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Abstract 

Models of disease transmission in a population with varying densities must assume a relation 

between infectious contacts and density. Typically, a choice is made between a constant 

(frequency-dependence) and a linear (density-dependence) contact-density function, but it is 

becoming increasingly clear that nonlinear functions intermediate between these two extremes are 

more realistic. It is currently not clear however what the consequences would be of implementing 

different contact-density functions when population density varies. By combining existing data on 

Mastomys natalensis demography, density-dependent changes in contacts, and Morogoro virus 

infection dynamics, we explored the effects of different contact-density function shapes on 

transmission dynamics and invasion/persistence. While invasion and persistence were clearly 

affected by the shape of the function, the effects on outbreak characteristics such as prevalence and 

outbreak size were minor. As a consequence, it would be difficult to distinguish between the 

different shapes based on how well models fit to real data. This data-driven study confirms that the 

shape of the transmission-density function must be chosen with care, ideally based on existing 

information such as a previously quantified contact- or transmission-density relationship or the 

underlying biology of the host species in relation to the infectious agent.  

 

Introduction 

The transmission of infections can be sensitive to changes in population density, especially in the 

case of fluctuating wildlife populations [1–3]. When modelling disease transmission, the probability 

of encountering an infected individual is typically assumed to be either independent of (frequency-

dependent) or linearly dependent on (density-dependent) population density [4]. Sexually 

transmitted infections are generally described using frequency-dependent transmission because the 

number of sexual contacts is assumed to remain constant, regardless of population density [5], 

while infections that are transmitted through regular “every-day” contacts are often assumed to be 

density-dependent [6]. 

The choice of which contact-density function to use in a model of disease transmission must be 

made with care because it entails potentially significant consequences. Most importantly, the 

functions differ in whether or not an infection is expected to persist below a critical density of 

individuals [7]. The basic reproductive number (R0), defined as the number of secondary infections 

arising from the introduction of one infectious individual entering a completely susceptible 

population, is a central epidemiological measure that characterises the spread of an infection, as it 
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provides an immediate approximation as to how rapidly an infection can spread [8]. In its simplest 

form, R0 = 𝛽𝑁, where N is population size and 𝛽 is the transmission coefficient that consists of the 

rate p of becoming infected through contact with an infectious individual, multiplied by the contact-

density function that equals 𝑐𝑁/𝐴 (where A is area) when linear (density-dependent) and c when 

constant (frequency-dependent), and random homogenous mixing is assumed [9]. When the 

transmission coefficient β changes with density, theory predicts a density below which the 

transmission rate is too low, causing R0 to fall below 1 and the disease to disappear, whereas no 

persistence threshold density exists when β remains constant, independent of density [1,10,11]. 

Because changes in the transmission coefficient determine how quickly an infection can spread 

through a population, it can also be expected that the two contact-density functions will differently 

affect outbreak characteristics such as incidence, prevalence and outbreak size [12]. 

Because human populations are usually large and stable, many models of human disease 

transmission are not significantly affected by the choice of the contact-density function, which may 

explain why the consequences of the shape of different contact-density functions have been little 

explored. But when one is interested in describing or predicting infection dynamics in populations 

of different sizes, at low densities, or with periodically fluctuating densities, the shape of the 

assumed contact-density function may become highly important [3]. Although in human 

populations we can expect a role of the assumed contact-density function in situations determined 

by the interplay between the timescales of demographic transition and epidemic evolution (e.g. high 

disease-related mortality), such situations are most common for wildlife infections, so it is not 

surprising that studies on how transmission rates and contacts relate to density have mainly been 

conducted in this field [9,13–17]. The main approach in these studies has been to measure 

transmission in a field or experimental setting in which densities are manipulated or vary naturally, 

which is then followed by creating a mathematical model of transmission to test which 

transmission-density function results in a better fit of the model to data.  

There has traditionally existed a focus on whether transmission is frequency- or density-dependent, 

and rarely have other, nonlinear transmission-density functions been investigated. For example, a 

study in which densities of the two-spot ladybird (Adalia bipunctata) were manipulated and 

transmission of sexually transmitted parasitic mite Coccipolipus hippodamiae was measured, only 

tested whether the transmission-density relationship was density-dependent or not, even though 

their results strongly suggest that the relationship more closely resembles a nonlinear asymptotic 

power function [18]. Similarly, a recent study in which strong emphasis was put on estimating a 

persistence threshold for Sin Nombre virus transmission in deer mice, assumed linear density-
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dependence without further investigation, although other transmission-density functions may have 

significantly altered model results [19]. 

Nevertheless it has been well established that the binary distinction between density-independence 

or linearity can be inadequate, and a range of other possible nonlinear transmission functions has 

been suggested, often in the power law, asymptotic or logistic family [9,20–22]. Cowpox virus 

dynamics in a natural population of field voles (Microtus agrestis) for example has been shown to 

be best described by a nonlinear power function that is intermediate between density independence 

and linearity [13]. Intermediate density-dependence was also observed in Ambystoma tigrinum 

virus transmission in the tiger salamander [20]. 

Here, we want to investigate whether, and in which situations, implementation of the exact shape of 

the transmission response function is important. Although it would be possible to mathematically 

model the effects of different transmission-density functions for any hypothetical combination of 

demographic pattern and contact-density function, the sheer number of possible functions for each 

demographic situation would make it almost impossible to decide which functions are biologically 

relevant. To inform such models we therefore need biological background data, i.e. a species for 

which population dynamics, a contact-density function, and disease dynamics have been quantified, 

but until recently no such data were available. Using a combination of data from recent experiments 

in which we quantified contact rates across a wide range of population densities in the rodent 

Mastomys natalensis [23] and the infection parameters of Morogoro virus (MORV) in this rodent 

[24], we tested the effect of different transmission functions using a simple SIR transmission model 

in annually fluctuating host populations. By implementing a range of hypothetical combinations of 

infectious period, transmission rate and population size, we assessed what the effects of the contact-

density would be for infections with different characteristics. 

Materials and methods 

Background data 

Natal multimammate mice (Mastomys natalensis) occur throughout Sub-Saharan Africa, and are an 

important agricultural pest species and natural reservoir hosts for several microparasites that cause 

disease in humans, including Yersinia pestis (bubonic plague), leptospirosis and several 

arenaviruses including Lassa virus, which can cause severe haemorrhagic fever in humans [25–29]. 

Its demography has been studied thoroughly, which allows us to create a simple but accurate 

demographic model that will serve as a basis for transmission modelling (see below). In Tanzania, 

where most of the studies on its population ecology have been conducted, M. natalensis exhibits 
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strong annual population fluctuations, with densities ranging from 10/ha in the breeding season to > 

300/ha in the non-breeding season [30,31]. Importantly, we have recently quantified the contact-

density relationship for this species, which provides us with a realistic biological background for 

fitting the transmission functions [23].  

The simulated infection dynamics in this study are based on those of Morogoro arenavirus (MORV), 

which naturally occurs in M. natalensis in Tanzania, and of which the transmission ecology [32] 

and patterns of infectivity [24] have been documented in detail; it has a latent period of about 3 

days between infection and excretion (which we here ignored for simplicity), an infectious period 

of 30-40 days, and presumably lifelong immunity. MORV transmission can therefore be modelled 

using a simple SIR model (described below). 

Study design – models 

We investigated the effect of four different contact-density functions on simulated MORV 

transmission. Prevalence and incidence patterns were examined using a deterministic model 

because we do not want to assess the effect of random fluctuations on these parameters, while 

invasion and persistence were investigated using a stochastic model because these two parameters 

are per definition determined by random events, as explained below. 

Demographic model 

The seasonally fluctuating densities of M. natalensis were modelled using a seasonal birth-pulse 

function, 𝐵(𝑡) = 𝑘 exp [−𝑠 cos2(𝜋𝑡 − 𝜑)],  as described in Peel et al. [33]. This is a flexible 

function in which a synchrony parameter (s) determines the length of the birth period, and another 

parameter (𝜑 ) determines the timing of the birth period. Parameter k ensures that the annual 

population size remains the same, by compensating the number of births for the (constant) mortality 

rate 𝜇 [33]. Function parameters were fitted visually to a 20-year dataset of monthly population 

densities of M. natalensis in Tanzania ([30,31] and more recent unpublished data; Appendix Figure 

S1-1). This deterministic demography was also used as a basis for modelling demography in the 

stochastic SIR model (described below) in order to avoid the influence of stochastic changes in 

population density. Because deterministic demography results in non-integer (rational) changes in 

the number of births and deaths while the stochastic SIR model is based on events and births/deaths 

must therefore be integers, the demographic model was adapted slightly by rounding the total 

numbers of births and deaths in each 12h interval and adding the remainder to the next event.  

Transmission model 
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A standard SIR (Susceptible, Infectious, Recovered) model was used to simulate MORV 

transmission [34,35]. The deterministic version of this model is given by the following set of 

coupled ordinary differential equations: 

𝑑𝑆

𝑑𝑡
=𝐵(𝑡) 𝑁−𝛽𝑆

𝐼

𝑁
 –𝜇 𝑆 

𝑑𝐼

𝑑𝑡
=𝛽𝑆

𝐼

𝑁
 – 𝛾 𝐼 – 𝜇 𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾 𝐼 – 𝜇 𝑅 

where B(t) is the time-dependent birth function described earlier, 𝜇 represents the mortality rate, 𝛾 

is 1/infectious period, and 𝛽 = 𝑐𝑝 is the transmission coefficient, which is composed of p (rate at 

which S becomes I when in contact with an I individual) and contact-density function 𝑐(
𝑁

𝐴
) that can 

acquire different shapes depending on population density (explained below).  

For comparing the infection invasion and persistence probabilities between different contact-density 

functions, we used a stochastic discrete time version of the SIR model, where the transition rates 

between categories were modelled stochastically, resulting in two possible stochastic events: 

infection (decrease of S, increase of I) and recovery (decrease of I, increase of R). Events were 

assumed to occur continuously in time at a certain rate, and were modelled using the “adaptive tau-

leap” algorithm described in [33,36]. Briefly, each short time-step 𝛿𝑡, the number of events of each 

type that occurs is randomly drawn from a Poisson distribution with mean 𝑟𝑖 𝛿𝑡, where 𝑟𝑖 is the rate 

of each type of event i. If the number of simulated events would cause any of the categories (S, I or 

R) to fall below 0, 𝛿𝑡 is halved and new events are drawn (= “adaptive tau-leap”).  

The model started at 𝑡 = 0 and one infected individual was introduced after one year, at 𝑡0 = 1 

(𝐼 → 1) in order to allow the initial population dynamics to stabilise. Different introduction times 

only had an effect on the linear and sigmoid functions, where they resulted in lower invasion 

probabilities between 𝑡0 values of 1.2 and 1.4, which was likely a result of the low population 

densities (Appendix Figure S2-1). There was no effect of introduction time on disease persistence 

(Appendix Figure S2-2). 

Four different contact-density functions 

The core of this study is the implementation of four different, biologically relevant contact-density 

functions  𝑐 = 𝑓(𝑁

𝐴
) (Fig. 1): 

 (a) Constant function (or “frequency-dependence”) 𝑐 = 𝑎1 (𝑁

𝐴
)0, with fitting parameter a1. 

Independent of density, and typically (but not only) used in the case of sexually transmitted 
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infections where the number of sexual contacts is not expected to change with population density 

[5,7].  

 (b) Linear function (or “density-dependence”) 𝑐 = 𝑎2 (𝑁

𝐴
) , with fitting parameter a2. 

Typically used when assuming random mixing where (infectious) contacts increase linearly with 

population density [35,37].  

 (c) Power function 𝑐 =  𝑎3(𝑁

𝐴
)𝑎4 , with fitting parameters a3 and a4. Has been used as an 

“intermediate” between frequency- and density-dependence [9,20]. Contact rates increase almost 

linearly at low densities, but the slope decreases at higher densities towards an asymptotic limit. 

This shape has been observed for contact rates in brushtail possums and elk [38–40], and has been 

shown to be a better predictor of cowpox transmission patterns than either frequency- or density-

dependence [13]. 

 (d) Sigmoid function 𝑐 = 𝑎5/(1 + 𝑒
𝑎6 ((𝑁

𝐴
)−𝑎7)

) with fitting parameters a5, a6 and a7. This 

function has a minimum, constant number of contacts at low densities, after which contact rates 

increase almost linearly with density until reaching a plateau when reaching a maximum number of 

contacts. This shape has been observed for multimammate mice contacts [23], and has been 

proposed previously as a biologically plausible function [9]. 

These four different functions could in theory acquire an infinite number of shapes, so in order to 

realistically model these four functions, they were fitted to empirical contact-density data of M. 

natalensis [23] using a maximum likelihood approach. 

Fitting transmission coefficient β 

Considering that 𝛽 = 𝑐𝑝, after fitting contact parameter 𝑐(
𝑁

𝐴
) to contact-density data for the four 

functions, a transmission rate p had to be determined before being able to compare the effect of the 

different transmission-density functions. Equivalent to fitting model parameters to data, a function-

specific constant (qi) had to be fitted for each function i to a common characteristic. Out of 

numerous possible characteristics to choose for fitting, we opted for one that ensured that β, 

summed across the probability distribution of population densities occurring during one year in a 

simulated, deterministic model of demography, was the same for each contact function. Formally, 

this meant that: 𝛽 = 𝑞𝑖× ∑ 𝑓𝑐(
𝑁

𝐴
)𝑗×ℎ(

𝑁

𝐴
)𝑗

300
𝑗=1 , where fc is the contact-density function, j is 

population density and h is the frequency distribution of densities in a year. We chose this method 

because it has the advantage of not selecting for certain outbreak characteristics such as prevalence 

or outbreak size. We nevertheless also examined the effect of using two different fitting methods; 
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one that fitted qi so that the deterministic transmission models resulted in a maximum annual 

prevalence of 40%, and one where qi was fitted so that the final annual number of infections was 

2N0, i.e. twice (an arbitrarily chosen number) the initial number of individuals). While these 

different fitting methods resulted in highly different values for the constant function, the three other 

functions were always very similar (Appendix Table S3-1 and Figure S3-1). As we are mainly 

interested in the differences between the three non-constant functions, we did not further investigate 

these effects using the two other β-fitting methods.    

Statistics 

The effects of the contact-density functions were investigated through a number of meaningful 

epidemiological parameters: (1) SIR dynamics; (2) Incidence ( 𝛽𝑆
𝐼

𝑁
) ; (3) Prevalence (

𝐼

𝑁
); (4) 

Invasion probability, defined as the proportion of stochastic simulations in which the infection 

manages to survive the first year after introduction, conditional on having started successfully 

(successful start = infection persistence time > t0 + infectious period); (5) Persistence probability, 

defined as the proportion of stochastic simulations in which, conditional on having survived the 

first year, the infection is still present at t = 10 years. The first three parameters were investigated 

using deterministic models, while the latter two were calculated using stochastic simulations. 

Invasion and persistence were estimated under a number of conditions of population size (N0), 

infectious period (
1

𝛾
) and transmission rate (p), where for each combination of these conditions 

1,000 simulations were run. While we model changes in population density for each combination of 

parameters, we also assess the effect of population size because this is expected to affect the 

probability for the infection to disappear from the population, independent of density. In order to 

ensure that we here implemented the effects of population size and not density, population density 𝑁

𝐴
 

was calculated assuming that the area occupied when initial population size N0 = 100 is 1 ha, and 

that area increases linearly with increasing values of N0 (i.e. when initial population size increases, 

area also increases).  

Results 

Deterministic models 

Because we are interested in the broad qualitative effects of the contact-density functions rather 

than in detailed differences that are more likely to be specific to the model system, we here report 

the results qualitatively. The constant function resulted in a relatively low epidemic peak during the 

breeding season, while the other three functions (and especially the sigmoid function) showed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 19, 2017. ; https://doi.org/10.1101/101535doi: bioRxiv preprint 

https://doi.org/10.1101/101535
http://creativecommons.org/licenses/by-nc-nd/4.0/


similar patterns with a clear epidemic peak (Figure 2). Incidence (𝛽𝑆
𝐼

𝑁
 ) and prevalence (

𝐼

𝑁
) were 

spread evenly across the year for the constant function, while the epidemic peak observed for the 

other three functions coincided with a concentrated pulse in both incidence and prevalence (Figure 

3). The sigmoid function resulted in a slightly later but steeper incidence increase, and a higher 

maximum incidence (Figure 3a). Prevalence was similar for the three non-constant functions 

(Figure 3b). 

Invasion and persistence 

Using a stochastic version of the deterministic SIR models, invasion and persistence probabilities 

were investigated for a range of population sizes (N0), infectious periods (1/γ) and transmission 

probabilities (p). Note that while infectious period results are reported in absolute days, they should 

be interpreted in relation to the demographic timescale used in the simulations (e.g. annual breeding, 

brief recruitment period), as this will aid comparison with other pathogen-host systems in which 

host densities fluctuate [33]. 

Successful invasion and persistence were more often observed for the constant function than for the 

other functions. While the invasion and persistence probabilities for the linear and power functions 

were intermediate and quite similar to each other, the sigmoid function generally resulted in low 

invasion and persistence success (Figures 4 and 5). For the constant function, even at low 

population sizes successful invasion was almost certain for infectious periods of 30 days and longer, 

and was even observed for an infectious period of 7 days in sufficiently large populations (Figure 4). 

In contrast, for the other functions successful invasion was never observed below infectious periods 

of 7 days, and even with an infectious period of 30 days invasion was rare for the sigmoid function. 

Similar patterns were observed for persistence, where the constant function resulted in the highest 

persistence probability while the linear and power functions had similar persistence probabilities, 

intermediate between those of the constant and sigmoid functions. 

The effect of transmission rate on invasion and persistence was more similar between the constant, 

linear and power functions than that of infectious period, although the constant function still 

resulted in more successful invasion/persistence at lower transmission probabilities (Appendix 

Figures S4-1 and S4-2). The sigmoid function however was more affected by transmission 

probabilities than the other three functions, where for an infectious period of 30 days persistence 

was only possible for a combination of high transmission rate and large population size (Figure S4-

2).  
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Invasion, but not persistence, was affected by the time of the year at which the infection was 

introduced (Appendix Figures S2-1 and S2-2). While this effect was weak for the constant and 

power functions, and intermediate for the linear function, the sigmoid function clearly resulted in a 

high sensitivity to the introduction time. For t0 = 1.2 and t0 = 1.4, which corresponds with the low-

density period (Appendix Figure S1-1), invasion probability was extremely low. 

Discussion 

Models of disease transmission in which population densities fluctuate or are otherwise 

implemented cannot avoid assuming a way in which transmission scales with density [9]. We found 

a number of important differences between different shapes of the contact-density function. The 

constant (frequency-dependent) function was the most distinctive; invasion and persistence 

probabilities were always higher than for the other functions and were the least sensitive to low 

population size, infectious period or transmission rate. SIR dynamic patterns of the constant 

function exhibited lower and less fluctuating incidence and prevalence, with a smaller epidemic 

outbreak peak, than in the case of the other functions. In contrast, the patterns caused by the linear, 

power and sigmoid functions were similar to each other, although there were still a number of 

important differences. The sigmoid function gave the most pronounced incidence peak, with 

incidence rates that were high during but very low outside the recruitment (birthing) season. 

Consequently, the sigmoid function also resulted in the lowest invasion and persistence 

probabilities, and was the most sensitive to population size, length of the infectious period, 

transmission rate and timing of introduction. The linear (density-dependent) and power functions 

resulted in similar, less extreme incidence rates and higher invasion and persistence probabilities 

than the sigmoid function. Depending on the time at which the infection is introduced, the 

differences between the contact functions can become even more pronounced. 

The different consequences of the contact-density functions can likely be attributed to a number of 

key differences in their shapes. Considering that the infection is most sensitive to extinction during 

periods of low population density, the size of transmission coefficient β at low densities will be a 

highly influential factor. An important consequence of this is that larger population sizes are 

necessary for successful disease invasion/persistence when β is low during low-density periods. In 

our case, for example, a minimum population size of 10,000 (equivalent to a 100ha area) was 

necessary for a 50% persistence success rate for the power function (30-day infectious period), 

while this was 50,000 for the linear function and larger than 100,000 (not tested) for the sigmoid 

function. Knowledge of contact rates at low population densities is therefore critical when 

estimating invasion and persistence thresholds. 
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A second important factor is the rate at which β increases with density. The maximum incidence 

rate and the corresponding epidemic peak will be more pronounced when there is a strong increase 

of β with density (e.g. the sigmoid function at intermediate densities, but also the linear and power 

functions). The sigmoid function for example results in a steep increase in transmission rates during 

the juvenile recruitment season as soon as a threshold density of susceptibles is reached (here 

around 80-100/ha). 

When looking at SIR dynamics and invasion/persistence of the three non-constant functions, a 

contrast emerges than can have significant implications for fitting a β-density function to 

epidemiological data: while there was a clear effect of function shape on invasion and persistence, 

SIR dynamic patterns were quite similar. This means that it would be difficult to discern between 

different contact-density functions when fitting model parameters to real, inherently noisy data 

[3,9,13]. Nevertheless, because the functions do introduce different invasion and persistence 

probabilities, it will in some situations be crucial to implement the correct function. Ideally this 

choice is based on the quantified contact-density or transmission-density relationship of the 

host/infection system that is being studied, but such data are rarely available, and it would in any 

case not be feasible to collect these data for each infection-species combination.  

A more realistic approach could be to establish general links between certain biological traits and 

contact and transmission patterns. The shape of the transmission-density function is determined by 

a combination of infection and host characteristics, so based on these characteristics, it should 

theoretically be possible to a priori predict the shape of the function. Knowledge of density-

dependent changes in home range size and overlap could for example be a useful proxy for the 

contact-density function. For male brushtail possums (Trichosurus vulpecula) it has been 

established that contacts increase with density according to a positive power function [39], which 

fits with the fact that this species is not territorial, and with the observation that home ranges are 

larger at low densities which may result in the maintenance of contacts. Such an inverse correlation 

between home range size and density was also observed for M. natalensis [41], and this may have 

similar results on contact rates at low densities, as maintenance of contacts even at very low 

densities was also observed for this species [23]. This pattern would be expected to be different for 

territorial species. In an enclosure experiment, movements of meadow voles (Microtus 

pennsylvanicus), which are strongly territorial, decrease significantly with density [42], and 

although the effect of density on contacts was not measured, it is not unlikely that this decrease in 

movement distance corresponds with a contact-density function that does not increase, or at least 

not linearly. As a final example, consider the experimental study of the transmission of the parasitic 
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mite Coccipolipus hippodamiae in populations of the two-spot ladybird (Adalia bipunctata) [18]. 

The mite is transmitted sexually, and although sexual contacts are typically assumed to be 

frequency-dependent, the authors observed that the transmission-density function was closer to 

linear density-dependence and therefore concluded that the common assumption that sexual 

transmission is frequency-dependent is not always true. Their study species (A. bipunctata) 

however is known to be highly promiscuous, which means that sexual contacts are not limited to 

one or a few mates, but instead increase with density. A priori use of this knowledge about host and 

infection biology would have resulted in the more accurate prediction that sexual transmission of C. 

hippodamiae is density- rather than frequency-dependent. 

Many wildlife species experience seasonal birth pulses and density fluctuations, and while it has 

been established that birth pulses can have strong effects on disease transmission [33], we now see 

that the shape of the transmission-density function can have further significant effects on disease 

invasion and persistence. The implementation of the transmission-density function should therefore 

be done with care, and as informed as possible. Although currently few studies have quantified the 

relationship between contacts and density, all relevant knowledge about host biology and behaviour 

can be used for deciding on the best possible shape of the transmission-density function.  
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Figures 

 

Figure 1. Contact-density functions fitted to experimental data from Borremans et al. [23], showing 

mean degree (the number of individuals one focus individual contacted) for a range of population 

densities (number of animals per ha = 𝑁

𝐴
). 
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Figure 2. Output of the deterministic models, using four different contact-density functions. 
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Figure 3. Incidence (a) and prevalence (b) for the different contact-density functions, during one 

year.  

 

Figure 4. Invasion probabilities for the different contact-density functions, for a range of infectious 

periods 
1

𝛾
 and initial population sizes N0 (transmission rate p = 50). Simulations were conducted for 

all values indicated by tick marks on the axes, and results are interpolated between these values for 

illustration. 
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Figure 5. Persistence probabilities for the different contact-density functions, for a range of 

infectious periods 
1

𝛾
 and initial population sizes N0 (transmission rate p = 50). Simulations were 

conducted for all values indicated by tick marks on the axes, and results are interpolated between 

these values for illustration. 
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