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Abstract 
Resting-state network connectivity has been associated with a variety of cognitive 
abilities, yet it remains unclear how these connectivity properties might contribute to the 
neurocognitive computations underlying these abilities. We designed a new approach – 
information transfer mapping – to test the hypothesis that resting-state functional 
network topology describes the computational mappings between brain regions that 
carry cognitive task information. Confirming this, we found that diverse task-rule 
information could be predicted in held-out brain regions based on estimated activity flow 
through resting-state network connections. Further, we found that these task-rule 
information transfers were consistently coordinated by global hub regions within 
cognitive control networks. Activity flow over resting-state connections thus provides a 
large-scale network mechanism for cognitive task information transfer and global 
information coordination in the human brain, demonstrating the cognitive relevance of 
resting-state network topology. 
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 The human brain is thought to be a distributed information processing device, 
with its routes of information transfer as a core feature determining its computational 
architecture. Many studies have utilized correlations among resting-state functional MRI 
(fMRI) time series to study functional connectivity (FC) in the human brain1 (see ref. 1 
for review). It remains unclear, however, if these resting-state FC routes are related to 
the brain’s routes of information transfer. Evidence that group and individual differences 
in resting-state FC correlate with cognitive differences2–4 suggests a systematic 
relationship between resting-state FC and cognitive information processing. However, 
without linking FC to information transfer, it remains unclear whether or how resting-
state FC might mechanistically contribute to neurocognitive computations. Additionally, 
while a number of studies have shown that task information representations are 
distributed throughout the brain5–8, such studies have yet to reveal how these distributed 
representations are coordinated, and how information in any one brain region is used by 
other brain regions to produce cognitive computations9. Other studies investigating 
interdependence of brain regions during tasks (rather than during rest) have typically 
emphasized statistical dependencies between regional time series10–12, rather than 
considering the mechanistic transfer of task-relevant information content (reflected in 
task activation patterns13) between those regions. Thus, it remains unclear whether or 
how the network topology described by either resting-state or task-evoked FC is 
relevant to the neurocognitive computations underlying task performance. 
 Here, we provide evidence for a network mechanism underlying the transfer and 
coordination of distributed cognitive information during performance of a variety of 
complex multi-rule tasks. Based on recent evidence that resting-state FC describes the 
routes of task-evoked activity flow14 (Fig. 1A) – the movement of task activations 
between brain regions – we hypothesized that resting-state network topology describes 
the mappings underlying task information transfer between brain regions. If true, this 
hypothesis implicates a network mechanism for an information-preserving mapping 
across brain regions involving communication “channels”9,15 described by resting-state 
network topology. Identifying such a mechanism would provide an important new 
window into the large-scale information processing architecture of the human brain. 
 We focus primarily on resting-state FC based on evidence that resting-state FC 
reflects the human brain’s invariant global routing architecture16,17. Supporting this, it 
has been recently demonstrated that most of the functional network topology variance 
present during task performance (80%) is already present during rest18,19. Thus, resting-
state FC primarily reflects an intrinsic functional network architecture that is present 
regardless of cognitive context, given that there are only moderate changes to 
functional network organization across tasks18,19. We built upon these findings to test for 
a potential mechanistic role for intrinsic network topology in task-related information 
processing.  
 Our hypothesis required an approach to empirically derive the mapping between 
information representations of pairs of brain regions, similar to identifying the 
transformation weights between layers in a neural network model20. This approach 
contrasts with two previous approaches that describe the coordination of task-relevant 
information between brain regions. The first approach measures small shifts in task-
evoked FC according to task-relevant content10,12. The second approach measures the 
correlation of moment-to-moment fluctuations in information content between regions21. 
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Critically, these approaches are primarily descriptive (i.e., describing time-dependent 
statistical dependencies) rather than suggesting a large-scale mechanism by which task 
representations are mapped between brain regions. Thus, neither of these previous 
approaches were appropriate for characterizing a computational mechanism by which 
cognitive information is mapped between regions. Nonetheless, these previous 
approaches were important for demonstrating the basic phenomenon of large-scale task 
information coordination, which we sought to better understand via the recently 
developed activity flow mapping approach14. 
 The hypothesis that fine-grained, resting-state FC describes the representational 
mappings between brain regions during tasks is compatible with several recent findings. 
First, resting-state FC topology was recently shown to be highly structured and 
reproducible, forming clusters of networks consistent with known functional systems22–

24. Second, as already mentioned, these resting-state networks are likely task-relevant 
given recent demonstrations that the network architecture estimated by resting-state FC 
is highly similar to FC architectures present during a variety of tasks18,19. Third, in 
addition to reflecting large-scale connectivity patterns, resting-state FC has been shown 
to reflect local topological mappings between retinotopic field maps in visual cortex, 
highlighting the specificity with which resting-state FC conserves functionally tuned 
connections25,26. Finally, resting-state FC has been shown to systematically relate to 
task-evoked activations, allowing prediction of task-evoked activations in held-out 
individuals across a variety of tasks14,27. This suggests a strong role for resting-state FC 
in shaping task activations – a core feature of our hypothesis that resting-state FC 
carries the fine-grained activation patterns that represent task-relevant information. 

Testing our hypothesis required the creation of a new approach – information 
transfer mapping – which quantifies the amount of information transferred between pairs 
of brain regions over resting-state FC (Fig. 1B,C; see Methods). Broadly, information 
transfer mapping tests the ability of resting-state FC topology to compute mathematical 
transformations between brain regions. It further tests whether the involved matrix 
transformations preserve task-specific information. In other words, the mapping must 
preserve the predicted region’s representational space such that task information is 
decodable after the matrix transformation on the source region’s activation pattern. By 
utilizing resting-state FC topology to compute inter-region mathematical 
transformations, our approach bridges biophysical and computational properties into a 
single convergent framework. 

This approach builds upon our recently-developed “activity flow mapping” 
framework14 (Fig. 1A), and allows us to predict the activation pattern in a held-out region 
based on a “source” region’s activation pattern (Fig. 1B). This predicted activation 
pattern is then compared to that region’s actual activation pattern during the current task 
condition (Fig. 1C). This “matched condition” predicted-to-actual similarity is then 
compared to the “mismatched condition” predicted-to-actual similarity, with the 
difference in similarity quantifying the amount of task-specific information present in the 
prediction. Since the prediction was based on activity flow over resting-state FC 
patterns, this quantifies the amount of task-relevant information transferred via resting-
state FC. Note that it was important to compare the predicted with the actual activation 
pattern (rather than simply decoding the predicted activation pattern), to ensure that our 
prediction preserved the same representational geometry as the target region’s actual 
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activation pattern. Thus, the predicted-to-actual similarity comparison is a more valid 
test of information transfer than simply decoding predicted activation patterns. Following 
computational validation of this approach we apply it to test our primary hypothesis, in 
addition to several more specific hypotheses described below. 
 

 
Figure 1. Activity Flow Mapping. A) Computational principle of activity flow mapping, as 
utilized by Cole et al. (2016). Activity in a held-out region is predicted by computing the linear 
weighted sum of all other regions’ activity weighted by those regions’ resting-state FC estimates 
to the held-out region. B) New approach involving activity flow mapping between vertices (or 
voxels) of isolated regions (“many-to-many” rather than “all-to-one” mapping of regions). We 
extend the underlying mechanism of activity flow mapping to compute the mapping of activity 
between regions. Mathematically, we predict the activation pattern in Region B by computing 
the dot product of Region A’s activation pattern vector with the vertex-to-vertex resting-state FC 
matrix between Region A and B. This is conceptually similar to the formalism in (A), but 
extended to two distinct sets of regions. C) Mapping information transfer via region-to-region 
activity flow mapping and representational similarity analysis on held-out data. To test the 
transfer of task information for a given task block from Region A to Region B, we compare the 
predicted activation patterns from Region A to Region B to the actual, held-out prototypical task 
activation patterns of Region B for all task conditions using a spatial Spearman’s rank 
correlation. For every prediction, spatial correlations to the task prototypes are computed and 
the information transfer estimate is measured by taking the difference of the correctly matched 
spatial correlation to the average of the incorrectly matched (mismatched) spatial correlations. 
Here we depict the approach for only two task conditions. 
 

Going beyond our general hypothesis, we additionally sought to focus on the 
contribution of particular features of resting-state network topology in contributing to 
task-related information transfer. Recent studies have identified domain-general “flexible 
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hub” networks with widespread resting-state FC and high activity during cognitive 
control tasks10,28,29. The high involvement of these cognitive control networks – the 
frontoparietal network (FPN), cingulo-opercular network (CON), and dorsal attention 
network (DAN) – in cognitively-demanding processes suggests a role for flexibly 
transferring task information across regions and networks.  

We sought to isolate cognitive representations that would likely involve cognitive 
control networks by using a cognitive paradigm that involves multiple features thought to 
be central to cognitive control. First, we used novel tasks given the need for control to 
specify behavior in such under-practiced scenarios30,31. Second, we used complex tasks 
given the need to deploy additional cognitive control resources when working memory is 
taxed32. Finally, we used a variety of abstract rules given that such rules are thought to 
be represented within cognitive control networks5,33,34. Using many rules also allowed us 
to test our hypotheses across a variety of task conditions. These features converge in 
the Concrete Permuted Rule Operations paradigm (C-PRO; Fig. 2). This paradigm was 
developed as part of this study, and is a modified version of the PRO paradigm (Cole et 
al., 2010a). We utilized this paradigm to observe how task-rule representations were 
transferred across brain regions. We predicted that cognitive control networks would 
flexibly represent C-PRO rule information and transfer that information to other regions 
and networks through their widespread intrinsic connections. 
 

 
Figure 2. Concrete Permuted Rule Operations (C-PRO) experimental paradigm. For a 
given task, subjects were presented with an instruction set (i.e., a task-rule set), in which they 
were presented with three rules each from a different rule domain (logic, sensory, and motor 
rule domains). Subjects were then asked to apply the presented rule set to two consecutively 
presented stimulus screens and respond accordingly. Auditory and visual stimuli were 
presented simultaneously for each stimulus screen. The auditory waveforms are depicted 
visually but were not presented visually to participants. A mini-block design was used, in which 
for a given set of instructions three trials were presented consecutively. The inter-trial interval 
was set to a constant 1570ms (2 TRs), with a jittered delay following the three trials prior to the 
subsequent task block (see Methods for more details). Task blocks lasted 28.260 seconds, or 
36 TRs. 
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 We began by replicating previously established properties of cognitive control 
networks, such as widespread resting-state FC23,28. We then used this replication to 
motivate a computational model that validates the effectiveness of the information 
transfer mapping procedure for estimating the role of resting-state network topology in 
transferring task information. Finally, we apply this framework to empirical fMRI data, 
allowing us to test our hypotheses that (1) resting-state FC describes the channels of 
task information transfer and (2) cognitive control networks play an integral role in 
transferring task information to other regions based on their intrinsic functional network 
properties. 
  
 
Results 
 
Network organization of cognitive control networks 
 
 Cognitive control networks have been shown to exhibit connectivity profiles 
typical of hubs, indicating that they are optimally positioned to receive and distribute 
large amounts of information throughout the brain23,28,29,36. Additionally, regions within 
these networks adapt flexibly across tasks10,37,38. Thus, converging evidence indicates 
that cognitive control networks behave as flexible hub networks critical for coordinating 
cognition throughout the human brain. Given the recent replication crisis in 
neuroscience and other fields39,40, we sought to replicate the hub-like characteristic of 
cognitive control networks before moving forward with analyses that build on these 
previous findings. 
 Note that we used a recently developed set of functionally defined cortical 
regions41. This region set is potentially more accurate than previous definitions, given 
that it is based on agreement across multiple neuroimaging modalities. This is important 
given that each modality has limitations that are often compensated for by other 
modalities, such that areal borders agreeing across modalities may be more accurate. 
Since cognitive control networks were not yet defined with this region set, we used 
community detection with resting-state FC to define these and other resting-state 
networks (Fig. 3A; see Methods for details). 

In our effort to replicate the hub-like properties characteristic of cognitive control 
networks23,28, we tested whether cognitive control networks are hubs, based on having 
widespread intrinsic out-of-network FC estimated at rest. We constrained our analyses 
to seven networks (Fig. 3A), identified by being replicated across multiple previously 
published functional network atlases22–24. We focused on out-of-network connectivity to 
reduce the bias toward larger mean connectivity (i.e., weighted degree centrality, or 
global brain connectivity28) for larger networks23,29. We found that the top three networks 
with highest out-of-network intrinsic FC were the three cognitive control networks (Fig. 
3D; all cognitive control networks greater than all non-cognitive control networks; FDR-
corrected p < 0.0001). Given our hypothesis that resting-state connections describe the 
channels by which information transfers occur, the underlying resting-state network 
topology should shape the flow of information during task states. Specifically, we 
hypothesized that networks with high out-of-network resting-state FC (i.e., cognitive 
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control networks) play a disproportionate role in shaping information transfer between 
regions belonging to distinct networks. 
 

 
Figure 3. Large-scale network organization during rest. A) Surface visualization of network 
organization of the human cerebral cortex. Using a recently released, multi-modal parcellation of 
the human cerebral cortex41, we assigned each region to a functional network using the 
Generalized Louvain method for community detection with resting-state fMRI data. We 
designated functional labels to seven networks that were replicated with other network 
assignments22–24. B) Whole-brain resting-state FC matrix computed using a Pearson correlation 
for every pair of regions in the Glasser et al. parcels. Color bars along the rows and columns 
denote network assignments. C) Whole-brain resting-state FC matrix computed using multiple 
linear regression. For every parcel’s time series, we fit a multiple linear regression model using 
the time series of all other parcels in the atlas as regressors of the target parcel. D) Averaged 
out-of-network resting-state FC for each defined functional network. Using multiple regression to 
estimate intrinsic FC during resting-state scans, we found that cognitive control networks had 
higher average out-of-network intrinsic FC estimates relative to non-cognitive control networks 
(i.e., DMN and sensorimotor networks). Error bars reflect across-subject standard error. 
 
Validation of information transfer mapping in a neural network model 
 
 We previously established that activity flow over resting-state networks was a 
non-trivial phenomenon in that it depends on sufficiently large global coupling (i.e., high 
average inter-region connectivity strength) relative to local processing (i.e., high 
recurrent within-region connectivity strength)14. However, it remains unclear whether 
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networks containing task information differentially transfer that information to other 
networks via activity flow over resting-state FC. We tested this possibility by shifting 
from an “all-to-one” activity flow approach14 to modeling activity flow between each pair 
of networks separately. Note that we focus on network-to-network information transfer 
here, but later extend the approach to region-to-region information transfer. 

We sought to validate this approach using a simple abstract neural network 
model with one hub network and four non-hub networks (see Methods; Fig. 4A). This 
network organization was the basis for simulating fMRI BOLD dynamics during rest and 
task states, allowing us to establish a “ground truth” upon which to test the efficacy of 
the new information transfer mapping approach. This validation-via-modeling method 
was highly similar to the simple neural network model we previously used to validate the 
original activity flow mapping approach14. Using Wilson-Cowan type firing rate 
dynamics42,43, we simulated resting state and four distinct task states, simulated the 
transformation of the simulated neural signals to fMRI data (see Methods), and 
estimated resting-state FC (Fig. 4B) and task-evoked fMRI runs for each of the four task 
conditions (Fig. 4C).  

We found that simulated resting-state FC accurately reflected high out-of-network 
intrinsic FC topology for the hub network (Fig. 4D). Further, given the underlying 
synaptic connectivity structure (Fig. 4A) and the estimated intrinsic topology via resting-
state FC (Fig. 4B,D), we hypothesized that information transfer to and from the hub 
network would reliably preserve task-specific information. Using the information transfer 
mapping approach (Fig. 1C; see Methods), we quantified the amount of information 
transfer via activity flow between every pair of networks (Fig. 4E). We found that 
information transfer to/from the flexible hub network and non-hub networks preserved 
task-specific representations, while transfers between pairs of non-hub networks did not 
preserve statistically significant representations after FDR-correction (Fig. 4E; FDR-
corrected p < 0.05). These results suggest that FC estimates obtained during simulated 
resting-state fMRI dynamics adequately reflect underlying synaptic organization, and 
that these estimates are sufficient to describe the mappings that govern activity flow 
between functional networks. 
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Figure 4. Computational validation of network-to-network information transfer mapping. 
A) Underlying synaptic weight matrix with four local networks and one hub network. We 
constructed an abstract neural network with a single hub network to see the relative effect of 
information transfer from the hub network to downstream local networks, similar to the 
hypothesized computational function of the cognitive control networks during task. B) 
Recovering large-scale synaptic organization via multiple regression FC estimates on a 
simulated resting-state time series. Using multiple regression FC, we recovered similar 
connectivity architecture to the underlying synaptic connectivity. C) We simulated four ‘cognitive 
control tasks’ by stimulating four distinct ensembles of regions within the flexible hub network. 
D) Increased out-of-network intrinsic FC reflects underlying synaptic organization. We validated 
that intrinsic FC estimates from rest preserve the underlying large-scale synaptic organization, 
where the flexible hub network has statistically greater out-of-network intrinsic FC than the other 
networks. Error bars represent across-subject standard error. E) Thresholded information 
transfer estimates between pairs of networks in a neural network model. Each row in the matrix 
corresponds to a source network from which we mapped activation patterns to other target 
networks using our information transfer mapping procedure (Fig. 1C). Each column in the matrix 
corresponds to a target network to which we compared the predicted-to-actual activation 
patterns. FDR-corrected thresholded T-statistic map with p < 0.05. For every pair-wise network-
to-network information transfer mapping, we performed an across-subject t-test of our 
information transfer estimates (Fig. 1C) against zero.  

 
These model simulations validate the plausibility of two hypotheses critical to the 

information transfer mechanism: (1) Resting-state FC is an adequate estimate of 
underlying intrinsic FC (reflecting aggregate synaptic connectivity and communication 
channel capacity); (2) Intrinsic FC describes the information-preserving mappings 
necessary to predict task-relevant activation patterns from one network to another. 
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These model results validate the analytical basis of estimating information transfer via 
activity flow, which is applied to network-to-network and region-to-region information 
transfer mapping with empirical fMRI data below. 
 
Regions communicate task information via activity flow between fine-grained vertex 
representations 
 

While our previous study demonstrated activity flow as a macroscopic 
mechanism for predicting whole-brain cognitive task activations14, information is known 
to persist at lower levels of organization, such as in voxel/vertex patterns in fMRI data 
and neuronal ensembles in neurophysiological studies6,38. Further, though propagation 
of task activity has been shown to be possible in animal models 44,45, task-set 
information transfer between cortical regions and networks has not been shown in the 
human brain.  

We were primarily interested in region-to-region information transfer given the 
finer spatial information involved, allowing for a more fine-grained mapping of 
information transfer throughout the brain. However, as in our computational model, we 
first focused on information transfer mapping between functional networks. Using the 
same information transfer mapping procedure as in the model, information was mapped 
between entire functional networks using region-level activation patterns and region-to-
region FC measures (i.e., network-to-network information transfer; Supplementary Fig. 
1; see Methods). As in our previous study14, multiple regression FC was used for 
resting-state FC estimation. We first established that task-rule information is widely 
distributed across entire functional networks (Supplementary Fig. 1A). This allowed us 
to then evaluate whether decodable representations of information were transferred to 
other functional networks. We found that functional networks differentially transferred 
task-set information (p<0.05, FDR-corrected for multiple comparisons) depending on the 
task-rule domain and the networks involved (Supplementary Fig. 1B-D). These network-
to-network information transfers reinforce the computational principles underlying our 
computational model with empirical data. 
 We next sought to investigate whether fine-grained (i.e., vertex-to-vertex) resting-
state connections between pairs of regions could approximate the information-
preserving mapping of activation patterns between regions. To establish whether 
information transfer between individual pairs of regions could occur, we first needed to 
establish whether regions contained decodable task-rule representations. Thus, we first 
quantified the information content of each rule domain in the C-PRO paradigm (logic, 
sensory and motor rule domains) for each of the 360 parcels using activation patterns 
(at the vertex level) with a cross-validated representational similarity analysis (see 
Methods). We found that logic rules were relatively distributed, with highest-quality 
representations in frontal and parietal cortices (FDR-corrected p < 0.05; Fig. 5A). 
Sensory rule information was also relatively distributed (FDR-corrected p < 0.05; Fig. 
5B), though the highest-quality representations were predominantly in visual areas. 
Lastly, we found that motor rule representations were significantly more localized, with 
the highest-quality representations in the somatomotor network (FDR-corrected p < 
0.05; Fig. 5C). The existence of distributed task-rule information in multiple cortical 
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regions allowed us to assess how task-rule-specific representations in one region might 
be transferred to other regions. 
 

 
Figure 5. Representational content of each region for each task-rule domain, prior to 
information transfer mapping. A) Thresholded whole-brain logic rule information estimate 
map. A cross-validated representational similarity analysis (quantifying degree of information 
representation; see Methods) for the logic rule domain was computed using vertices within 
every parcel. For each parcel, an average information estimate (see Methods) was computed 
for each subject, and a one-sided t-test was computed against zero across subjects. We then 
corrected for multiple comparisons across all cortical regions using FDR-correction, and 
thresholded the statistical map with p < 0.05. B) Thresholded whole-brain sensory rule 
information estimate map. As in the logic rule analysis, rule representations were highly 
distributed across the entire cortex, though representations were especially prominent in visual 
areas. C) Thresholded whole-brain motor rule information estimate map. Unlike the logic and 
sensory rule representations, motor rule representations were significantly more localized to the 
motor cortex. 
 
 

To test whether resting-state FC topology is capable of carrying task-rule 
representations between pairs of regions, we performed region-to-region information 
transfer mapping (Fig. 6) using within-region vertex-level representations and vertex-to-
vertex resting-state FC between regions (as in Fig. 1C; also see Methods). We 
performed this procedure for every pair of 360 regions, and visualized our results as a 
360x360 matrix for each rule domain (Fig. 6A,C,E). However, given the difficulty in 
visually interpreting information transfers between every pair of regions (due to 
sparseness), we collapsed the region-to-region matrix by network to better visualize 
significant region-to-region information transfers at the network level (FDR-corrected p < 
0.05; Fig. 6B,D,F). In addition, to see the relative anatomical position of regions that 
transferred information (i.e., source regions), we computed the percent of significant 
transfers from each cortical region for each rule domain, and plotted these percentages 
on the cortical surface (Fig. 7A-C). 

For logic rule mappings, while information transfers were highly distributed, most 
successful region-to-region information transfers predominantly involved the FPN and 
other frontoparietal regions (Figs 6B and 7A). In particular, regions within the FPN 
transferred information to other regions in the FPN, as well as regions in other cognitive 
control networks (i.e., CON and DAN) and DMN. These findings suggest that the FPN 
distributes logic rule representations both to other regions within the FPN as well as 
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other association cortex networks for task-set implementation and maintenance (Fig. 
6B). 

For sensory rule mappings, we found high specificity and sparseness of region-
to-region task information transfers (Fig. 7B). Most notably, we found that most sensory 
rule representations are predominantly transferred among regions within the DAN and 
visual (VIS) networks, as well as between those networks (Fig. 6C,D). While our results 
suggest the involvement of regions in other networks such as the CON, DMN, and FPN, 
previous studies have implicated a prominent role of the DAN and VIS in attentional 
processing of sensory information, consistent with the observed information transfers 
between these networks46. These findings potentially suggest sensory rule information 
is transferred between cognitive control networks, and transfers between regions in the 
DAN and VIS might implement these top-down information transfers.  

Lastly, we found the most information transfer specificity for motor rule 
representations (Figs 6E,F and 7C), consistent with the relatively localized 
representations of motor rule information (Fig. 5C). In particular, transfer of motor rule 
representations largely involved regions in the SMN (Figs 6F and 7C), while between-
network information transfer with the SMN primarily involved transfers between regions 
in the SMN and a cognitive control network (CON or DAN). Consistent with the previous 
rule domains, there was transfer from the FPN to other association cortex areas such as 
regions in the FPN, CON, and DMN. 

To characterize the generality by which rule information transfer occurred 
between specific networks, we performed an analysis to quantify transfers between 
networks across all rule domains. We found that regions within the FPN consistently 
transferred task rule information to the CON across all three rule domains (Fig. 6G). 
This finding is consistent with prior theories suggesting that the FPN implements task 
sets, while the CON is involved in task set maintenance47. In addition, we wanted to see 
which networks consistently transferred information across all rule domains, regardless 
of the target region’s network affiliation. We found that regions in the FPN and DAN 
were consistently involved in transferring information to other regions in all rule domains 
(Fig. 6H). To assess whether these transfers were from the same regions within each 
network, we performed an analysis to see if any individual region consistently 
transferred information across all rule domains. We found no individual region that 
consistently transferred task rule information across the three rule domains, suggesting 
that transfers from the FPN and DAN across the rule domains were from distinct regions 
within each network. This suggests that the regions within the FPN and DAN collectively 
act as a hub network to communicate rules in different cognitive domains. Thus, despite 
large differences in information transfer across the three rule domains, cognitive control 
networks play a critical role in task rule transfers, regardless of rule domain. 
 These results uncover two key findings: (1) resting-state network topology 
describes the mappings underlying information transfer across distributed regions and 
functional networks, and (2) cognitive control networks play a critical role in transferring 
task-rule information to content-specific networks (e.g., motor rule information to the 
SMN) during complex cognitive tasks. Our results show that resting-state FC can be 
used to describe the underlying information-preserving mappings between different 
cortical areas at multiple levels of spatial organization (i.e., regions and networks). 
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Figure 6. Information transfer mappings between all pairs of regions. A) Logic rule region-
to-region information transfer mapping. We visualized region-to-region information transfer 
mapping results as a 360x360 region matrix, with source regions along the rows and target 
regions along the columns. Cognitive control networks are underlined. B) Average number of 
region-to-region transfers by network affiliations. To better visualize and assess how region-to-
region transfer mappings may have been influenced by underlying network topology, we 
computed the percent of significant rule transfers for every network-to-network configuration 
(i.e., the percentage of region-to-region transfers from a network A to a network B). Information 
transfer of logic rule information is highly distributed, with information transferred both within and 
between-networks (particularly with the FPN). C,D) Sensory rule region-to-region information 
transfer mapping. Region-to-region information transfer are significantly sparser for sensory rule 
mappings, likely contrasting the distributed nature of higher-order task-rule transfers observed 
with logic rule mappings. E,F) Motor rule region-to-region information transfer mapping. Motor 
rule mappings are noticeably more localized within the motor network, suggesting more 
localized processing of motor rule information within motor regions. G) Information transfers 
between regions by network affiliation across rule domains. For each network visualization 
panel (i.e., panels B, D, and F) we binarized each matrix to assess whether or not there were 
region-to-region transfers for a particular network configuration for each rule domain. We then 
summed these matrices to identify consistent region-to-region transfers between networks 
across the three rule domains. We found that transfers from the FPN to the CON was the only 
network configuration that consistently transferred information across the three rule domains. H) 
We performed a similar analysis as in panel G, but assessed whether a network was 
consistently involved in sending task rule information (as a source region) across the three rule 
domains. We found that regions in the FPN and DAN consistently transferred information across 
all rule domains. 
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Figure 7. Percent of significant information transfers from each cortical region. A) Percent 
of significant transfers from each region for the logic rule domain. Percentages are computed by 
taking the number of significant transfers from each region, and dividing it by the total number of 
possible transfers from that region (359 other regions). Transfers are widely distributed, yet are 
predominantly from frontoparietal regions and cognitive control regions. B) Percent of significant 
transfers from each region for the sensory rule domain. Transfers are much sparser than in the 
logic rule domain. Most transfers are from higher order visual areas and the DAN. C) Percent of 
significant transfers from each region for the motor rule domain. Transfers mostly come from 
within the motor network, with a few frontal regions and a right temporal region. 
 
Discussion 
 

Studies from neurophysiology, fMRI, and computational modeling emphasize the 
distributed nature of information processing in the brain45,48,49. However, fMRI studies 
often decode cognitive information from brain regions6 without considering how other 
brain regions might utilize that information9. In other words, current neuroscientific 
findings emphasize an “experimenter-as-receiver” framework (i.e., the experimenter 
decoding information in a brain region) rather than a “cortex-as-receiver” framework 
(i.e., brain regions decoding information transferred from other brain regions)9, which 
clashes with the traditional understanding of information communication described by 
Shannon’s Information Theory15. Thus, understanding how cortical regions receive 
information from other regions bridges a crucial gap in understanding the nature of 
information processing in the brain. In light of recent findings relating resting-state fMRI 
to task-evoked cognitive activations14,27, we posited that resting-state FC describe the 
“channels” over which information can be communicated between cortical regions. More 
broadly, our findings suggest that resting-state network topology describes the large-
scale architecture of information communication in the human brain, demonstrating the 
relevance of resting-state network connectivity to cognitive processing. 

We devised a novel procedure to quantify information transfer between brain 
regions (Fig. 1C). The procedure requires an information-preserving mapping between 
a sender region and a receiver region. In the computational modeling literature, such 
mappings are typically estimated through machine learning techniques to approximate 
synaptic weight transformations between layers of a network (e.g., an artificial neural 
network model using backpropagation)20. However, given that artificial neural networks 
are universal function estimators50, we opted to take a more biologically principled 
approach. We utilized evidence that patterns of spontaneous activity can be used to 
successfully estimate the flow of task-related activity in both local and large-scale brain 
networks14,44,51 to obtain biophysically plausible, data-driven mappings between brain 
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regions using resting-state fMRI. Thus, information transfer mapping unifies both 
biophysical and computational mechanisms into a single information-theoretic 
framework. We used a computational model to validate the plausibility of this account of 
large-scale information transfer (Fig. 4A,B), finding that despite the slow dynamics of 
the blood-oxygen level dependent signal, simulated resting-state fMRI accurately 
reflects the large-scale channels of information transfer. We then used empirical fMRI 
data to show that resting-state FC describes information-preserving mappings in cortex 
at two levels of spatial organization: brain regions and functional networks (Fig. 6 and 
Supplementary Fig. 1). In other words, mappings between sender and receiver regions 
obtained via resting-state FC preserve the same decodable task information content (in 
the same representational geometry) as in the actual, held-out data. Note that the 
organization of activity patterns is necessarily distinct between brain regions (given their 
distinct shapes), such that accurately predicting activation patterns in a held-out region 
based on activity in another region reflects accurate transformation of information-
carrying activity patterns between those brain regions. These findings suggest that 
resting-state FC estimates reflect the actual mappings that are implemented in the brain 
during task information transfer. 

The evidence that fine-grained resting-state FC describes the information-
preserving mappings between regions is important for advancing neuroscientific theory 
for a number of reasons. First, it provides an empirically-validated, theoretical account 
for how cognitive representations in different regions are likely mechanistically related to 
one another. Second, it confirms the base assumption that decodable representations in 
a brain region are utilized by other regions through a biologically plausible construct – 
information transfer via fine-grained patterns of activity flow. Third, it expands the 
functional relevance of decades of resting-state FC findings1,52, given resting-state FC’s 
ability to describe cognitively meaningful fine-grained relationships between brain 
regions. Importantly, our modeling and empirical results show that the topological 
organization of the intrinsic connectivity architecture described by resting-state FC are 
critical to approximate the inter-region information-preserving mappings. This is 
corroborated by previous work, which has shown that randomizing the underlying 
connectivity topology disrupts the ability for activity flow over resting-state connections 
to predict held-out cognitive task activations14. 

Previous studies have focused on the role of task-evoked FC in shifting 
distributed task representations10,11. We recently utilized such findings to develop a 
“flexible hub” account of distributed task-set reconfiguration via cognitive control 
networks10,53. The present results advance these findings, providing an explicit 
computational mechanism involving resting-state FC topology (and cognitive control 
network hubs) in transferring these task representations throughout cortex. Importantly, 
recent findings have demonstrated that task-evoked FC changes tend to be small 
relative to resting-state FC topology18,19. This suggests that the resting-state FC 
topology investigated here maps the bulk of the task-relevant information transfers, with 
task-evoked FC alterations to this topology contributing only small (but likely important) 
changes to this process.  

The information transfer mapping approach involves estimating linear information 
transfer. Critically, however, neural information processing is thought to often depend on 
nonlinear transformations54, such as face-selective neurons in the ventral visual stream 
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responding to whole faces but not facial components (e.g., eyes and ears; Kanwisher et 
al., 1997; Tsao et al., 2006). The present findings represent an important step toward 
understanding the network mechanisms underlying information transformations 
between brain regions, setting the stage for future research to identify the role of 
resting-state FC in nonlinear information transformations. This would go beyond the 
information transfer processes investigated here to identify a role of resting-state FC in 
neural computation (not just communication). 

Recent advances have allowed unprecedented characterization of the human 
brain’s intrinsic network topology, yet it has remained unclear whether or how this 
network architecture relates to cognitive information processing. Here, we demonstrate 
how fine-grained intrinsic connectivity patterns relate to cognitive information transfer. 
Further, by estimating information transfer throughout cortex we found evidence that 
previously identified cognitive control networks play critical roles in global transfer of 
cognitive task information. We expect that these findings will spur new investigations 
into understanding the nature of distributed information processing throughout the brain, 
and reveal the contribution of these fine-grained information channels estimated at rest 
to task-relevant information transfers. 
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Methods 
 
Region-to-region information transfer mapping 

We extended the original activity flow mapping procedure as defined in Cole et 
al. (2016) (Fig. 1A) to investigate transfer of task-related information between pairs of 
brain regions using vertex-wise activation patterns (i.e., region-to-region activity flow 
mapping; Fig. 1B). The original activity flow mapping approach predicted the activity 
level of a single held-out region using the weighted sum of the task-evoked activity of all 
other regions. These activation estimates were obtained using a standard fMRI general 
linear model (GLM). The weights in the weighted sum were based on the resting-state 
FC from the source regions to the held-out region. The region-to-region activity flow 
mapping procedure developed here is computationally similar. However, instead of 
predicting the activity of a single held-out region based on all other regions, we 
predicted the activity of the vertices of a held-out target region based on the vertices of 
a “source” region. Mathematically, to predict Region B’s activation pattern (a 1 x n 
vector) using Region A’s activation pattern (a 1 x m vector), we take the dot product of 
Region A’s activity vector and the vertex-to-vertex resting-state FC matrix between A 
and B (m x n matrix) to compute the prediction of Region B’s activation pattern. This 
matrix transformation (i.e., weighted FC matrix) allowed us to map activation patterns in 
one region’s spatial dimension to the spatial dimension of another region. 

To test the extent that task representations are preserved in the region-to-region 
multivariate predictions, we quantified how much “information transfer” occurred 
between the two regions. Briefly, information transfer mapping comprises three steps, 
illustrated in Fig. 1C: (1) Region-to-region (or network-to-network) activity flow mapping; 
(2) A cross-validated representational similarity analysis between predicted activation 
patterns and actual, held-out activation patterns; (3) Computing the difference between 
matched condition similarities and mismatched condition similarities. 

More specifically, we quantified how much “information transfer” occurred 
between two regions by comparing the predicted activation pattern in the held-out 
region to the actual activation pattern in that region. For a given activation pattern in 
Region A for a single task block, we computed the prediction of Region B’s activation 
pattern for that task block using activity flow mapping. Each block’s predicted activation 
pattern was compared with the “prototype” of the predicted block’s task-rule condition 
(the “matched” condition). Prototypes were computed as the average activation pattern 
across all other blocks of the same task-rule condition (excluding the to-be-predicted 
block). We used a leave-four-out cross-validation scheme to construct the prototypes 
within each cross-validation fold (randomly leaving out one block of each task-rule, 
without replacement) to keep the number of blocks included in each prototype equal 
across conditions. Thus, each task-rule prototype was constructed using 31 task blocks 
(32 blocks per rule in total). The goal of this was to hold out both the spatial (to-be-
predicted region) and temporal (to-be-predicted task block). The predicted-to-actual 
comparisons were computed using Spearman’s rank correlation, akin to a 
representational similarity analysis57. We compared the predicted block with the 
prototypes of the other conditions (the “mismatched” conditions). We then computed an 
“information transfer estimate” as the difference between the Fisher-Z transformed 
matched condition correlation and the average of the mismatched condition 
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correlations. Equivalently, in a 4x4 similarity matrix comparing the predicted-activation 
pattern with each of the four condition prototypes, the information transfer estimate is 
obtained by taking the difference between the average of the diagonal and average of 
the off-diagonal. 

We also demonstrate that the predicted-to-actual similarity analysis in our 
information transfer mapping procedure can be substituted with a support vector 
machine (SVM) decoding scheme. Specifically, we show in our computational model 
that we could train a linear classifier on our predicted activation patterns that could 
decode the actual, held-out activation patterns in the target region (Supplementary Fig. 
2B,C). We used the same leave-four-out cross-validation scheme as above to obtain 
these results, and we find that the information transfer mapping results with SVM 
decodings (Supplementary Fig. 2C) are identical to using representational similarity 
analysis (Fig. 4E). 

Note that information decoding was performed on the cortical surface, using 
vertices rather than voxels. This vertex-wise approach has been shown to provide better 
multivariate classifications than voxel-wise information decoding58, likely because 
surface analyses better reflect the underlying cortical anatomy. 

Information transfer mapping was performed within subject between every pair of 
regions in the Glasser et al. (2016) atlas (360 regions in total). The success of this 
approach between all region pairs were then visualized via a 360-by-360 matrix (a total 
of 129,240 region-to-region mappings), where the regions along rows (source regions) 
indicated the activation patterns used to map onto another region’s activation pattern 
(target region), which was indicated along the columns (Fig. 6A,C,E). Statistical tests 
were performed using a group one-sided t-test (t > 0) for every pair-wise mapping. A 
one-sided t-test was appropriate here given that our hypotheses were implicitly one-
sided, since any significant deviation above 0 indicated a significantly higher matched 
versus mismatched correlation between predicted-to-actual activation patterns. Our use 
of mismatched correlations as a baseline ensured that any positive information transfer 
estimates was a result of a task-rule specific representation, rather than a task-general 
effect. Any information estimate that was not significantly greater than 0 indicated that 
the predicted-to-actual similarity was at chance (akin to a chance decoding using 
classifiers). We tested for multiple comparisons using false discovery rate (FDR) for 
every region-to-region mapping, and significance was assessed using the FDR-
corrected p-values of p < 0.05. Note that for region-to-region information transfer 
mapping, any vertices in a source region that fell into a 10mm radius of the to-be-
predicted region (e.g., an adjacent region) would not contribute any activity flow to the 
to-be-predicted region (see FC estimation Methods section for details). 
 Given the visual sparsity of the region-to-region information transfer mapping 
visualization, we opted to down sample our matrix to provide a simpler visualization to 
assess how pairs of regions transfer information between and within functional networks 
(Fig. 6B,D,F). Thus, we computed the percent of statistically significant transfers for 
every pair of networks of the seven defined functional networks. This allowed us to 
better visually assess how region-to-region transfer mappings within specific network 
configurations may have been influenced by underlying network topology. To compute 
the percent of statistically significant transfers, we counted the number of significant 
transfers between every pair of networks and divided that by the total number of 
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possible transfers within that network-to-network configuration. To characterize the 
generality with which information transfer mappings occurred between specific network 
configurations, we computed the number of rule domains each network configuration 
contained at least one region-to-region transfer (Fig. 6G). In other words, we took the 
matrices in Fig. 6B,D,F and binarized them with a 1 if a cell had a greater than 0 
percentage of transfers, and a 0 otherwise. We then summed these matrices element-
wise to obtain the number of rule domains each network configuration had a successful 
information transfer. To assess the number of rule domains each network contained at 
least one successful source region, we took the percent of significant transfers from 
each network to any other region in the brain (a 7-element array) and then binarized the 
array for each rule domain. We then summed across the three arrays (one for each rule 
domain) to obtain the number of rule domains each network had at least one successful 
source region used for information transfer (Fig. 6H). 
 Lastly, to visualize the anatomical locations of the source regions for information 
transfer, we computed the percent of significant transfers from each cortical region for 
each rule domain (Fig. 7). Percentages were obtained by taking the number of 
successful transfers from a region, and dividing it by total number of possible transfers 
(i.e., 359 other regions). We then plotted each of these percentages on the cortical 
surface using Connectome Workbench software (version 1.2.3) for each rule domain59. 
 
Network-to-network information transfer mapping 

Network-to-network information transfer mapping in both the computational 
model (Fig. 4E) and empirical data (Supplementary Fig. 1B,C,D) was performed in the 
same computational framework as above, though instead of predicting region-level 
activation patterns using vertex-level activation patterns, network-level activation 
patterns were predicted using region-level activations (averaging across vertices within 
a given region). In other words, when predicting network B’s region-level activation 
pattern, we computed the dot product between network A’s region-level activity vector 
and the region-to-region resting-state FC matrix between regions in network A and B. 
We then submitted our 128 task block predictions for network B to our information 
transfer mapping procedure, as described above. This was repeated for every pair of 
the seven functional networks defined by our community-detection algorithm, resulting 
in 7-by-7 network-to-network mappings which were visualized as a 7x7 matrix 
(Supplementary Fig. 1B,C,D). We tested for multiple comparisons using FDR for every 
network-to-network mapping within a rule domain, and significance was assessed using 
the FDR-corrected p-values of p < 0.05.  
 
Behavioral paradigm 
 We used the Concrete Permuted Rule Operations (C-PRO) paradigm, which is a 
modified version of the original PRO paradigm introduced in Cole et al., (2010). Briefly, 
the C-PRO cognitive paradigm permutes specific task-rules from three different rule 
domains (logical decision, sensory semantic, and motor response) to generate dozens 
of novel and unique task sets. The primary modification of the C-PRO paradigm from 
the PRO paradigm was to use concrete, sensory (simultaneously presented visual and 
auditory) stimuli, as opposed to the abstract, linguistic stimuli in the original paradigm. 
Visual stimuli included either horizontal or vertical oriented bars with either blue or red 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 28, 2017. ; https://doi.org/10.1101/101782doi: bioRxiv preprint 

https://doi.org/10.1101/101782


	 24	

coloring. Simultaneously presented auditory stimuli included continuous (constant) or 
non-continuous (non-constant) beeps presented at high (3000Hz) or low (300Hz) 
frequencies. The paradigm was presented using E-Prime software version 2.0.10.35360. 
 Each rule domain (logic, sensory, and motor) consisted of four specific rules, 
while each task set was a combination of one rule from each rule domain (Fig. 2). A 
total of 64 unique task-sets (4x4x4) were possible, and each unique task-set was 
presented twice for a total of 128 task blocks. Identical task-sets were not presented in 
consecutive blocks. Each task block included three trials, each consisting of two 
sequentially presented instances of simultaneous audiovisual stimuli. A task block 
began with a 3925ms instruction screen (5 TRs), followed by a jittered delay ranging 
from 1570ms to 6280ms (2 – 8 TRs; randomly selected). Following the jittered delay, 
three trials were presented for 2355ms (3 TRs), each with an inter-trial interval of 
1570ms (2 TRs). A second jittered delay followed the third trial, lasting 7850ms to 
12560ms (10-16 TRs; randomly selected). A task block lasted a total of 28260ms (36 
TRs). Subjects were trained on four of the 64 task-rule sets for 30 minutes prior to the 
fMRI session. The four practiced rule sets were selected such that all 12 rules were 
equally practiced. There were 16 such groups of four task-sets possible, and the task-
sets chosen were counterbalanced across subjects. Subjects’ mean performance 
across all trials performed in the scanner was 85% (median=86%) with a standard 
deviation of 8% (min=66%; max=96%). All subjects performed statistically above 
chance (25%). 
 
fMRI Acquisition 
 Data were collected at the Rutgers Brain Imaging Center (RUBIC). 35 human 
participants (17 females) were recruited from the Rutgers University-Newark community 
and neighboring communities. We excluded three subjects, leaving a total of 32 
subjects for our analyses; two subjects were excluded due to exiting the scanner early, 
and one subject was excluded due to excessive movement. All participants gave 
informed consent according to the protocol approved by the Rutgers University 
Institutional Review Board. The average age of the participants was 20, with an age 
range of 18 to 29. Whole-brain multiband echo-planar imaging (EPI) acquisitions were 
collected with a 32-channel head coil on a 3T Siemens Trio MRI scanner with TR = 785 
ms, TE = 34.8 ms, flip angle = 55°, Bandwidth 1924/Hz/Px, in-plane FoV read = 
208mm, 72 slices, 2.0 mm isotropic voxels, with a multiband acceleration factor of 8. 
Whole-brain high-resolution T1-weighted and T2-weighted anatomical scans were also 
collected with 0.8mm isotropic voxels. Spin echo field maps were collected in both the 
anterior to posterior direction and the posterior to anterior direction in accordance with 
the Human Connectome Project preprocessing pipelines61. A resting-state scan was 
collected for 14 minutes (1070 TRs), prior to the task scans. Eight task scans were 
subsequently collected, each spanning 7 minutes and 36 seconds (581 TRs). Each of 
the eight task runs were collected consecutively with short breaks in between (subjects 
did not leave the scanner). 
 
fMRI Preprocessing 
 Imaging data was minimally preprocessed using the Human Connectome Project 
minimal preprocessing pipeline version 3.5.0, which included anatomical reconstruction 
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and segmentation, EPI reconstruction, segmentation, spatial normalization to standard 
template, intensity normalization, and motion correction61. All subsequent preprocessing 
steps and analyses were conducted on CIFTI 64k grayordinate standard space for 
vertex-wise analyses and parcellated time series for region-wise analyses using the 
Glasser et al. (2016) atlas (i.e., one time series for each of the 360 cortical regions). We 
performed nuisance regression on the minimally preprocessed resting-state data using 
12 motion parameters (6 motion parameter estimates plus their derivatives) and 
ventricle and white matter time series (extracted volumetrically), along with the first 
derivatives of those time series.  

Task time series for task activation analyses were preprocessed in an identical 
manner to resting-state data. Task time series were additionally processed as follows. A 
standard fMRI GLM was fit to task-evoked activity convolved with the SPM canonical 
hemodynamic response function and the same 16 nuisance regressors as above. 
Block-by-block activity beta estimates were used for representational similarity analyses 
and information transfer mapping analyses. Task activity GLMs were performed at both 
the region-wise level and vertex-wise level for subsequent network-to-network and 
region-to-region information transfer mapping, respectively. 

 
FC estimation 
 Given the success of FC estimation using multiple linear regression in our 
previous study14, we employed multiple linear regression to estimate FC. To estimate 
FC to a given vertex, we used standard linear regression to fit the time series of all other 
vertices as predictors (i.e., regressors) of the target vertex. This provided an estimate of 
the contribution of each source vertex in explaining unique variance in the target 
region’s time series. The same approach was used for region-to-region FC estimation, 
except the time series for each region were averaged across a given region’s vertices 
prior to FC calculation. Multiple linear regression FC is conceptually similar to partial 
correlation, but is actually semipartial correlation, as the estimates retain information 
about scaling a source time series (i.e., regressor time series) into the units of the to-be-
predicted time series (i.e., predicted variable). 

For vertex-to-vertex FC estimation, due to computational intractability (i.e., more 
source regions/regressors than time points), we used principal components regression 
with 500 principal components. This involved reducing all source time series into 500 
principal components and using the components as predictors/regressors to the target 
vertex. To avoid any possibility of spatial autocorrelation when estimating vertex-to-
vertex FC, we excluded all vertices belonging to the same surface parcel (as 
determined by the Glasser atlas) as well as any vertices within 10mm of the border of 
that parcel in the principal components/regressors of the target vertex. (All vertices that 
fell within this criterion were given FC values of 0, preventing any vertices close to the 
target region from contaminating FC estimates.) Beta values obtained from the principal 
component regressors were then transformed back into the original 64k vertex space. 
 
Network assignment of Glasser et al. (2016) parcels 

Partitioning of the parcels (regions) into networks was based on the procedure 
used in Cole et al. (2014; see Supplemental Information). Specifically, we used the 
Louvain locally-greedy algorithm62,63 for community detection. Data from the publically 
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available Washington University-Minnesota Human Connectome Project “HCP100” 
dataset were used (N=100). Similar preprocessing procedures as used for the primary 
dataset were applied to the HCP100 dataset. Specifically, in addition to minimal 
preprocessing61, we ran a GLM nuisance regression using white matter, ventricles, and 
motion regressors (and their first derivatives). Global signal regression, motion 
scrubbing, and temporal filtering were not used. For each subject, all four resting state 
runs were concatenated and FC was estimated using standard Pearson correlations. 
The FC matrices were averaged across subjects to generate a group-mean resting-
state FC matrix. 

We searched over two free parameters to find a community partition for the 
group-mean resting-state FC matrix. The first parameter was the density threshold, 
whereby weak connections (based on the absolute value of FC strengths) were 
removed prior to running the community detection algorithm. The second parameter 
was the structural resolution parameter, which can be used to tune the number of 
communities identified in the FC matrix. The parameter search was conducted across 
combinations of these two parameters (density of 40% to 100% in increments of 5%, 
and resolution of 0.8 to 3 in increments of 0.05), with two criteria: 1) there should be a 
peak of partition similarity (z-score of the Rand coefficient)64 among adjacent locations 
in this two-dimensional parameter space, and 2) there should be distinct communities 
corresponding to visual, auditory, dorsal attention, default-mode, and motor/tactile 
systems (given decades of neuroscience research demonstrating their existence). 
Approximate locations of these systems were based on standard neuroscientific 
knowledge of these systems (given their strong establishment in the literature), in 
addition to their identification using resting-state FC in previous reports22–24. A five-
community partition had the highest nearest-neighbor similarity in parameter space, but 
this did not separate out the auditory system. The next-highest nearest-neighbor 
similarity peak (density = 100%, resolution = 1.2) with distinct communities 
corresponding to auditory, visual, dorsal attention, default-mode, and motor/tactile 
systems was a 14-community partition. This partition was then visualized using 
Connectome Workbench software (Figure 3A). Labels were assigned to the seven most 
replicated networks identified using resting-state FC22–24. Colors were assigned to 
networks based on the colors used by Power et al. (2011). 
 
Replication of network topological properties 
 We replicated a key property of resting-state network topology using our novel 
network assignments of the Glasser et al. (2016) parcels – high global connectivity of 
cognitive control networks. We included only functional networks which coincided with 
the seven most replicable functional networks found in three previously published 
network atlases22–24: the frontoparietal network (FPN), the dorsal attention network 
(DAN), the cingulo-opercular network (CON), the default mode network (DMN), the 
visual network (VIS), the auditory network (AUD), and the somatomotor network (SMN). 
We measured the average out-of-network connectivity during resting-state FC, which 
was estimated using multiple linear regression (Fig. 3D). To do this, we computed each 
individual parcel’s average out-of-network intrinsic FC (i.e., out-of-network global brain 
connectivity), and then averaged across parcels within network to get an average 
statistic for each network. Out-of-network connections were defined as all connections 
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from the source region to target regions outside the source region’s network. To 
statistically test whether average out-of-network intrinsic FC was different for a pair of 
networks, we performed an across-subject paired t-test for every pair of networks. We 
corrected for multiple comparisons across pairs of networks using FDR65.  
 
Neural network model 
 To validate our information transfer estimation approach we constructed a simple 
dynamical neural network model with similar network topological properties identified in 
our empirical fMRI data. We constructed a neural network with 250 regions, each of 
which were clustered into one of five network communities (50 regions per community). 
Regions within the same community had a 35% probability of connecting to another 
region (i.e., 35% connectivity density), and regions not assigned to the same community 
were assigned a connectivity probability of 5% (i.e., 5% out-of-network connectivity 
density). We selected one community to act as a “network hub”, and increased the out-
of-network connectivity density of those regions to 20% density. We then applied 
Gaussian weights on top of the underlying structural connectivity to simulate mean-field 
synaptic excitation between regions. These mean-field synaptic weights were set with a 
mean of 1.0/√𝐾 with a standard deviation of 0.2/√𝐾, where 𝐾 is the number of synaptic 
inputs into a region such that synaptic input scales proportionally with the number of 
inputs. This approach was recently shown to be a plausible rule in real-world neural 
systems based on in vitro estimation of between-neuron synaptic-weight-setting rules66. 
 To simulate network-level firing rate dynamics, as similar to Stern et al. (2014), 
region xi’s dynamics for i=1,…,250 obeyed the equation 

. 
 
We define j as the transfer function tanh, xj the dynamics of region j=1,…,250 for i≠j, 
Ii(t) the input function (e.g., external spontaneous activity alone or both spontaneous 
activity and task stimulation) for i=1,…,250, W the underlying synaptic weight matrix, s 
the local coupling (i.e., recurrent) parameter, g the global coupling parameter, and ti the 
region’s time constant. For simplicity, we set s, g, and ti equal to one, though we show 
in a previous study14 that the activity flow mapping breaks down for parameter regimes 
s > g.  

We first simulated spontaneous activity in our model by injecting Gaussian noise 
(mean of 0.0, standard deviation 1.0). Numerical simulations were computed using a 
Runge-Kutta second order method with a time step of dt=0.1s. We ran our simulation for 
600 seconds (10 minutes). To simulate resting-state fMRI, we then convolved our time 
series with the SPM canonical hemodynamic response function and down sampled to a 
1 second TR, resulting in 600 time points. We then computed resting-state FC using 
multiple linear regression. To replicate the empirical data, we computed the out-of-
network resting-state FC (as in the empirical data) to validate that widespread out-of-
network connectivity was preserved from synaptic to functional connectivity. 

To model task-evoked activity, we simulated four distinct task conditions by 
injecting stimulation into four randomly selected but distinct sets of twelve regions in the 
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hub network. Stimulation to the hub network was chosen to mimic four distinct top-down, 
cognitive control task-rules. Task stimulation coincided with spontaneous activity (e.g., 
for time points t during a task, I(t) = spontaneous activity at t + 0.5 constant task 
stimulation). We ran each task for 20 blocks, where each block lasted for 100 seconds. 
Each block contained five trials, each lasting for five seconds with an inter-trial interval 
of 15 seconds. In total, each task condition contained 100 task trials, with 500 seconds 
per task total. We then convolved these task time series with the SPM canonical 
hemodynamic response function and down sampled to 1-second TRs, as in the resting-
state simulation.  

We validated the usefulness of the model for characterizing hub-related 
dynamics by testing whether estimated resting-state FC preserved the hub network’s 
higher out-of-network intrinsic FC (specified by its underlying synaptic connectivity). 
Out-of-network intrinsic FC was computed in the same way as in the empirical data (see 
above) for each of the network model’s communities. For each of the five networks, we 
compared the out-of-network intrinsic FC between each network using an across-
subject t-test. We corrected for multiple comparisons using FDR65 and significance was 
assessed with an FDR-corrected p < 0.05 threshold. 

To perform network-to-network information transfer mapping in the model, we 
used the task-evoked activity (estimated by standard GLM beta estimates), and 
performed the information transfer mapping procedure between networks of regions 
using the resting-state FC matrix obtained via multiple linear regression. Network-to-
network information transfer mapping is computationally identical to region-to-region 
information transfer mapping, and is described above. The information transfer mapping 
matrix (Fig. 4E) was obtained using an FDR-corrected threshold of p < 0.05. 

 
Baseline representational similarity analyses for regions and networks 
 To compute the baseline (i.e., unrelated to FC) multivariate representational 
content at the region level (Fig. 5), we performed a within-subject cross-validated 
representational similarity analysis for every Glasser et al. (2016) parcel. We used 
vertex-level beta estimates for each task block, where each block was associated with a 
task-rule condition for a particular rule domain. Given the 128 task blocks, we computed 
a leave-four-out (one block of each task-rule held out) representational similarity 
analysis to identify whether a region’s activity vector (consisting of vertex-level activity) 
represented task-rule information. Prior to running the representational similarity 
analysis, all blocks were spatially demeaned to increase the likelihood that the 
representation we were identifying was a multivariate regional pattern (rather than a 
change in region-level mean activity).  

For each cross-validation fold, task blocks in the training set associated with the 
same task-rule (e.g., all ‘both’ rules) were averaged together to obtain four prototypical 
region-level activity vectors. A spatial Spearman’s rank correlation was computed 
between every pair of held-out (testing) data (a vector per task-rule condition) and the 
task-rule prototypes (a vector per condition). In our paradigm, since each rule domain 
contained four task-rules, we performed 4x4 comparisons resulting in a 4x4 similarity 
matrix. Correlations between rule-matched activity vectors were averaged together, 
while correlations between rule-mismatched activity were averaged together. (In the 
above similarity matrix, this would be computing the difference between the average of 
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the diagonal and average of the off-diagonal.) The difference between the Fisher-Z 
transformed matched and mismatched correlation averages was taken for each fold to 
obtain our “information estimate”. An average information estimate was then obtained 
from each subject by computing the average information estimate across all cross-
validation folds (32 cross-validation folds for a four-way similarity analysis across 128 
task blocks). Statistical significance was assessed by taking a group t-test against 0, 
since a greater than 0 difference of matches versus mismatches indicated significant 
representation of specific task-rules. All p-values were corrected for multiple 
comparisons for all 360 parcels using FDR, and significance was assessed using an 
FDR-corrected threshold of p < 0 .05. 

For network-level information estimates (Supplementary Fig. 1A), the same 
cross-validated representational similarity analysis procedure was conducted for the 
seven functional networks separately across the three rule domains, using region-level 
representations within each of the networks. Region-level beta estimates were obtained 
for every block by fitting the same GLM model as described above to every region 
separately. All p-values were FDR-corrected for multiple comparisons across seven 
networks, and significance was assessed using an FDR-corrected p < 0.05. 
 Region-to-region information transfer mapping, vertex-to-vertex FC estimation, 
baseline representational similarity analyses, and model simulations were performed on 
the Rutgers University supercomputer cluster (NM3). 
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Supplementary Figures 
 

 
 
Supplementary Figure 1. Task information persist in functional networks and are 
transferred between networks via network-to-network information transfer mapping. A) 
Representational content of task-rule information across three rule domains prior to performing 
information transfer mapping. The seven networks contain statistically significant 
representations of at least two rule domains using a cross-validated representational similarity 
analysis method. In particular, the motor network contains the highest representational 
information for motor rule distinctions. In addition, all seven networks contain logic rule 
representations, suggesting that abstract rule representations are highly distributed across 
cortical networks. B) Network-to-network information transfer mapping of logic rules. As in Fig. 
5, functional networks along the rows indicate the activation patterns that were projected to the 
networks indicated along the columns. All maps are thresholded using an FDR-corrected p < 
0.05, and colors indicate the T-statistic. The transfer of logic rule representations were highly 
distributed, with all transfers involving the FPN and other domain-general networks. C) Network-
to-network information transfer mapping of the sensory rules. Sensory rule representations flow 
between the FPN and other domain-general networks (DMN, CON), while sensory 
representations flow from sensory networks (AUD, VIS) to the DAN. D) Network-to-network 
activity flow mapping of motor rules. Information transfer mapping of motor rule representations 
demonstrate the most specificity. Representational information only flows between the DAN <-> 
SMN, CON <-> SMN, and CON -> DMN. 
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Supplementary Figure 2. Computational validation of information transfer mapping with 
different decoding approaches. A) Unthresholded information transfer mapping validation 
using cross-validated representational similarity analysis. Here, we show the unthresholded 
map of the information transfer mapping as shown in Fig. 4E. B) Unthresholded information 
transfer mapping validation using support vector machines (SVMs). In contrast to the 
representational similarity approach, we train a linear classifier using predicted activation 
patterns of a target network (given some source region’s activation pattern), and then classify 
the actual, held-out activation patterns of the target network. This demonstrates that a classifier 
trained on predicted data can decode task information as in the real data. As in panel (A), we 
use the same leave-four-out cross-validation scheme. C) Thresholded information transfer 
mapping validation using SVMs. For every network-to-network information transfer mapping, we 
perform an across-subject t-test against chance (25% for a four-way classification). To assess 
statistical significance, we corrected for multiple comparisons using FDR with a threshold of p < 
0.05. We find qualitatively identical results as in our computational validation result (Figure 4E) 
using representational similarity analysis.  
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