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ABSTRACT 

 

Microbial communities commonly coalesce in nature, but the consequences for 

resultant community structure and function is unclear. Consistent with recent theory, 

we demonstrate using methanogenic communities that the most productive 

communities in isolation dominated when communities were mixed. As a corollary of 

this dynamic, total methane production increased with the number of inoculated 

communities. The cohesion and dominance of single communities was explained by 

more “niche-packed” communities being both more efficient at exploiting resources 

and resistant to invasion, rather than a function of the average performance of 

component species. These results are likely to be relevant to the ecological dynamics 

of natural microbial communities, as well as demonstrating a simple method to 

predictably enhance microbial community function in biotechnology, health and 

agriculture. 

 

Immigration has major impacts on both the structure and function of microbial communities(1, 

2) and evolutionary dynamics of populations(3). While most work on immigration in microbial 

ecology deals with relatively low numbers and diversity of immigrants, this does not capture 

the natural context, which frequently involves the coalescence of entire communities(4, 5). 

The consequences, if any, of such community coalescence are unclear, although existing 

theoretical(6–9) and empirical(10–13) studies suggest coalescence can lead to a single 

community dominating the mixture, rather than a more chimeric outcome. A recent 

extension(9) of ecological theory(14–17) suggests that this dominance can be predicted from 

how completely communities exploit diverse resources in the environment, as these “niche-

packed” communities will be more cohesive and harder to invade. We test this prediction, and 

its corollary that coalescing communities should increase productivity, using complex 

anaerobic microbial communities, for which methane production is a measure of community 

resource use efficiency (18).  

 

Anaerobic digestion is a multi-stage process carried out by highly diverse bacterial and 
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archaeal communities. Methanogenesis is the final stage of the process and results from the 

conversion of H2, CO2 and short chain fatty acids produced by hydrolysis and fermentation of 

more complex organic material(18). It is carried out exclusively by methanogenic Archaea 

and is the only thermodynamically feasible way of actively removing inhibitory end-

metabolites under the conditions where anaerobic digestion occurs(18). Methane production 

can therefore be a useful proxy of the ability of an anaerobic community to fully exploit 

available resources, and should correlate with community-level productivity. Moreover, 

methanogenic communities are characterized by complex cross-feeding interactions (19), and 

hence the importance of niche-partitioning in shaping community performance is likely to be 

particularly important (9). As such, methanogenic communities provide a useful and relevant 

system to investigate the interplay between community productivity and community 

coalescence.  

 

 We first determined the methane production and composition of two natural methanogenic 

communities grown in isolation or as a mixture in laboratory scale Anaerobic Digestors (ADs) 

over 5 weeks. To remove any confounding effects caused by differences in starting density of 

tested communities, we standardized microbial density based on qPCR-estimated counts of 

16S rDNA copies. We found that the methane production of the mixed community was initially 

intermediate between the two individual communities, but soon started to produce gas at a 

rate indistinguishable from the more productive of the individual communities (Figure 1A). The 

composition of the mixed community at the end of the experiment most closely resembled the 

best performing individual community (Figure 1B). These results suggest that the most 

productive community dominates a mixed community, thus enhancing productivity of the 

mixed community beyond the average of its individual community components.  

 

We next investigated if individual communities’ methane production can predict dominance 

when multiple communities are mixed. Consistent with the results from two communities, 

methane production in mixtures of ten communities was higher than the average of the 

individual communities, but did not differ from the best performing single community (Figure 

2A). Moreover, the community composition of mixtures (which varied little between replicates) 
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most closely resembled the highest performing individual community (Figure 2B). More 

generally, the more similar was an individual community’s composition to the mixtures, the 

higher was its methane production (Figure 2C). 

 

The hypothesized mechanism underlying these results is that interactions within a community 

determine both its productivity and cohesion. Note that this hypothesis does not invoke any 

“higher order selection” resulting in community-level adaptation(16), but that communities 

whose members have evolved to exploit ecological niches more completely or more efficiently 

(more “niche-packed” communities) are both more productive and can be less readily 

invaded(9,17,20). An alternative explanation is that community productivity is simply a 

function of the performance of individual species, and the most productive community 

dominates because it members are on average are better at exploiting resources than their 

ecological counterparts in other communities. If the latter is true, then community productivity 

will not only predict which community dominates, but also the relative contribution each 

individual community makes to the mixture. Specifically, species in the second most 

productive community will have the second highest performance on average, and hence 

should contribute to the mix of communities more than the third most productive community, 

and so on. 

 

To distinguish between these hypotheses, we used a non-negative least squares (NNLS) 

approach to estimate the actual contribution of each community to the mixtures, rather than 

just the similarity between the single and mixed communities, as above. This confirmed that 

the most productive community dominated the mixture (Figure 2D), but crucially there was not 

a monotonic relationship between methane production and contribution to the mixture across 

the other communities. Indeed, the second and third most productive communities (notably 

communities P01 and P04) were greatly under-represented in the final mixture. This under-

representation of such productive communities is entirely consistent with niche-packing 

determining community success: these communities were very similar in composition to the 

most productive community and hence presumably could not occupy the same ecological 

niches in the mixed community (Figure 2D). Further lines of evidence support the key role of 
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community level properties in explaining our results. First, within-community diversity 

positively correlated with methane production – a finding consistent with greater niche 

packing(14) (Figure 3A). Second, the density of the organisms directly responsible for 

methane production, the methanogenic Archaea, did not correlate with methane production 

(Figure 3B), emphasizing the importance of interactions with other taxa in determining 

methane production. This is in contrast to the density of bacteria (Figure 3C), the majority of 

organisms in methanogenic communities, which positively correlated with methane 

production. 

 

The finding that coalescence results in the most productive individual community dominating 

the mixed community has direct implications for biotechnological uses of microbial 

communities. Given that the best performing community in isolation largely determined both 

the composition and performance of mixtures of communities, we hypothesized that methane 

production would increase with increasing number of communities in a mixture. We therefore 

inoculated laboratory-scale anaerobic digesters with 1, 2, 3, 4, 6 or 12 communities, ensuring 

that each of the 12 starting communities was only used once at each diversity level (see 

Extended Data Table 1). We found that cumulative methane production over a five-week 

period increased with increasing number of communities used as an inoculum (Figure 4). The 

positive correlation between community function and the number of inoculating communities 

is analogous to the commonly observed finding that community productivity increases with 

increasing species diversity (20). In our case, the mechanism underlying this positive 

relationship between the number of communities and productivity is a sampling effect: 

inoculating more communities increases the chance that the best performing community will 

be present in the mix. However, given that domination of the mixture by one community was 

not complete, it is possible that mixing communities could increase performance beyond that 

of the maximum of single communities in some circumstances. 

 

 

Here, we have shown that coalescence of microbial communities results in dominance of a 

single community, and that the dominant community can be predicted from its original 
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productivity.. These findings will have broad relevance to microbial communities, because the 

mechanism underlying the result relies on rules that underpin our understanding of 

community ecology: “niche-packed” communities use resources more fully and are harder to 

invade(9, 16, 17). Moreover, we have identified a way to significantly improve methane yield 

during anaerobic digestion: inoculate digesters with a broad range of microbial communities, 

and the best performing community will dominate. Given that resource use efficiency is often 

a desirable property of microbial communities, this approach could be applied to a range of 

biotechnological processes driven by microbial communities, as well as to manipulate 

microbiomes in clinical and agricultural contexts. 
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Figure 1: Methane production predicts the composition when two communities 

coalesce. A) Cumulative methane production in ml (±SEM) over time of: community P01 

(white circles), community P05 (black circles) and their mixes (grey circles). Cumulative 

methane production differed between treatments (F2,9 = 23.2, P < 0.001), but did not differ 

between the mixed community and P05 (Tukey-Kramer HSD: P = 0.5). P01 was lower than 

both other treatments (P < 0.001 in both cases). B) NMDS plot of unweighted UniFrac of 

communities P01 (white), P05 (black) and their mixes (grey). Ancestral samples are 

represented by squares with samples from the endpoint of the experiment by circles. At the 

endpoint, P05 was compositionally more similar to the mixtures than P01, based on both 

unweighted (mean distance to each mixture for each replicate single community: t6 = 8.3, P < 

0.001) and weighted (t6 = 2.3, P = 0.03) UniFrac distances.  

 

Figure 2: Methane production predicts the greatest contributor to coalesced 

community composition. A) Cumulated methane production of Mixed (grey) and Individual 

communities (white). Average performance shown as a horizontal line. Mean cumulative 

methane production was greater for mixtures than for individual communities (t-test: P < 

0.001 in 9 cases), except community P13 (best performer). B) NMDS plot of unweighted 

unifrac of 10 mixtures (grey) and 9 individual communities (white). Numbers in circles refer to 

individual community identifiers (Table 1). Community P13 was significantly closer in 

composition to the 10 mixed communities than any other community (weighted and 

unweighted UniFrac distances; Paired t-tests; P < 0.001, in all cases). Note: DNA yield from 

community P06 was insufficient for sequencing, therefore it is excluded from this and 

following graphs. C) Difference between the average methane production of the mixes and 

individual sample and community composition according to unweighted UniFrac (Spearman ρ 

= 0.86, P < 0.001)). Same correlation stands for unweighted UniFrac (Spearman ρ = 0.75, P 

< 0.02). D) Estimated contribution of each individual community towards the 10 coalesced 

communities (±SEM). Values over the bars indicate methane production of each individual 

community over the course of the experiment [ml].  
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Figure 3: Within-community predictors of methane production. Relationships between A) 

Archaeal densities [cells/g] (F1,15 = 0.32, P > 0.2) B) Bacterial densities [cells/g] (F1,16 = 16.5, P 

< 0.001) and C) number of OTUs (F1,16 = 51.6, P < 0.001) and methane production [ml]. Note 

that qualitatively the same results apply when mixed communities are excluded from analyses. 

 

Figure 4: Cumulative methane production over time increases with number of 

inoculated communities. No single community was represented more than once at each 

diversity level, and there was a monotonic increase in methane production with number of 

communities used (F1,26 = 5.4, P = 0.03). Individual communities (white circles) and their 

average methane production (white line) are compared with mixes of communities (grey 

circles) and their averages (grey line) at different numbers of communities used. 

 

 

 

Materials and Methods 

Communities and fermentation 

The communities used were collected from commercial operations, both from anaerobic 

digestors (AD plants) and communities present in nature used to seed the AD plants. The 

source and types of communities used can be found in Table 1. Communities were stored at 

4°C prior to use. For all experiments, communities were grown in 500 ml bottles (600ml total 

volume with headspace; Duran) using the commercially available Automated Methane 

Potential Test System (AMPTS, Bioprocess Control Sweden AB) to measure CO2-stripped 

biogas production (referred to as methane in this paper). Samples were fed weekly in a fed-

batch mode using a defined medium (see below for media composition). The communities 

from experiment 1 were equalised in terms of bacterial cells per gram of sample before 

inoculation using M9 salts to dilute them to the community with the lowest cell density, based 

on qPCR enumeration of 16S rRNA gene copies. For experiments 2 and 3, starting 16S rRNA 

copy number was determined (but not equalised between communities) and did not correlate 

with methane production. The fermenters were inoculated with 275 g of sample and fed with 

25 ml of defined medium: meat extract 111.1 gl-1, cellulose 24.9 gl-1, starch 9.8 gl-1 glucose 
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0.89 gl-1, xylose 3.55 gl-1 (carbon to nitrogen ratio of 15:1) every week, starting with t0. Before 

the start of the fermentation, 0.3 mL of 1000x Trace Metal stock (1 gl-1 FeCl2 . 4H2O, 0.5 gl-1 

MnCl2 . 4H2O, 0.3 gl-1 CoCl2 . 4H2O, 0.2 gl-1 ZnCl2, 0.1 gl-1 NiSO4 
. 6H2O, 0.05 gl-1 Na2MoO4 . 

4H2O, 0.02 gl-1 H3BO3, 0.008 gl-1 Na2 WO4 . 2H2O, 0.006 gl-1 Na2SeO3 . 5H2O, 0.002 gl-1 

CuCl2 . 2H2O) was added to each fermenter. Experiment 1 (shown in Figure 1) ran for 5 

weeks, experiment 2 (shown in Figure 2) for 6 weeks and experiment 3 (shown in Figure 4) 

for 5 weeks.  

 

Measuring methane content of Biogas 

All resulting lab-scale reactors inoculated with the samples were run at 37°C using the 

AMPTS. The AMPTS system measures the volume of biogas produced following stripping of 

CO2 from the produced gas. We have confirmed that the measured biogas is >95% methane 

using GC-FID.  

 

DNA extraction, amplicon library construction and sequencing 

DNA for 16S rRNA gene amplicon sequencing was extracted using QIAamp DNA Stool Mini 

Kit (QIAGEN) or FastDNA™ SPIN Kit for Soil (MP), depending on the experiment. Note that 

DNA extraction for mixed community P06 from the 10 mix experiment failed. The DNA for 

qPCR was extracted with the QIAamp DNA Stool Mini Kit (QIAGEN), protocol for pathogen 

detection with the 95ºC incubation step and the Powerlyzer Powersoil DNA KIT (MOBIO). 

DNA from A. baylyi, P. fluorescens SBW25 for Bacteria from H. salinarum DSM 669 for 

Archaea was used as standards. The primers(21) used to identify Bacteria were 16S rRNA 

338f - ACT CCT ACG GGA GGC AGC AG, 518r - ATT ACC GCG GCT GCT GG for Archaea: 

931f - AGG AAT TGG CGG GGG AGC A, m1100r - BGG GTC TCG CTC GTT RCC. The 

reagents used were: 1x Brilliant III Ultra-Fast SYBR® Green QPCR Master Mix; 150nM 338f 

and 300nM 518r or 300nM 931f and 300 nM m1100r; ROX 300nM; and BSA 100 ng/µl final 

concentration. All samples were run in triplicate on a StepOnePlus (Applied Biosystems) 

qPCR machine using a program with 3’ 95ºC initial denaturation followed by 40 cycles of 5’’ at 

95ºC and 10’’ at 60ºC, followed by a melting curve 95ºC for 15’’; 60ºC for 1’ ramping up to 

95ºC in steps of 0.3ºC for 15’’ each. The melting curve analysis and the confirmation of the 
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negative controls was done using Stepone Software v.2.3 (life technologies). The Cq values 

and the efficiencies of the samples and standards was determined as previously using 

LinRegPCR version 2016.0(22). The quantities were calculated using the one point 

calibration method as described earlier(23). 

 

Analyses of sequenced samples 

MiSeq amplicon reads were merged using Illumina-utils software(24). We quality-filtered only 

the mismatches in the overlapping region between read pairs using a minimum overlap (--

min-overlap-size) of 200 nt and a minimum quality Phred score (--min-qual-score) of Q20. We 

allowed no more than five mismatches per 100 nt (-P 0.05) over the 200 nt overlapping 

region. 

  

Reads that fulfilled the quality criteria were analysed using Quantitative Insights Into Microbial 

Ecology (QIIME v.1.7)(25). We removed chimera using the identify_chimeric_seqs.py script, 

UCHIME reference 'Gold' database and USEARCH(26, 27), which we also used to select 

OTUs. We assigned the taxonomy of our reads with QIIME pick_open_reference_otus.py 

function, using the Greengenes database version v13_8(28) as a reference with a minimum 

cluster size of 2 (i.e., each OTU must contain at least two sequences). We collapsed the 

technical replicates and filtered out the low abundance OTUs (<0.01% total, 

filter_otus_from_otu_table.py) and samples rarefied to an even depth of 26702 for both 

experiments where sequencing data is available. QIIME was used to calculate alpha and beta 

diversity data and produce NMDS plots. 

 

For the NNLS analysis, following removal of low abundance OTUs and cumulative sum 

scaling transformation, the resulting .biom file was used to create a matrix � � � ��

 � � � (m rows 

of OTUs by n sample columns) for the seed bioreactors, and a column vector � �  � ��

 �  for 

each mixed bioreactor; both � and � hold non-negative integers of OTU abundances. One of 

the individual samples contained a negligible number of reads and was discarded from the 

analysis. The contribution, or weight, of each seed sample to the pattern of OTUs observed in 
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a mixed sample is given by the column vector � � � � when solving for a system of linear 

equations �� � �.  

 

When modelling count data for environmental samples the fitted parameters of � will also be 

non-negative and the number of OTUs will usually exceed the number of samples (m > n). 

The task is to solve an over-determined system of linear equations where there are more 

equations than unknowns. It is likely that some of the linear equations will ‘disagree’ and there 

will be no exact solution. Geometrically, this may be interpreted as � not lying in the column 

space of �, a (hyper)plane holding the column vectors of �, or �� 	 � 
 0. A least-squares 

approach may find the non-negative vector �� � 
�����	��� which is the projection of � back 

onto the column space of � that minimises the least-squares error ‘distance’ ���� 	 ��. For 

our study the non-negative least-squares (NNLS) solution, ��, and least-squares errors were 

computed via the R packages ‘nnls’(29) and ‘limSolve’(30) for each of the mixed samples.  
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