Abstract
Hepatocellular carcinoma (HCC) is influenced by numerous factors, which results in diverse genetic, epigenetic and transcriptional scenarios, thus posing obvious challenges for disease management. We scrutinized the molecular heterogeneity of HCC with a multi-omics approach in two small cohorts of resected and explanted livers. Whole-genome transcriptomics was conducted, including polyadenylated transcripts and micro (mi)-RNAs. Copy number variants (CNV) were inferred from whole genome low-pass sequencing data. Fifty-six cancer-related genes were screened using an oncology panel assay. HCC was associated with a dramatic transcriptional deregulation of hundreds of protein-coding genes suggesting downregulation of drugs catabolism, induction of inflammatory responses, and increased cell proliferation in resected livers. Moreover, several long non-coding RNAs and miRNAs not reported previously in the context of HCC were found deregulated. In explanted livers, downregulation of genes involved in energy-producing processes and upregulation of genes aiding in glycolysis were detected. Numerous CNV events were observed, with conspicuous hotspots on chromosomes 1 and 17. Amplifications were more common than deletions, and spanned regions containing genes potentially involved in tumorigenesis. CSF1R, FGFR3, FLT3, NPM1, PDGFRA, PTEN, SMO and TP53 were mutated in all tumors, while other 26 cancer-related genes were mutated with variable penetrance. Our results highlight a remarkable molecular heterogeneity between HCC tumors and reinforce the notion that precision medicine approaches are urgently needed for cancer treatment. We expect that our results will serve as a valuable dataset that will generate hypotheses for us or other researchers to evaluate to ultimately improve our understanding of HCC biology.
Footnotes
Competing interest: The authors declare that no competing interest exists
This work was supported by funding from Alberta Innovates Technology Futures-Innovates Centres of Research Excellence (AITF-iCORE) to GKSW.