrhythmias. Although the expanded networks most certainly contain some 155 

genes that do not contribute to disease it is less likely that these “non-disease” genes will be identified as highly 156 

enriched or components of highly connected dense clusters. Furthermore, we verified many of the biological 157 

processes identified in the networks using human RNA sequencing and functional knockdown experiments in 158 

zebrafish. 159 

The macro-scale topology of arrhythmia networks shows well-connected communities linked to more 160 

isolated communities. Each network is defined by a number of dense communities or hubs connected to other 161 

regions of the network via less well connected or sparse clusters. The Venn diagrams readily highlight the 162 

substantial genetic overlap and number of unique genes between the various ECG and arrhythmia components 163 

suggesting a large number of potential disease or modifier genes involved with the cardiac electrical response 164 

including the diversity of molecular responses leading to phenotypic heterogeneity. That is, there are many 165 

different routes to disease. To further characterize network structure we calculated topological parameters and 166 

various network statistics (Supplementary Figures 4-13). Both the ECG and arrhythmia networks are 167 
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approximately scale free with power law like degree distributions (Supplementary Figures 4 and 6). The 168 

degree distributions of these real world genetic interaction ECG and arrhythmia networks systematically and 169 

expectedly deviate from the degree distributions of random networks with the same number of nodes and edges 170 

(Supplementary Figures 5 and 7). To assess global (average) network metrics, we calculated the average 171 

clustering coefficient, density, heterogeneity, centralization and characteristic path length of each network 172 

(Supplementary Figures 8 and 9) (29). The network statistics confirmed the visual impression that these 173 

networks are highly connected, dense and heterogeneous with high degrees of centrality measures as compared 174 

to random networks. These findings are expected and suggest that arrhythmia networks comprise a large 175 

number of essential disease genes or modifier disease genes with potentially fragile interdependencies (30-32). 176 

 177 

Deep RNA sequencing of human subjects with arrhythmias confirms association of new cellular 178 

processes with disease 179 

 We used deep RNA sequencing of human subjects with arrhythmias to independently confirm the novel 180 

cellular processes associated with arrhythmias that were separately identified from enrichment analysis of the 181 

biological interaction networks. The ventricular myocardial transcriptional profiles of human subjects with 182 

arrhythmias were analyzed and compared with those of human subjects without disease (Figure 3). Genes with 183 

the largest difference in expression were statistically analyzed for significance and those with statistically 184 

significant differences (p ≤ 0.05) were included in gene enrichment analysis. The Fisher exact test with 185 

associated p-values was used for enrichment analysis in the program Enrichr (28). Many of the same biological 186 

processes identified from enrichment analysis of the biological network models were also identified using 187 

enrichment analysis of the genes from human RNA sequencing. Representative heat maps of differences in 188 

expression profiles involved with propanoate metabolism (Fig. 3a) and membrane transport, RNA splicing and 189 

cardiovascular development (Fig. 3b) highlight some of the changes in the respective cellular processes 190 

enriched in human subjects with arrhythmias. These findings confirm the identification of novel cellular 191 

processes associated with arrhythmias. In addition to identifying new cellular processes, previously known 192 

mechanisms of arrhythmogenesis were also confirmed. A comparison of overlapping gene enrichment terms 193 

identified using network analysis and human RNA sequencing is shown in Figures 3c-d highlighting many new 194 

and well known biological processes. In fact, the overlap of all human RNA seq enrichment terms with the 195 

atrial fibrillation network enrichment terms is nearly 70% and greater than 50% overlap is observed with all 196 

other arrhythmia networks (Fig. 3d).  197 

 198 
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From topology to dynamics: Mapping the kinetic parameters that contribute to the fragility of dynamics 199 

onto genes 200 

The topological network and enrichment analyses are useful in understanding at a global level the subcellular 201 

processes involved in arrhythmias, however, network models do not provide information about physiological 202 

dynamics. Hence we sought to integrate dynamical models of cardiac electrophysiology with the gene 203 

interaction network models.  This integrated computational analysis can help us ascertain the value of genomic 204 

changes in altering physiological responses. The dynamical models identify both fragile and robust genes 205 

potentially contributing to disease which may also be useful for predicting disease propensity. 206 

 Using well-established dynamical models, we conducted massive simulations of atrial, ventricular and 207 

SA node cardiac action potentials by systematically varying the parameters that define the conductances and 208 

rates of ion transport (16, 18, 33-36). Figures 4a-c show representative voltage, intracellular calcium and 209 

subspace calcium tracings from a single simulation of the ventricular action potential. Figures 4d-f shows many 210 

ventricular, atrial and SA node action potential tracings from massive simulations while varying the model 211 

parameters that define ionic conductances. Changing kinetic parameters differentially modulates the voltage 212 

tracings. Some kinetic parameters substantially influence the voltage tracings while others only modestly 213 

perturb voltage. These simulations allowed us to quantify how sensitive the different action potential models are 214 

to changes in the various ionic conductances which can then be linked to genes. 215 

Multivariate regression and failure score analysis were used to quantify the sensitivity of the action 216 

potential duration and calcium transients to changes in individual and pairwise parameters (Figures 4g-h and 217 

Supplementary Figures 14-15). To perform pairwise parameter analysis we simultaneously varied two 218 

parameters while recording the outputs at the end of the simulation. The magnitude of the regression 219 

coefficients from regression analysis are quantitative measures of the sensitivity of simulation outputs (e.g., 220 

voltage, calcium transients) to parameter perturbation (e.g., varying L-type Ca
2+

 conductance). We also 221 

calculated a catastrophic failure score that represents the relative likelihood of a failed action potential due to 222 

changes in kinetic parameters (ionic conductances). Figures 4g-h show the calculated failure scores for 223 

ventricular and SA node models while varying each parameter. The failure scores and regression coefficients 224 

(parameter sensitivities) represent quantitative dynamic measures of the cardiac electrophysiological response 225 

to perturbation. We defined fragile parameters as those that contribute to nearly 80% of the failures of action 226 

potential propagation upon perturbation. Thus the molecular kinetic parameters most sensitive to perturbation 227 

are more fragile at a whole cell and organ level as these parameters are more likely to contribute to action 228 

potential failure and arrhythmogenesis when perturbed even by a small amount.  229 
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Our analysis shows that the cardiac action potential is most sensitive to perturbations in the L-type Ca
2+

 230 

current (GCaL), Na
+
-Ca

2+
 exchange current (kNaCa, NCX), and rapid delayed rectifier K

+
 current (GKr). The Na

+
 231 

current, Na
+
-K

+
 pump current (INaK) and the cardiac ryanodine receptor channels (RyR) current are also 232 

sensitive parameters. The relative importance of each parameter varies according to the model used (SA node, 233 

ventricular or atrial AP); however, nearly 80% of the failure scores can be accounted for by sensitivity to 234 

perturbation in the aforementioned parameters. Multiparameter sensitivity analysis thus provides a quantitative 235 

measure of simultaneous electrophysiological perturbation that can be connected phenomenologically to genes 236 

comprising arrhythmia networks and used to help explain phenotypic variation.  237 

To determine the relationship between genomic characteristics to electrophysiological dynamics and 238 

phenotypes we mapped genes identified in the networks to the sensitive model parameters. Network genes were 239 

associated with the dynamical model parameters based on function of the gene and parameter. Supplementary 240 

Figure 16 lists some of the important associations between dynamical parameters and network genes. We refer 241 

to the nodes that map to the most sensitive parameters as fragile genes – those that, when altered, might result in 242 

a greater propensity for developing arrhythmias. An additional network was then constructed connecting 243 

dynamical model parameters to genes with the node size scaled to represent parameter fragility and genetic 244 

variation obtained from the NCBI databases and Variation Viewer (Fig. 4i). For example, the Na
+
-Ca

2+
 245 

exchange current, which directly maps to the network node SLC8A1, was shown to be a sensitive parameter 246 

from the action potential simulations. Similarly, KCNQ1 and KCNE1, known potassium voltage-gated channel 247 

genes required for repolarization, directly map to the slow delayed rectifier K
+
 current parameter, GKs.  248 

 249 

Human RNA sequencing supports the association of genes with fragile dynamics with arrhythmias 250 

Having computationally identified that specific genes involved with arrhythmias have fragile dynamics we 251 

sought to test if this computational prediction could be experimentally validated.  Fragile dynamics means 252 

sensitivity to perturbation and can arise both from variation in kinetic parameters and levels of the reactants. 253 

Assuming that mRNA levels could overall reflect protein levels we formulated the hypothesis that fragile genes 254 

would show greater changes in disease state or would result in greater changes in other protein levels as a 255 

compensatory change. This is in fact how we define sensitive parameters in our dynamical model. Therefore, 256 

using human RNA sequencing as our experimental approach and genomic analysis, we sought to determine if 257 

this association was valid and identify new mechanisms potentially contributing to disease. In these analyses we 258 

also sought to determine the characteristics and potential mechanisms underlying this association. 259 
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  We evaluated human ventricular tissue gene expression profiles of the genes computationally identified 260 

to have fragile dynamics in subjects with and without arrhythmias (Figure 4j). The methods used for RNA 261 

sequencing have been previously described (21) and in the Supplementary Materials section. Figure 4j shows 262 

the difference in expression of select fragile genes (as a heat map) between subjects with and without 263 

arrhythmias, highlighting the substantial changes when a perturbation (human subjects with arrhythmias) is 264 

introduced. The Na
+
-K

+
 ATPase gene has the highest failure score based on the computational ventricular 265 

model and also shows one of the highest changes in gene expression in human ventricular tissue in arrhythmia 266 

patients. There are considerable differences in expression levels of many genes with fragile dynamics. This data 267 

supports our hypothesis that genes with fragile dynamics are likely to show greater changes in their tissue level 268 

expression in the disease state. 269 

We also used the human RNA expression profiles to further support the association of fragile dynamics  270 

with arrhythmia genes by calculating in-vivo robustness and fragility of genes using previously described 271 

methods based on variational principles (37).  When using human RNA sequencing, fragility can be defined as 272 

large changes in gene expression variation in the presence of perturbation (arrhythmogenesis) and/or the change 273 

in variance of gene expression between subjects with and without arrhythmias. The variance of robust genes is 274 

predicted not to change a significant amount between control subjects and those with disease. If both control 275 

and disease gene expression levels are highly variable then the change in variance will be small. Similarly, if the 276 

variance of both control and disease gene expression levels is small then the change in variance will be small. In 277 

contrast, if the variance of control genes is small but the variance of disease genes is large (vice versa) then the 278 

change in variance will be large. That is, fragile genes may show large changes in variance upon perturbation 279 

suggesting sensitivity to changes in disease state. 280 

 Figure 4k shows the change in gene expression variance between human subjects with arrhythmias and 281 

subjects without arrhythmias for nearly 20,000 different genes. The 90
th

 percentile of change in variance values 282 

are between the two dashed blue lines outlined in the figure. That is most genes are characterized by relatively 283 

small changes in variance. These genes with low change in variance can be considered robust genes as 284 

previously described (37). The red dashed line denotes the median value of change in variance for all 20,000 285 

genes. The change in variance, of all genes with previously determined fragile dynamics by our computational 286 

methods, is greater than the 90
th

 percentile and most values are greater than the 95
th

 percentile suggesting these 287 

genes whose proteins have fragile dynamics are highly sensitive to changes in the disease state. The change in 288 

variance of three propanoate metabolism genes (HADHB, LDHA and LDHB) and four genes involved in 289 

calcium regulation and current (KCNIP2, ATP2A2, PLN and CASQ2) have values greater than the 99
th

 290 
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percentile. Therefore, human RNA sequencing of subjects with and without arrhythmias independently provides 291 

strong support for the computational finding associating fragile genes with disease. 292 

 293 

Unsupervised learning identifies correlation between genomic architecture and fragile genes in subjects 294 

with arrhythmias 295 

 We next tested whether different types of genomic variations selectively contribute to the fragile 296 

dynamics of disease genes and provide additional mechanistic insight contributing to the likelihood of 297 

developing disease. To identify the genomic characteristics contributing to the fragility of the products of 298 

arrhythmia genes, we utilized two unsupervised learning methods, Self-Organizing Maps (SOMs) and Principal 299 

Component Analysis (PCA), to identify and classify the genomic differences (SNPs, CNVs, CpG counts, etc.) 300 

between clusters of fragile and robust genes comprising arrhythmia networks (Figure 5 and supplementary 301 

Figure 17-18). SOMs are dynamical, adaptive, nondeterministic and nonlinear, and can help to identify 302 

emergent properties. We trained the SOMs using diverse genomic characteristics (SNPs, CNVs, CpG counts, 303 

etc.) of the arrhythmia networks (Supplementary Table 4). Figure 5a shows a heat map of genomic 304 

characteristics for individual genes used to train the SOMs. A cluster of genes (cluster of red signatures) in the 305 

lower half of the heat map identifies many of the fragile seed nodes. This cluster is the same set of fragile genes 306 

identified using dynamical computational analysis and RNA sequencing. Figure 5b shows the SOM distance 307 

matrix, a representation that allows for visualization of the high-dimensional spaces defined by the genes and 308 

their characteristics. The map is organized into clusters of similar color and topological space. Individual red 309 

lines connect neighboring nodes of the SOM and the colors in the regions containing the red lines indicate the 310 

distances between nodes with lighter colors representing shorter distances. Supplementary Figure 18 shows 311 

the PCA plot as projections of the data set to the subspace spanned by the two eigenvectors with greatest 312 

eigenvalues. Individual component planes and U-matrices identify clusters of genes and the PCA projections 313 

associate the features that contribute most to the gene clusters. Figure 5c shows the number of genes associated 314 

with each cluster with the fragile gene cluster outlined. Fragile genes were most dissimilar to the other genes 315 

(robust genes) and form their own cluster. The SOMs, therefore, efficiently separate clusters of fragile and 316 

robust genes based on their genomic characteristics (SNPs, CNVs, CpG counts, etc.).  Fragile gene clusters are 317 

most closely associated with increased frequency of SNPs, indels, simple repeats, DNAse hypersensitivity sites 318 

and novel sequence insertions. We then evaluated the biological function of the most fragile genes that clustered 319 

together in the SOMs. The most fragile genes from SOM cluster analysis were multiple genes involved with 320 
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calcium handling and excitation-contraction coupling (RYR2, CACNA1C, TRDN, CACNA2D1), the rapid 321 

delayed rectifier K+ current (KCNQ1, KCNH2) and Na
+
-Ca

2+
 exchange current (ANK2 and SLC8A1).  322 

Partial least squares (PLS) regression analysis was used to construct a model that relates genomic 323 

architecture and fragility to disease propensity. Disease propensity is the likelihood of developing an arrhythmia 324 

based on the failure of propagating an action potential. The PLS model is an independent model that 325 

incorporates quantitative information obtained from our dynamical analysis and genomic characteristics to 326 

predict disease propensity. Figure 5d shows the relationship between the fragile indices of seed node genes and 327 

their disease propensity with the best fit linear surface response shown as a plane (R
2 

= 0.96). The x and y axes, 328 

labeled as fragile index 1 and 2, are the two scores from the PLS regression analysis which together capture 329 

>85% of the variation contained in the 28 different genomic features. The z axis, labeled as disease propensity, 330 

represents the failure scores for individual genes derived from the dynamical ODE simulations (Figure 3g-h). 331 

Figure 5e shows the actual disease propensity score vs the fitted disease propensity score from our model (R
2
 = 332 

0.94) and confirms the three component PLSR model predicts the response well. 333 

The SOMs identified and confirm novel fragile genes and the genetic architecture associated with 334 

fragility. By looking at the biological function of fragile genes we gain insight to potential disease mechanisms. 335 

For example, specific genes involved in metabolism, cellular signaling (e.g., Wnt, Notch, Ca
2+

), histone and 336 

chromatin modification and regulation of RNA splicing also cluster with fragile channel genes. Several of our 337 

novel pathway findings were also supported by the literature. For example, multiple clinical trials suggest that 338 

histone deacetylase inhibitors and chromatin modulation influences cardiac electrical activity as seen by 339 

increased frequency of QT interval prolongation, T wave flattening and atrial fibrillation (38). HDAC inhibition 340 

also has been recently shown to reduce atrial fibrillation and remodeling in dogs (39).  341 

We were particularly interested in a specific set of novel fragile genes involved in propanoate and 342 

butanoate metabolism that were predicted to influence arrhythmogenesis. At least one study associated inborn 343 

errors of metabolism caused by deficiency of propionyl CoA carboxylase with electrophysiological changes 344 

including prolongation of the QT interval (40) and two cases report children with propionic acidemia leading to 345 

arrhythmias with fatal outcomes (41, 42). Propanoate metabolism genes possess unique biological functions, 346 

network metrics (avg. shortest path length) and also associate with the fragile genes using unsupervised learning 347 

methods. Perhaps most importantly, the expression levels of propanoate metabolism genes were significantly 348 

different in human subjects with arrhythmias compared to subjects without arrhythmias (Figure 3a). Their in-349 

vivo change in variance in human ventricular tissue also suggests that perturbation of their expression level may 350 

contribute to disease (Figure 4k).  These metabolic genes are crucial in amino acid, fatty acid and cholesterol 351 
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metabolism and many are expressed in the heart and muscle tissues (acetyl-CoA carboxylase), mitochondria 352 

(propionyl-CoA carboxylase) and brain tissue, thus contributing to our interest in evaluating their possible link 353 

to cardiac disease (43). In addition to the human RNA sequencing data that supports involvement of propanoate 354 

metabolism in arrhythmias, we sought to further experimentally test the importance for cardiovascular function 355 

using a series of zebrafish knockdown experiments. Morpholinos were used to knock down the propanoate 356 

metabolism genes SUCLG1/2, ACACA, PCCA and EHHADH and cardiac phenotypes in zebrafish were 357 

characterized using automated microscopic techniques. Supplementary Figure 19 shows a combined box and 358 

whiskers and scatter plots of zebrafish heart rates and cardiac output for wildtype and propanoate metabolism 359 

gene knockdowns. Decreased contractility and morphologic changes in zebrafish hearts compared to wild type 360 

were observed when individual propanoate metabolism genes were knocked down. An apparent decrease in 361 

contractility was appreciated when SUCLG1/2 and ACACA genes were knocked down while a more subtle yet 362 

noteworthy change was also observed with EHHADH. Furthermore, quantitative decreases in heart rate and 363 

cardiac output were measured when all gene products were altered. Representative images of wild type and 364 

ACACA knockdown zebrafish hearts are shown in supplementary figure 19. Qualitatively, these images show 365 

knockdowns with morphologically distinct hearts and increased pericardial edema indicative of impaired 366 

cardiac activity.  367 

 368 

Discussion 369 

It is now widely accepted that most proteins function as components of networks, and considering their activity 370 

in the context of the networks they belong to is useful for understanding how individual protein activities 371 

contribute to network based emergent physiological functions.  As a network node that is required for dynamic 372 

function, a protein within a network needs to be defined by at least two characteristics, its quantity and its 373 

ability to interact with its partners. These two characteristics are also the key parameters for the dynamical 374 

models: initial concentration of reactant and reaction rate. Thus it should be relatively simple to convert a 375 

directed sign-specified network into a system of coupled differential equations and thereby develop a systems 376 

level understanding of why some genetic constructs but not others are correlated with disease phenotype. 377 

However, our knowledge of protein concentrations and reaction rates is currently sparse, and it is not possible to 378 

build reliable dynamical models directly from large network representations. New data integration methods are 379 

needed to relate statistical and network representations to parameter values in dynamical models, and this study 380 

represents a first step in that direction.  381 
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 When starting the study we had thought that disease determinants would be associated with changes in 382 

robust kinetics outside the boundaries of homeostatic tolerance and that these determinants would primarily be 383 

coding variants. However, we found that specific types of both non-coding and coding variants in arrhythmia 384 

genes were associated with fragile kinetics and correlate with disease propensity. Importantly, our studies show 385 

that these multigene effects arise because of the association with fragile kinetic parameters of cardiac 386 

electrophysiology. These results were unexpected, based on what is known for common cancer mechanisms 387 

such as mutations in receptor tyrosine kinases and GTPases. We would have expected that robust kinetic 388 

parameters of gene products could have been associated with overrepresented regions of structural variation in 389 

the genome associated with arrhythmias. In fact, others have even suggested that because of evolutionary 390 

selection constraints, it is just as likely that most genes involved in common polymorphic rearrangements are 391 

tolerant of changes in certain types of architectural variation (44).  The power obtained by integration of 392 

multiple mathematical approaches and human RNA sequencing has enabled us to obtain a counterintuitive and 393 

deep understanding of genotype-phenotype relationships and improved our ability to predict disease risk. 394 

The data from multiple modeling studies, human RNA sequencing as well as the experiments in the 395 

zebrafish model together support the hypothesis that the genetic architecture of fragile electrophysiological 396 

responses and arrhythmias is responsible for increased disease propensity. The self-organizing maps efficiently 397 

classify many genes as fragile and demonstrate substantial enrichment for genomic regions associated with 398 

cardiac electrical parameters over the remainder of the genome. This is a new approach that provides a 399 

comprehensive framework for understanding how variations of a convergent phenotype may manifest from 400 

multigene interactions. Similar to other multigenic disorders that were initially characterized as being 401 

monogenic,  pathophysiologies of cardiac electrical activity are likely to be caused, modulated or suppressed by 402 

allelic heterogeneity and mutations at multiple loci that are associated with fragile kinetics (45).  Further 403 

mechanistic understanding of how the multiple genomic loci interact will always come from studies focused on 404 

physical and functional interactions or regulation of the proteins involved.  This study provides direct evidence 405 

in support of this assertion.  It should be noted that the partial least square based correlation approach between 406 

kinetic parameters and genomic loci has its limitation in providing comprehensive mechanistic understanding. 407 

Nevertheless defining such relationships provides the boundary conditions within which the mechanisms will 408 

operate. 409 

The network based approach for prediction of additional genomic loci and testing of the predictions in 410 

humans and the zebrafish models indicates that there are likely to be additional genomic loci that are related to 411 

the origins of arrhythmias and disease progression or that contribute to disease propensity in the context of other 412 

genomic variations or environmental effects. A collaborative study of Noonan syndrome allowed one of us to 413 
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use a pathway based approach to identify a gene that turned out to be disease related upon subsequent 414 

laboratory based analyses of patient samples (46). Perhaps further studies on the genomes of patients with 415 

arrhythmias could lead to the identification of additional genes involved in the pathophysiology of cardiac 416 

electrophysiology and provide a basis for developing new drugs to treatment of arrhythmias. We suspect that 417 

the novel relationships identified in this study between fragile kinetic parameters and architectural variation 418 

could be a common theme for many diseases with common complex traits. For example, autism, schizophrenia, 419 

epilepsy, Parkinson disease, Alzheimer disease, immunological disorders and emphysema, among others, have 420 

all been shown to result from structural variation in the genomes of at least some patients (44). The challenge 421 

will be to define kinetic parameters and identify models capable of recapitulating the relationship between 422 

fragility in dynamics and genomic determinants as one cause in multiple complex diseases. 423 

 424 

 425 

 426 

 427 

 428 

Acknowledgements: This research was supported by NIH grants P50-GM071558, R01-GM54508 and 429 

R01-HL109264. TK was also supported by a fellowship from the Sarnoff Cardiovascular Research Foundation. 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101162doi: bioRxiv preprint 

https://doi.org/10.1101/101162
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

Figure Legends 439 

Figure 1. Schematic of methods used in this study 440 

(a) Networks of ECG components and arrhythmias were constructed from all known genes identified in genome 441 

wide association studies (GWAS) and classical genetic approaches. Biological interaction networks identified 442 

potential novel disease mechanisms. (b) Ordinary differential equation models of the cardiac action potential 443 

were used to identify genes with sensitive changes to model parameters and subsequently mapped to genes 444 

within the arrhythmia networks. (c) Human RNA sequencing verified several key predictions from the 445 

arrhythmia network and ODE dynamic simulations. (d) Various unsupervised learning approaches were used to 446 

identify genomic association with disease genes that predict disease propensity. 447 

 448 

Figure 2. The atrial fibrillation network   449 

(a) Representative atrial fibrillation interaction network. The nodes in each network represent a single protein or 450 

gene and the edges connecting two nodes indicate an interaction. Clusters of highly interconnected nodes and 451 

regions in the network are shown in color. Several clusters are magnified to highlight specific connections and 452 

the associated genes within that cluster are labeled. Clusters of genes associated with propanoate metabolism 453 

(red node cluster in top right corner), protein ubiquitination (blue node cluster), apoptosis and protein 454 

processing (red node cluster in lower left corner) and cell-cell junctions and protein localization to the surface 455 

(green node cluster) are shown. 456 

(b) Functional gene enrichment network highlighting the most significant biological processes identified from 457 

the atrial fibrillation arrhythmia network genes. Node size is scaled using the betweeness centrality and color 458 

coded according to the associated biological process. Edges between nodes are scaled using edge betweeness 459 

and indicate a significant number of genes contributing to the biological processes of both connected nodes. For 460 

example, genes within the AF network involved with Wnt signaling are also involved with heart development, 461 

chromatin modification, androgen receptor signaling, etc.  462 

See supplementary table 3 for a summary of various molecular processes associated with functional gene 463 

enrichment of each arrhythmia network. The table is color coded by biological process to match the nodes and 464 

network in figure 2D1.  465 

 466 

Figure 3. Human RNA sequencing reveals expression level differences and confirms biological processes 467 

associated with arrhythmias.  468 

Representative heat maps of gene expression level differences between human subjects with arrhythmias and 469 

without arrhythmias. (a) Heat map of expression level differences in key propanoate metabolism genes. (b) 470 

Heat map of expression level differences in key biological processes determined to be important by gene 471 

enrichment analysis. (c) Table of highly ranked biological process terms using gene enrichment and gene 472 

ontology. The table compares the top biological processes determined using network models and human RNA 473 

sequencing data. The p-value is calculated using the Fisher exact test which is a proportion test that assumes a 474 

binomial distribution and independence for probability of any gene belonging to any set. Gene enrichment 475 

analysis and statistics were calculated using the Enrichr program previously described by Chen et al (28). (d) 476 

Overlap of gene enrichment terms comparing network models to human RNA sequencing. The statistically 477 

significant gene enrichment terms were identified from the genes in human RNA sequencing and separately for 478 

each individual arrhythmia or ECG network. The number of terms that overlap were calculated as a percentage. 479 

ABBREVIATIONS: ICM-ischemic cardiomyopathy; NICM-non ischemic cardiomyopathy; NF-control 480 

subjects without arrhythmias or cardiomyopathy. 481 

 482 

Figure 4. Parameter sensitivity and failure analysis reveals fragile electrophysiological parameters that 483 

underlie arrhythmogenesis are also associated with disease genes from human RNA sequencing.  484 

Representative (a) voltage, (b) intracellular calcium and (c) subspace calcium tracings from a single simulation 485 

of the ventricular cardiac action potential.  486 
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Many representative (d) ventricular, (e) atrial and (f) SA node action potential tracings from large scale 487 

simulations while varying the models parameters. Dynamical model parameter failure scores, shown as bar 488 

graphs, calculated from large scale simulations of the (g) ventricular and (h) atrial action potential. Failure 489 

scores represent the sensitivity of the cardiac electrophysiological response to individual parameter variation. 490 

Larger values of the failure score indicate a greater sensitivity to perturbation and an increased propensity for 491 

arrhythmogenesis. For bar graphs of regression coefficients from parameter sensitivity analysis of large scale 492 

simulations see supplementary figures 14 and 15. 493 

(i) Fragile parameter-gene network showing the connection of key fragile genes to model parameters. Red 494 

nodes indicate model parameters and blue nodes indicate linked genes. Node sizes are scaled to represent 495 

electrophysiological parameter fragility and genetic variation. A list of model parameters and several associated 496 

key fragile genes included in the gene networks listed with their corresponding failure scores is shown in 497 

supplementary figure 16. 498 

(j) Representative heat map of several fragile gene expression profiles of human subjects with arrhythmias. The 499 

change in gene expression between human subjects with arrhythmias compared to control (subjects without 500 

arrhythmias) are shown as red (positive) or blue (negative). 501 

(k) Plot of the change in variance between human subjects with arrhythmias and control subjects for 20,000 502 

different genes using human RNA sequencing data. The mean change in variance is shown as a dashed red line. 503 

The 90
th

 percentile of values are shown as dashed blue lines. All fragile genes lie above or below the dashed 504 

blue lines. 505 

 506 

Figure 5. Variants in genes associated with fragile responses leads to disease  507 

Unsupervised learning was used to understand the complex genetic architecture of arrhythmias including the 508 

sources of individual genetic variation that explain phenotypic variation. A density matrix was constructed 509 

using 28 different genomic features to describe known arrhythmia genes (seed nodes from AF, QTopathies, 510 

Brugada, CPVT and PCCD networks) and separately for each individual network gene. Genes were then 511 

clustered based on similar genomic features using the self organizing map (SOM) approach. (a) Heat map of 512 

normalized genomic feature values for all seed nodes based on the density matrix used to train the SOM. (b) 513 

Self-organizing map unified distance matrix (U-matrix) constructed using genomic features of seed genes. 514 

Individual red lines connect neighboring nodes (neural network) and the colors in the regions containing the red 515 

lines indicate the distances between nodes (lighter colors shorter distances). The U-matrix provides a simple 516 

way to visualize cluster boundaries on the map. Supplementary figure 17 shows the individual weight matrix 517 

SOMs for each of the features. (c) Self organizing topology map with the number of training data vectors 518 

associated with each cluster. The fragile gene cluster is outlined in red. See supplementary figure 18 for 519 

principal component plots of the genes and features. (d) Three dimensional scatter plot of fragile seed gene 520 

indices and their propensity for disease with best fit linear surface (R
2
 = 0.96). Partial least squares regression 521 

was used to construct a model using genomic features as an index of fragility and dynamical failure scores from 522 

action potential simulations as propensity for disease. Three PLS components were used to explain > 90% of the 523 

variation in genetic architecture. (e) Scatter plot of the observed disease propensity score and fitted disease 524 

propensity score from the 3 component PLS model (R
2
 = 0.94 for best linear fit). 525 

 526 

 527 

 528 

 529 

 530 

 531 
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Figure 1. 533 
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Figure 2. 554 
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Figure 3. 558 
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Figure 4. 568 
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