Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH

J. Guan, H. Liu, X. Shi, S. Feng, B. Huang
doi: https://doi.org/10.1101/101444
J. Guan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X. Shi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Feng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Huang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Live imaging of genome has offered important insights into the dynamics of the genome organization and gene expression. The demand to image simultaneously multiple genomic loci has prompted a flurry of exciting advances in multi-color CRISPR imaging, although color-based multiplexing is limited by the need for spectrally distinct fluorophores. Here we introduce an approach to achieve highly multiplexed live recording via correlative CRISPR imaging and sequential DNA fluorescence in situ hybridization (FISH). This approach first performs one-color live imaging of multiple genomic loci and then uses sequential rounds of DNA FISH to determine the loci identity. We have optimized the FISH protocol so that each round is complete in 1 min, demonstrating the identification of 7 genomic elements and the capability to sustain reversible staining and washing for up to 20 rounds. We have also developed a correlation-based algorithm to faithfully register live and FISH images. Our approach keeps the rest of the color palette open to image other cellular phenomena of interest, as demonstrated by our simultaneous live imaging of genomic loci together with a cell cycle reporter. Furthermore, the algorithm to register faithfully between live and fixed imaging is directly transferrable to other systems such as multiplex RNA imaging with RNA-FISH and multiplex protein imaging with antibody-staining.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted January 18, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH
J. Guan, H. Liu, X. Shi, S. Feng, B. Huang
bioRxiv 101444; doi: https://doi.org/10.1101/101444
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH
J. Guan, H. Liu, X. Shi, S. Feng, B. Huang
bioRxiv 101444; doi: https://doi.org/10.1101/101444

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Biophysics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4395)
  • Biochemistry (9619)
  • Bioengineering (7111)
  • Bioinformatics (24915)
  • Biophysics (12642)
  • Cancer Biology (9980)
  • Cell Biology (14388)
  • Clinical Trials (138)
  • Developmental Biology (7971)
  • Ecology (12135)
  • Epidemiology (2067)
  • Evolutionary Biology (16010)
  • Genetics (10938)
  • Genomics (14764)
  • Immunology (9889)
  • Microbiology (23719)
  • Molecular Biology (9493)
  • Neuroscience (50965)
  • Paleontology (370)
  • Pathology (1544)
  • Pharmacology and Toxicology (2688)
  • Physiology (4031)
  • Plant Biology (8685)
  • Scientific Communication and Education (1512)
  • Synthetic Biology (2403)
  • Systems Biology (6446)
  • Zoology (1346)