
1 

Genome Graphs 
 
Authors: Adam M. Novak* (UCSC Genomics Institute), Glenn Hickey* (UCSC Genomics 
Institute), Erik Garrison* (Wellcome Trust Sanger Institute), Sean Blum (UCSC Genomics 
Institute), Abram Connelly (Curoverse Inc.), Alexander Dilthey (Wellcome Trust Centre for 
Human Genetics, University of Oxford; NHGRI-NIH, Bethesda, MD, 20812), Jordan Eizenga 
(UCSC Genomics Institute), M. A. Saleh Elmohamed (Cornell University), Sally Guthrie  
(Curoverse Inc.; MIT), André Kahles (MSKCC), Stephen Keenan (European Bioinformatics 
Institute; GA4GH), Jerome Kelleher (Wellcome Trust Centre for Human Genetics, University of 
Oxford), Deniz Kural (Seven Bridges Genomics), Heng Li (Broad Institute), Michael F. Lin 
(DNAnexus, Inc., Mountain View, CA, 94040), Karen Miga (UCSC Genomics Institute), Nancy 
Ouyang (Curoverse Inc.; Harvard), Goran Rakocevic (Seven Bridges Genomics), Maciek 
Smuga-Otto (UCSC Genomics Institute), Alexander Wait Zaranek (Curoverse Inc.), Richard 
Durbin (Wellcome Trust Sanger Institute), Gil McVean (Li Ka Shing Centre for Health 
Information and Discovery,  University of Oxford; Wellcome Trust Centre for Human Genetics, 
University of Oxford), David Haussler (UCSC Genomics Institute/HHMI), Benedict Paten (UCSC 
Genomics Institute) 

Abstract 
There is increasing recognition that a single, monoploid reference genome is a poor universal 
reference structure for human genetics, because it represents only a tiny fraction of human 
variation. Adding this missing variation results in a structure that can be described as a 
mathematical graph: a genome graph. We demonstrate that, in comparison to the existing 
reference genome (GRCh38), genome graphs can substantially improve the fractions of reads 
that map uniquely and perfectly. Furthermore, we show that this fundamental simplification of 
read mapping transforms the variant calling problem from one in which many non-reference 
variants must be discovered de-novo to one in which the vast majority of variants are simply re-
identified within the graph. Using standard benchmarks as well as a novel reference-free 
evaluation, we show that a simplistic variant calling procedure on a genome graph can already 
call variants at least as well as, and in many cases better than, a state-of-the-art method on the 
linear human reference genome. We anticipate that graph-based references will supplant linear 
references in humans and in other applications where cohorts of sequenced individuals are 
available. 

Introduction 
 
The human reference genome, completed in draft form in 2001 and revised several times 
subsequently 1,2, is the single most important resource used in human genetics today. It acts as 
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a universal coordinate system and as such is the space in which annotations (genes, promoters, 
etc.) and genetic variants are described 3–5. It is also the target for read mapping, and, 
downstream of this mapping, is used for functional assays and variant calling pipelines 6,7.  
 
The contemporary definition of a reference genome is completely linear: a single monoploid 
assembly of the genome of a species. A key limitation of the linear human reference genome 
(the set of chromosome scaffolds) is that it is but a single genome. As such, it is an imperfect 
lens through which to study our population’s variation; there exist variants and annotations that 
can not be easily described with respect to the reference genome 8,9. Furthermore, as a target 
for mapping and interpretation it introduces a reference allele bias: a tendency to over-report 
alleles present in the reference genome and under-report other alleles 10,11. To mitigate these 
issues, recent versions of the reference genome assembly, such as GRCh38, have contained 
“alternate locus” sequences (“alts”): extra sequence representations of regions of the human 
genome considered to be highly polymorphic, anchored at their ends to locations within the 
“primary” (monoploid) reference assembly. Such a structure, which contains multiple partially-
overlapping sequence paths, can be considered a form of mathematical graph. The explicit use 
of graphs in biological sequence analysis has a long history, notably for sequence alignment 12, 
sequence assembly 13,14, assembly representation (as in FASTG and now GFA)15,16, substring 
indexes (which are often thought of in terms of suffix trees or similar data structures) 6,17, and 
transcript splice graphs 18. Recently the notion of graphs for representing genomes has been 
considered explicitly 12,19,20, and work has been done towards using these graphs as references 
21. The alternate loci currently used are just one way to extend the linear reference genome into 
a genome graph; many other ways are possible. In this work, conducted by a task team of the 
Global Alliance for Genomics and Health, we experiment with different methods for graph 
construction and testing the utility of different graphs for read mapping and variant calling. This 
work is the first study of its kind that we are aware of. We attempt to test the simple hypothesis 
that adding data into the reference structure—in effect, adding to the “reference prior” on 
variation extant in the population—will result in improved genome inferences.  

Results 
There are many possible types of genome graph; here we use sequence graphs. The nodes of 
a sequence graph are a set of DNA sequences. Each node is therefore a string of nucleotide 
characters, called positions, giving the sequence of the node’s forward strand. We call the 
terminal 5’ and 3’ ends of this strand the sides of the node. Each edge in the graph is an 
unordered pair of sides, representing a (potential) bond between two sides of a pair of nodes. 
This is a bidirected graph representation, because features of the edge indicate to which side of 
a node (sequence), 5’ or 3’, each end of the edge connects (Fig. 1)22. Other representations of 
genome graphs, such as the directed acyclic representation, can be useful; see Supplementary 
Section 1. A longer DNA sequence can be represented as a thread within a sequence graph, 
beginning in one oriented node, ending in the same node or another, and in between walking 
from node to node, with the rule that if the walk enters a node on one side it exits through the 
other side.  
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Figure 1: Example sequence graphs. Each node holds a string of bases. An edge can 
connect, at each of its ends, to a base on either the left (5’, blue) or the right (3’, yellow) side 
of the node. When reading through a thread to form a DNA sequence, a valid walk must leave 
each node via the opposite side from that through which it was entered; a node’s sequence is 
read as reverse-complemented if the node is entered on the 3’ side. One thread that this 
graph spells out (reading from the left side of the leftmost sequence to the right side of the 
rightmost sequence, along the nodes drawn in the middle) is the sequence 
“GATTACACATTAG”. Straying from this path, there are three variants available: a 
substitution of “G” for “T”, a deletion of a “C”, and an inversion of “ATTA”. If all of these 
detours are taken, the sequence produced is “GAGTAACTAATG”. All 8 possible threads from 
the leading G to the trailing G are allowed. 

 
To evaluate the utility of sequence graphs we invited teams to construct and evaluate graphs for 
five test regions of the human genome: the major histocompatibility complex (MHC), the killer 
cell immunoglobulin-like receptors (LRC_KIR) region, the spinal muscular atrophy (SMA) locus, 
and the BRCA1 and BRCA2 genes. MHC, SMA and LRC_KIR are all regions with alternate loci 
represented in GRCh38, while BRCA1 and BRCA2 represent more typical human genes. 
Regions ranged from 81 kilobases in size with a single gene (BRCA1) to 5.0 megabases in size 
with 172 genes (MHC). We considered graphs from five teams built with eight different pipelines 
(Table 2). For each region we provided a set of long, high quality input sequences from which to 
construct graphs (Table 1), but also encouraged the creation of graphs using additional data of 
the builder’s choice. Some graphs were built based upon existing variant calls, such as the 1000 
Genomes calls used to construct the 1KG graph 5. Graphs were also built with a wide variety of 
different algorithmic approaches (Table 2). Three control graphs were constructed for each 
region as points of comparison.  The Primary graphs contain just the single, linear reference 
path from GRCh38. The Unmerged graphs consist of just the set of provided sequences, each 
represented as a disjoint path. The Scrambled graphs (see Online Methods) are essentially 
identical topologically to the 1KG graphs, but with structures shifted to create false variants. 
These graphs acted as a negative control for the effects of adding nonsense variation to the 
graphs. 
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Region Chromosome Length in Primary Reference (bp) GRCh38 
Coordinates 

Number 
of Genes 

Alt Haplotypes 
in pilot data 

BRCA1 17 81,189 43044293-43125482 1 2 

BRCA2 13 84,989 32314860-32399849 1 2 

LRC_KIR 19 1,058,685 54025633-55084318 47 35 

MHC 6 4,970,458 28510119-33480577 172 8 

SMA 5 2,397,625  69216818-71614443 21 2 

 
Table 1: Pilot Regions. Selected test cases represent a sampling of both typical and 
challenging genomic regions. 
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Submissions using pilot data  

Submission Team Short Name Description of Algorithm 

Cactus UCSC Cactus Graph-based multiple sequence aligner 23. 

Camel UCSC Camel Creates graphs progressively by mapping using 
context schemes 24. 

De Bruijn Graph (k=63) MSKCC De Bruijn 63 Forms a De Bruijn graph of input data with 
k=63, then converts to a sequence graph. 

Population Reference Graph Oxford PRG Creates a graph from a K-mer-based HMM 
description of a region 19. 

Seven Bridges Seven Bridges 7BG Multiple genome alignment. 

Submissions using other data  

Submission Team Short Name Description of Algorithm 

1000 Genomes SNP Graph Sanger/UCSC 1KG Generated using vg construct on a VCF 
containing variants identified in the 1000 
genomes project. Platinum genome samples 
were not included, to avoid circularity in variant 
evaluation. 

1000 Genomes Haplotype 50 Sanger/UCSC 1KG Haplo 50 Adapted form of 1KG graph in which phasing 
information is used to reduce the number of 
unobserved recombinations represented by the 
graph. 50 is the number of bases two variants 
can be apart to be considered for this phasing. 

Scrambled 1000 Genomes Sanger/UCSC Scrambled Generated by shifting all the variants in the 
standard 1KG graph 200 bp downstream. 

Table 2: Genome Graph Submissions. Submissions were collected from a variety of 
institutions, and showcase a variety of graph construction methods. 
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Figure 2: Mapping reads to sequence graphs. Results for the 1000 Genomes Phase 3 low 
coverage samples against the BRCA2 and MHC graphs. The median per-sample portion of 
reads that are mapped perfectly (Y axis), and the median per-sample portion of reads that are 
mapped with a unique, obviously-best alignment (X axis) are both visible in the top row. The 
median per-sample substitution rate for a primary mapping, computed per aligned base, is 
shown in the second row. The median per sample frequency of indels in primary mapped 
reads, computed per read base, is given in the third row. The horizontal black line represents 
the result for the primary reference graph in the region. The ‡ symbol marks graphs 
generated using additional data beyond the provided reference and alternate sequences. The 
unmerged graphs are excluded because very few reads mapped uniquely to them. 

 
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 18, 2017. ; https://doi.org/10.1101/101378doi: bioRxiv preprint 

https://doi.org/10.1101/101378


7 

Graph Read Mapping 
 
To evaluate the utility of sequence graphs for read mapping we used the software program vg25, 
which contains a mapping algorithm capable of mapping to a fully general and potentially cyclic 
sequence graph (see Supplementary Section 2). We mapped all relevant reads (see Online 
Methods) from 1000 Genomes Phase 3 low coverage samples to each graph. We found that vg 
was able to map almost all such reads to the graphs (Supplementary Fig. 3).  
 
Relative to the primary graph, a graph containing more of the variants should produce an 
increase in the fraction of reads that map perfectly (without either substitutions or indels) to at 
least one place. For BRCA2 we see a relative increase of 7.3% in the median number of reads 
mapping perfectly to the 1KG graph vs. the Primary graph, but for MHC the increase is 20% 
(Fig. 2 top row, Supplementary Section 3, Supplementary Fig. 1). The increase for BRCA2 is 
close to what would be expected if the sequence graph contained the majority of polymorphisms 
for a typical region of the genome (Supplementary Section 3), while the larger increase for MHC 
is likely due to a greater degree of polymorphism 11. Similar, slightly smaller increases are seen 
for graphs built from other, smaller collections of variants. The scrambled graphs do not show 
significant gains, thus indicating that the effect is specific to graphs containing known variation. 
Furthermore, the overall substitution rate between reads and the experimental graphs was 
observed to decrease, relative to the rate between the reads and the Primary control graph. In 
the highest-performing graphs the decline is slightly below the bounds of previous read 
substitution error rate estimates of 0.7-1.6% 5,26–28 (Fig. 2 second row; see Supplementary 
Section 4 and Supplementary Fig. 4). The decrease in indel rate (Fig. 2 third row) moving from 
the Primary graph to the 1KG graph is comparable to estimates of the human indel 
polymorphism rate29 (Supplementary Section 5).  
 
The median fraction of reads that uniquely map increases for many of the graphs, relative to the 
primary and scrambled graphs. For example, in the Cactus graph, an increase of 0.26% is 
observed in BRCA2, and an increase of 3.7% is observed in the MHC. No such increase in 
unique mapping is seen for the comparably complex scrambled graph. Unique mapping is 
defined as having a good primary mapping and no reasonable secondary mapping (see 
Supplementary Section 3 and Supplementary Fig. 2). 
 
To test if the choice of sequence graph reference affected population level reference allele bias, 
we binned samples by 1KG super-population and looked at the difference in perfect mapping 
between the 1KG graph and the Primary graph for each subpopulation. We find a small but 
significant difference in perfect mapping increase between super-populations for most regions 
(Supplementary Section 6, Supplementary Fig. 5), but we also find relatively large differences in 
absolute rates of perfect mapping (Supplementary Fig. 6). These latter differences suggest that 
super-population may be confounded with sequencing batch, making drawing conclusions from 
this analysis quite difficult. 
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Graph Variant Calling 
We implemented a comprehensive, albeit basic, variant calling pipeline based on the Samtools 
pileup approach 30, modified to work with sequence graphs (see Online Methods for more 
details). In summary (Fig. 3), reads are mapped to the reference graph or base graph and a 
pileup is computed at each graph position and edge. An augmented graph is created by 
extending the base graph with additional sequences and edges representing possible variants 
determined from the pileups. This graph is then analyzed for ultrabubbles (acyclic, tip-free 
subgraphs connected to the rest of the graph by at most 2 nodes) which are treated as sites for 
genotyping31. Finally, thresholding heuristics are used to emit a set of genotypes with sufficient 
read support, one for each site, expressed in the coordinates of the GRCh38 primary reference 
path as embedded in the graph (see Online Methods). 
 

 
Figure 3: Variant Calling with Genome Graphs. (A) Read pileup on a base graph whose 
reference path is highlighted in green.  Only variant or non-reference base values are shown 
in the reads. (B) The augmented graph contains the base graph as well as new structures 
implied by the pileup.  This graph contains three top-level ultrabubbles, each forming a site.  
(C) Variant calls for each site. The first two (a heterozygous SNP and a homozygous 
insertion) are considered reference calls because they were present in the base graph, 
whereas the third (a heterozygous combination of a SNP and a deletion) is non-reference 
because it was novel to the augmented graph. 
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We compared the results from the graph variant calling pipeline with the Platinum Genomes 
benchmark data for samples NA12877 and  NA1287832 using vcfeval, which corrects for VCF 
representation ambiguity by comparing at the haplotype level 33 34. To provide additional 
controls,  Freebayes 35, Platypus 36 and Samtools 30 were run on BWA-MEM 6 alignments of the 
same input data to GRCh38 with their default options in order to produce positive control variant 
calls. Figure 4 (A) shows the precision and recall of each method aggregated across both 
samples and all regions.  Figure 4 (C) and (D) show precision-recall curves for SNPs and indels, 
respectively.  In comparison to the primary graph (the graph containing only the existing 
reference sequence, and therefore a control for the same variant calling algorithm applied to just 
the knowledge in the existing reference), the 1KG and Cactus graphs’ F1-scores 
(Supplementary Table 1) increased by 3.50% and 1.98%, respectively, increasing for both 
single nucleotide variants (3.13%, 1.95% respectively) and indels (6.02%, 4.40% respectively). 
Furthermore, 1KG graphs have the overall highest accuracy (F1 score) of all methods, although 
Samtools and Platypus perform best overall for SNPs and indels, respectively.  Supplementary 
Section 7 contains additional breakdowns of the F1-scores by region (Supplementary Figs. 7-8), 
sample (Supplementary Fig. 9), and type (Supplementary Fig. 10), as well as scores without 
clipping to confident regions (Supplementary Fig. 11). Generally (in 13 out of 18 cases), the 
1KG graph has higher accuracy than both the primary and scrambled controls. 
 
We define a reference call as a call asserting the presence of a position or edge in the base 
graph. The experimental graphs can dramatically reduce the number of non-reference calls, as 
compared to control. For example, the Cactus and 1KG graphs reduce non-reference calls by 
more than a factor of ten (Fig. 5 (A)) relative to the Primary reference graph. Furthermore, the 
precision of these reference calls is higher than the non-reference calls for the non-scrambled 
graphs (Fig. 5 (B)).  
 
Larger structural variants can be called using the same logic as point mutations, provided they 
are already in the graph; Figure 5 (C) displays the indel length distribution for the two top-
performing graphs and the primary control, as well as a breakdown of indel lengths for reference 
and non-reference calls. The reference call indel lengths in the experimental graphs are larger 
than the Primary and non-reference lengths and, in the case of Cactus, contain indels 
exceeding the read length. This adds up to a large number of additional called bases: for 
example, across the regions the Cactus graphs call 94 indel events larger than 50 base pairs 
totaling 10045 bases, none of which are found using the Primary graph with the same algorithm. 
 
To mitigate potential biases with the Platinum Genomes benchmark data as a truth set32, we 
conducted what we term a “reference-free” evaluation of vg’s variant calling accuracy, by 
comparing against de novo assemblies instead of assumed-true variant calls. In brief, short 
reads pooled from two haploid assemblies were used to call variants on each sequence graph. 
The accuracy of this reconstruction was evaluated using PacBio-based de novo assembly 
fragments, which by definition are free of reference artifacts and are derived from a different 
sequencing technology (see Online Methods, Supplementary Section 8 and Supplementary 
Figure 12). The results can be seen in Figure 4 (B) and Supplementary Figure 13. Several 
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experimental graphs have greater precision and recall than the Scrambled and Primary controls; 
combined across all regions except SMA (which was insufficiently covered by PacBio 
assemblies to be usefully analyzed), vg on the Cactus graph outperformed existing methods. 
The results appear to agree closely with those from the VCF-comparison-based evaluation, 
considering that the two techniques use different sources of truth and different evaluation 
metrics. 
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Figure 4: Variant Calling Evaluation. (A) Precision (portion of called variation in agreement 
with the truth set) and recall (portion of variation in the truth set in agreement with what was 
called) against the Platinum Genomes truth VCFs aggregated across NA12877 and NA12878 
for all regions, as measured by vcfeval. (B) Per-base precision and recall as measured by the 
reference-free evaluation in BRCA1, BRCA2, LRC_KIR, and MHC. The GRCh38 point shows 
a comparison of the existing primary reference haplotype sequence against the de novo 
assembly. (C) - (D) Breakdown of precision and recall from (A) into SNPs and indels, 
respectively.  Curves are shown by including accuracies at quality thresholds that fall within a 
radius of 0.1 around the maximum F1. Full results featuring F1-scores for all graphs are in 
Supplementary Section 7. 
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Figure 5: Reference versus Non-reference Calls. (A) Total number of reference and non-
reference calls across all samples and regions. (B) Precision of reference and non-reference 
calls. (C) Indel lengths of reference and non-reference calls, where insertions and deletions 
are represented by positive and negative lengths, respectively. In all cases we ignore calls of 
GRCh38 reference alleles, as these numbers are reported from GRCh38-based output VCFs.  
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Short Path Accuracy 
We sought to understand how complete and accurate the sequence graphs studied were in their 
representation of common variants. To approximate this, we measured the fraction of lightly 
error-pruned K-mer instances (here K=20, see Online Methods) in a large subset of 1KG 
sequencing reads that were present within each graph, calling this metric K-mer recall (see 
Online Methods). We observe (Fig. 6, Supplementary Section 9, and Supplementary Fig. 14) 
that graphs built from the largest libraries of variation contain the great majority of such K-mer 
instances. For example the 1KG, PRG and Cactus graphs contain an average across regions of 
99% of K-mer instances, while the primary graph contains an average across regions of 97%. 
Conversely, we asked what fraction of 20-mer instances present in a graph were not present in 
any 1KG read, calling this metric K-mer precision. Strikingly, we find that precision is greatly 
reduced in some graphs relative to control. For example around 15% (averaged across regions) 
of 20-mers enumerated from 1KG graphs do not appear in any 1000 Genomes low coverage 
read. We hypothesize that this is because the density of variation is sufficient in such graphs to 
admit many paths implying recombinations that are either absent or very rare in the population. 
To attempt to raise precision, for the 1KG data we constructed graphs using haplotype 
information to eliminate a substantial subset of unobserved paths, creating the “1KG Haplo 50” 
graph (Supplementary Section 10). This resulted in increased precision (by about 10 
percentage points in BRCA2) with only a small reduction in recall, as shown in Figure 6 and 
Supplementary Figure 13. However, this comes at the cost of a performance degradation in 
read mapping (Fig. 2) and variant calling (Supplementary Section 7). One possible explanation 
for the performance reduction is that the necessary duplication (“unmerging”) of paths in this 
procedure reduced the aligner’s ability to unambiguously map reads.  
 

 

Figure 6: Short path completeness and accuracy. Assayed by comparing 20-mer instances.  
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Graph Character 
 
We found that even within each region the different submitted graphs varied substantially in 
their performance on our evaluations of read mapping and variant calling. They varied even 
more so with respect to basic graph properties (Supplementary Section 11, Supplementary 
Tables 2-9). To quantify this variability we defined normalized graph metrics for basic graph 
properties. Graph compression is the length of the primary reference sequence within the region 
divided by the sum of the lengths of the nodes in the graph. It is a normalized measure of the 
number of positions in the graph. The (base) degree is the average per-side degree of the graph 
in a bidirected graph representation with single-base nodes, and is a measure of how much 
branching a graph contains. The cut width (Supplementary Table 10) is a measure of apparent 
sequence rearrangement. Briefly, within a topologically sorted graph, where all positions are 
ordered, cut width is the average over all gaps between successive positions of the number of 
edges connecting positions on the left side of the gap to positions on the right side of the gap 
(Supplementary Section 12)37. We see wide variation in these measures across the graphs (Fig. 
7). Furthermore, across the different regions we find that there is an inverse correlation (R=-
0.674, p=0.00230) between cut width and variant calling accuracy and a positive correlation 
(R=0.244, p=0.0268) between compression and variant calling accuracy (Supplementary Fig. 
15). The base degree does not significantly correlate with variant calling accuracy. These 
correlations suggest that uncompressed and highly rearranged graphs do not work effectively 
with our current read mapping and variant calling process.  
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Figure 7: Empirical graph statistics. In each panel the result for each region is shown by a 
dot, in the following order: BRCA1, BRCA2, LRC_KIR, MHC, and SMA.  
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Discussion 
 
Contemporary non-graphical variant calling procedures use different algorithms for each class 
of variants: substitutions, small indels, larger indels, balanced rearrangements, and so on. We 
have demonstrated that variant calling on a sequence graph mostly obviates this complexity, 
because being able to call the presence or absence of elements within a sample graph is 
potentially sufficient for calling known structural and point variation equally well. The simple, 
nascent variant calling algorithm we tested produced variant calls that were quite concordant 
with those from other state-of-the-art variant calling pipelines, while unifying the calling of known 
SNPs and other known structural variation. That individual tools slightly outperformed the 
variant calling algorithm presented here in terms of individual variant types, i.e. snps and indels, 
is unsurprising given the relative maturity and algorithmic sophistication of those tools. 
Importantly, many of the submitted graphs showed improved variant calling performance over 
the primary and scrambled graphs. The relative improvements come alongside a large reduction 
in the number of non-reference calls. Furthermore, reference calls were more accurate than 
non-reference calls, suggesting that variant calling is indeed more accurate overall when the 
variants themselves are contained within the graph. These results support the notion that 
sequence graphs can transform variant calling by reducing it to the simpler problem in which 
only rare variants, absent from the graph, must be discovered de novo. It is possible to foresee 
cutting the number of non-reference point variation calls from the millions, as in standard 
genome wide pipelines today, to on the order of thousands (see Supplementary Section 3). 
 
During the course of the variant calling comparison, we developed an appreciation for the 
shortcomings of relying solely on the Platinum Genomes benchmark data as a truth set32. A key 
concern is that the Platinum Genomes calls were derived by means of a consensus of 
contemporary methods, all of which use the existing linear reference and BWA-MEM-based 
mappings. Additionally, compared to vg, the Platinum Genomes dataset often uses different 
combinations of calls to “spell” the same haplotype. Moreover, it often omits calls necessary to 
spell a haplotype because it is not confident in them. While the omitted calls are in regions 
marked as low confidence, a variant normalizer cannot normalize a call that is not there. To get 
around these problems and potential biases we introduced a reference-free method for 
assessing variation calls. This evaluation demonstrated good consistency with the Platinum 
Genomes in terms of the relative ranking of the different methods evaluated, and demonstrated 
clearly that the best graph methods slightly outperform existing methods.  
 
Supporting the observed improvements in variant calling, we demonstrate that read mapping 
can be made both more comprehensive and less ambiguous with sequence graphs. Increases 
in perfect mapping and reductions in substitution and indel rates were broadly consistent with 
the effect we would expect if the graphs were representing the majority of common 
polymorphisms, leaving the residual read error rates to account for the majority of alignment 
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differences. In this sense read mappings were demonstrated to be less locally ambiguous, with 
mismatches and edits having a more clearly defined meaning.  Furthermore, the fact that read 
mappings were also less globally ambiguous (i.e. more certain in their overall placement within 
the genome) is perhaps surprising. We thought at the outset that using detailed graphs would 
have the drawback of increasing the number of times a read maps to two or more places by 
increasing the sheer number of mapping possibilities. However, we found that the opposite is 
true - the addition of known polymorphisms to the graph allows reads to better distinguish their 
true mapping location from secondary, paralogous locations. Scaled genome-wide, these 
improvements could help canonicalize mapping to the vast majority of variation, which will 
become especially important as genome variants are increasingly used in the clinic. The 
increases in perfect mapping could also allow alignment to be made more efficient by allowing 
larger, more stringent seeds or more aggressive ungapped matching. Our early work with vg 
indicates that there is ample opportunity for improvement and investigation of these novel 
approaches to the design of high-performance mapping algorithms. We also collected some 
preliminary data that suggests that the gains in mapping obtained by moving from the existing 
reference to a graph like the 1KG graph are super-population specific, suggesting that 
sequence graphs have the potential to reduce the local ethnic bias inherent in a single reference 
genome.  
 
By taking a community approach, we were able to sample a wide variety of the contemporary 
software for building sequence graphs. It is apparent that different methods produce 
dramatically different graphs, as measured both by direct graph analysis and by practical 
performance as a reference for common genomics tasks, suggesting that the field is just in its 
formative stages. In trying to understand how “complete” and “accurate” graphs built with 
today’s methods are at representing short sequences present in the population, we encountered 
several surprises. In particular, we found a large number of short non-biological paths created 
within the highest degree graphs, such as the de Bruijn graphs, parts of the 1KG graphs, and 
certain of the Seven Bridges graphs. We tried modifying the 1KG graphs to reduce the number 
of false recombination possibilities without much success. We may in the future find that we can 
tolerate these short non-biological paths, or that another approach is needed to eliminate them. 
 
One alternative approach is to create uncompressed, lower-degree graphs by duplicating 
variable regions to directly represent haplotypes, but it is likely that, as demonstrated by the 
1KG Haplo 50 and (at the logical extreme) Unmerged graphs, the resulting long, equivalent 
sequence paths would create too much multi-mapping ambiguity. Perhaps a better solution may 
be the use of haplotype information embedded within the sequence graph38, making it a 
variation graph. This would allow algorithms to map to a common graph coordinate system 
while accounting for variants, read errors, and recombinations within the mapping process itself. 
This approach would eliminate the need for several inelegant heuristics used in contemporary 
linear-reference-based analysis pipelines 28,39.  
 
Sequence graphs can now be built from libraries of common variants, and tools like vg, though 
still experimental, illustrate the huge potential of the graph-based approach. There are a number 
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of questions yet to be tackled. How should duplications and repeats be represented? How can 
one best map to a graph? How should short variants whose homologies are unclear be parsed? 
How can graphs be used to enable a more comprehensive taxonomy of variation? These 
questions all represent open avenues for future research. 

Online Methods 

Source Data 
Participants were provided with a data set consisting of five genomic regions (BRCA1, BRCA2, 
LRC_KIR, SMA, and MHC) to use in the creation of their graphs. The data set came in the form 
of a “reference” sequence and one or more “alternate” sequences for each region. For the 
LRC_KIR, SMA, and MHC regions, those alternate sequences were the alt loci present in 
GRCh38.p2 for the regions of the same names in the assembly, with the reference being the 
portion of the corresponding chromosome encompassing the chromosomal coordinates for all of 
the alts. The reference regions for BRCA1 (ID 672) and BRCA2 (ID 675) were downloaded from 
Entrez Direct, while alternate sequences were the annotated genes from the CHM1 hyatidiform 
mole assembly, and the LRG sequences for those genes 40–42. Some participants used 
additional source data in constructing their graphs. 

Graph Format 
All graphs were generated in or converted into an SQL text format for submission. The graphs 
were then loaded into databases compatible with the GA4GH Graph Reference Server, and 
servers for the graphs were hosted on a Microsoft Azure cloud instance. Individual evaluation 
tools hit against these API endpoints. For read alignment and variant calling purposes, graphs 
were downloaded from the servers using the sg2vg converter tool, written for this project, and 
stored in .vg graph format. This on-disk format could be efficiently indexed for read alignment—
a function that the GA4GH server did not support—and so was preferred for evaluations 
dependent on read alignment. The graphs themselves were created using a variety of 
methodologies and approaches, detailed in Supplementary Section 10. 

Alignment Target Quality 
The submitted graphs were used to align reads from 2,691 low-coverage samples from the 
1000 Genomes project, which had been aligned to GRCh38 with BWA-MEM 6. Alignments to 
the primary reference and, where available, the GRCh38 alt loci for a region were downloaded 
using Samtools 30. The process took advantage of the tool’s ability to subset indexed files over 
FTP in order to obtain just reads mapped within the region 30. Next, the alignments were 
converted into reads, yielding the relevant reads for that sample and region. Unpaired reads in 
the downloaded set were discarded. An attempt was made to correct for a known data 
corruption bug in the version of BWA-MEM used to produce the alignments, by taking the 
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sequences given for alignments to the primary reference over the sequences given for the same 
read aligned to an alt, where available (Heng Li, personal communication). Input graphs were 
downloaded from the reference servers using the sg2vg program. They were then broken into 
nodes of no more than 100 bases each and re-numbered according to a heuristic extension of 
topological sort to cyclic graphs. Graphs were indexed and alignment was performed with the vg 
program, using a K-mer size of 16 and an edge-crossing limit of 3 for the GCSA2 index. The 
portion of reads mapping uniquely was calculated. To qualify as uniquely mapped, a read had to 
have a primary mapping with 0.95 matches per alignment column or fewer. Additionally, 
qualifying reads had to have either no secondary mapping or a secondary mapping having 
fewer than 0.85 matches per column. The denominator for the portion mapping uniquely was 
the number of reads having either a secondary mapping distinct from the read’s primary 
mapping or no secondary mapping at all (see Supplementary Section 3). The portion of reads 
mapping perfectly was defined as the portion having 1 match per alignment column. The 
substitution rate was defined as the portion of bases in length-conserving replacements out of 
all substituted or matched bases. Bases matched or substituted against N characters in the 
reference graph were ignored. The indel rate was defined as indel count divided by substituted 
and matched bases. Bases matched or substituted against reference Ns were ignored, as were 
indels that constituted softclips. 
 

Platinum Genomes Variant Calling Evaluation 
 
A graph variant calling pipeline based on the Samtools pileup method was implemented in vg 
and run independently on three 50x coverage samples from Platinum Genomes (NA12877-9).  
First, the reads were mapped to each graph as described above.  The alignments were then 
filtered to remove secondary mappings, as well as mappings with mapping quality score less 
than 15, mappings that had been promoted to primary over another properly paired mapping of 
greater single-end score, and mappings with soft-clipped or ambiguous ends (more details in 
Supplementary Section 7).  A pileup of aligned read bases was then constructed for each 
position and edge in the graph ignoring bases with read quality score less than 10. The SNPs, 
insertions, and deletions implied by the two most supported non-reference entries in each pileup 
were then added into the graph to create an “augmented” graph.  Sites in the augmented graph 
were computed using the ultrabubbles algorithm31.  For each site, the two non-reference paths 
with the most read support were greedily chosen using a breadth-first search.  A path’s read 
support was defined here as the minimum pileup support of any node or edge it contains; each 
node’s support was calculated as the average support across the node’s bases.  Finally, given 
the reference path and these two alternate paths for each site, a genotype was computed using 
a thresholding heuristic based on the ratios of the paths’ pileup supports. Alternate alleles were 
called as heterozygous if they had at least three times as much read support as the reference 
(or six times for a homozygous alt call).  The genotypes were written directly to VCF.  The 
variants were normalized by using vt43 to flatten multibase alts that contain reference calls. Calls 
for both NA12877 and NA12878 were compared against their respective Platinum Genomes 
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truth set VCFs; these were the only samples with truth VCFs available. Precision and recall 
against the truth set were assessed with vcfeval33. True and false positives and negatives 
returned from this tool were classified as SNPs and indels using bcftools, and clipped into the 
Platinum Genomes confident regions.  Precision, recall and F1-scores were then computed for 
each possible quality threshold in the VCF.  For the vg call results, minimum read support (AD 
field in VCF genotype) across called alleles was used as a proxy for quality. Aggregate results 
across samples and regions were computed by pooling the vcfeval results together. The 
precision-recall curves (Fig. 4 (C) and (D)) were drawn by filtering the VCF files by all values of 
variant quality and displaying only those within distance 0.1 of the maximum F1-score. The 
points shown in Figure 4 (A) were chosen to correspond to the quality threshold yielding the 
maximum F1-score. 
 

Reference-Free Evaluation 
 
A “synthetic diploid” genome was conceptualized by combining data from two haploid samples, 
CHM1 and CHM1344. For each sample, GRCh38-aligned low-coverage Illumina reads and 
relatively complete PacBio-derived assemblies were obtained. The CHM1 and CHM13 reads 
were obtained by combining both runs from NCBI SRA SRX1391727 and SRX1082031, 
respectively, and mapping to GRCh38 using BWA-MEM6. The CHM1 assembly used was 
GenBank accession number GCA_001297185.1, while the CHM13 assembly was 
GCA_000983455.2. For each region, a pooled collection of the relevant Illumina reads across 
both CHM1 and CHM13 was created. Next, the reads were subsampled for balanced coverage 
between the two haploid genomes as would be expected in a real diploid sample. For each 
submitted graph under tests, the reads were aligned using vg, and the vg variant caller was 
used to produce variant calls. The resulting VCF for each graph construction method and region 
combination was turned into a new “sample graph” to which the relevant portions of the PacBio 
assemblies were aligned. Treating the aligned assembly fragments as the truth, the precision 
and recall of each sample graph were measured as a function of which original submitted graph 
it was derived from. 
 
Assembly fragments used for evaluation were selected by alignment of the primary reference 
sequences for the regions against the CHM1 and CHM13 assemblies using BLAT version 
36x2 45. Aligned regions in the assembly covering more than either 50% of an assembly contig 
or 50% of a region, with more than 98% identity, were extracted from the assembly and used for 
realignment. The SMA region was excluded from the evaluation due to patchy, overlapping 
coverage of the region in the two assemblies. Additionally, the first 87,796 bases of the 
LRC_KIR region were excluded from the sample graphs and the aligned truth set contigs due to 
an apparent lack of representation in the CHM13 assembly. 
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Assessing Graph Completeness 
 
Reads aligning to the test regions were obtained from 2,691 low-coverage samples in the 1000 
Genomes Project, and each sample’s reads were used to generate a collection of K-mers 
(K=20) using Jellyfish 5,46. These were compared against the collection of K-mers in each graph 
as enumerated by vg with an edge-crossing limit of 7. In order to account for K-mer frequencies, 
duplicate K-mers were not ignored. K-mers containing N characters were ignored in both 
collections, and K-mers only observed once in their sample were ignored in the 1000 Genomes-
derived K-mer collection. This latter filter was intended to remove the large majority of 
erroneous K-mers: we expect errors to be Poisson-distributed one-off events while real variants 
are likely to recur within a sample. Recall, defined as the portion of all read-derived K-mers 
present among the graph-derived K-mers, and precision, defined as the converse, were 
computed for each graph. 

URLs 
VG, https://github.com/vgteam/vg. 
Patches to VG, https://github.com/adamnovak/vg/tree/graph-bakeoff. 
GA4GH to VG Importer, https://github.com/glennhickey/sg2vg. 
VG to GA4GH Exporter, https://github.com/glennhickey/vg2sg. 
GA4GH Graph Schemas, https://github.com/ga4gh/schemas/tree/refVar-graph-unary. 
GA4GH Graph Server, https://github.com/ga4gh/server/tree/graph. 
Graph evaluation software, https://github.com/BD2KGenomics/hgvm-graph-bakeoff-evaluations. 
FASTG, http://fastg.sourceforge.net/. 
Illumina Platinum Genomes, http://www.illumina.com/platinumgenomes/. 
Jellyfish, http://www.cbcb.umd.edu/software/jellyfish/.  
Platypus, http://www.well.ox.ac.uk/platypus. 
Freebayes, https://github.com/ekg/freebayes. 
Samtools, http://www.htslib.org/. 
VCFeval, https://github.com/RealTimeGenomics/rtg-tools. 

Software Versions and Commit Hashes 
VG, 158d542497445b532b0e9e40223f5023ee6b52dd. 
GA4GH to VG Importer, 468026ad70f0425af1959b287ffcaac91b8a9deb. 
VG to GA4GH Exporter, 4efde8e64a8bd113a0e83685628bbaf0cbc2be3f. 
GA4GH Graph Schemas, ea58ac46dad84be67c500e517ff2fb05a43a187a. 
GA4GH Graph Server, c6daebca4c69a4ff4d9d56cfdf587556f2ce1116. 
Graph evaluation software, 52b0537713629471f6ea97ccf552d6727c630f3d. 
Freebayes, 9e983667d47f6b5dcbb90070da8de69714038f46. 
Samtools, version 1.3.1. 
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