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Density-dependent selection and the1

limits of relative fitness2

Abstract3

Selection is commonly described by assigning constant relative fitness values to genotypes.4

Yet population density is often regulated by crowding. Relative fitness may then depend5

on density, and selection can change density when it acts on a density-regulating trait.6

When strong density-dependent selection acts on a density-regulating trait, selection is no7

longer describable by density-independent relative fitnesses, even in demographically stable8

populations. These conditions are met in most previous models of density-dependent selec-9

tion (e.g. “K-selection” in the logistic and Lotka-Volterra models), suggesting that density-10

independent relative fitnesses must be replaced with more ecologically explicit absolute fit-11

nesses unless selection is weak. Here we show that density-independent relative fitnesses12

can also accurately describe strong density-dependent selection under some conditions. We13

develop a novel model of density-regulated population growth with three ecologically intu-14

itive traits: fecundity, mortality, and competitive ability. Our model, unlike the logistic15

or Lotka-Volterra, incorporates a density-dependent juvenile “reproductive excess”, which16

largely decouples density-dependent selection from the regulation of density. We find that17

density-independent relative fitnesses accurately describe strong selection acting on any one18

trait, even fecundity, which is both density-regulating and subject to density-dependent selec-19

tion. Pleiotropic interactions between these traits recovers the familiar K-selection behavior.20

In such cases, or when the population is maintained far from demographic equilibrium, our21

model offers a possible alternative to relative fitness.22

(215 words)23
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Introduction24

There are a variety of different measures of fitness, such as expected lifetime reproductive25

ratioR0, intrinsic population growth rate r, equilibrium population density/carrying capacity26

(often labeled “K”) (Benton and Grant, 2000), and invasion fitness (Metz et al., 1992). In27

addition, “relative fitness” is widely used in evolutionary genetics, where the focus is on28

relative genotypic frequencies (Barton et al., 2007, pp. 468). The justification of any measure29

of fitness ultimately derives from how it is connected to the processes of birth and death30

which drive selection (Metcalf and Pavard 2007; Doebeli et al. 2017; Charlesworth 1994, pp.31

178). While such a connection is clear for absolute fitness measures like r or R0, relative32

fitness has only weak justification from population ecology. It has even been proposed that33

relative fitness be justified from measure theory, abandoning population biology altogether34

(Wagner, 2010). Given the widespread use of relative fitness in evolutionary genetics, it35

is important to understand its population ecological basis, both to clarify its domain of36

applicability, and as part of the broader challenge of synthesizing ecology and evolution.37

For haploids tracked in discrete time, the change in the abundance ni of type i over a38

time step can be expressed as ∆ni = (Wi − 1)ni where Wi is “absolute fitness” (i.e. the39

abundance after one time step is n′i = Wini). The corresponding change in frequency is40

∆pi =
(
Wi

W
− 1
)
pi, where W =

∑
iWipi. In continuous time, the Malthusian parameter ri41

replaces Wi and we have dni

dt
= rini and dpi

dt
= (ri − r)pi (Crow et al., 1970). Note that42

we can replace the Wi with any set of values proportional to the Wi without affecting the43

ratio Wi/W or ∆pi. These “relative fitness” values tell us how type frequencies change,44

but give no information about the dynamics of total population density N =
∑

i ni (Barton45

et al., 2007, pp. 468). Similarly in the continuous case, adding an arbitrary constant to the46

Malthusian parameters ri has no effect on dpi
dt

(these would then be relative log fitnesses).47

Relative fitness is often parameterized in terms of selection coefficients which represent48
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the advantages of different types relative to each other. For instance, in continuous time49

s = r2− r1 is the selection coefficient of type 2 relative to type 1. Assuming that only 2 and50

1 are present, the change in frequency can be written as51

dp2

dt
= sp2(1− p2). (1)

Thus, if r1 and r2 are constant, the frequency of the second type will grow logistically with52

a constant rate parameter s. We then say that selection is independent of frequency and53

density. The discrete time case is more complicated. Defining the selection coefficient by54

W2 = (1 + s)W1, and again assuming 1 and 2 are the only types present, we have55

∆p2 =
W2 −W1

W
p2(1− p2) =

s

1 + sp2

p2(1− p2). (2)

We will refer to both the continuous and discrete time selection equations (1) and (2) through-56

out this paper, but the simpler continuous time case will be our point of comparison for the57

rest of this section.58

In a constant environment, and in the absence of crowding, ri is a constant “intrinsic”59

population growth rate. The interpretation of Eq. (1) is then simple: the selection coefficient60

s is simply the difference in intrinsic growth rates. However, growth cannot continue at a61

non-zero constant rate indefinitely: the population is not viable if ri < 0, whereas ri > 0 im-62

plies endlessly increasing population density. Thus, setting aside unviable populations, the63

increase in population density must be checked by crowding. This implies that the Malthu-64

sian parameters ri eventually decline to zero (e.g. Begon et al. 1990, pp. 203). Selection can65

then be density-dependent, and indeed this is probably not uncommon, because crowded66

and uncrowded conditions can favor very different traits (Travis et al., 2013). Eq. (1) is then67

not a complete description of selection — it lacks an additional coupled equation describing68

the dynamics of N , on which s in Eq. (1) now depends. In general we cannot simply spec-69
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ify the dynamics of N independently, because those ecological dynamics are coupled with70

the evolutionary dynamics of type frequency (Travis et al., 2013). Thus, in the presence71

of density-dependent selection, the simple procedure of assigning constant relative fitness72

values to different types has to be replaced with an ecological description of absolute growth73

rates. Note that frequency-dependent selection does not raise a similar problem, because a74

complete description of selection still only requires us to model the type frequencies, not the75

ecological variable N as well.76

In practice, many population genetic models simply ignore density dependence and as-77

sign a constant relative fitness to each type. Selection is typically interpreted as operating78

through viability, but the ecological processes underlying the regulation of population den-79

sity are frequently left unspecified (e.g. Gillespie 2010; Nagylaki et al. 1992; Ewens 2004).80

Density either does not enter the model at all, or if finite-population size effects (“random81

genetic drift”) are important, then N is typically assumed to have reached some fixed equi-82

librium value (Fig. 1b; for some approaches to relaxing the constant N assumption in finite83

populations, see Lambert et al. 2005; Parsons and Quince 2007; Chotibut and Nelson 2017;84

Constable and McKane 2017).85

A rather different picture emerges in more ecologically explicit studies of selection in86

density-regulated populations. Following Fisher’s suggestion that evolution tends to in-87

crease density in the long term (Fisher, 1930; Leon and Charlesworth, 1978; Lande et al.,88

2009), as well as the influential concept of K-selection (specifically, the idea that selection89

in crowded conditions favors greater equilibrium density; MacArthur 1962), many studies90

of density-regulated growth have focused on the response of density to selection (Kostitzin,91

1939; MacArthur and Wilson, 1967; Roughgarden, 1979; Christiansen, 2004). Indeed, both92

N and s change during, and as a result of, adaptive sweeps in many of the most widely93

used models of density-regulated population growth. The latter includes simple birth-death94

(Kostitzin, 1939) and logistic models (Fig. 1a; MacArthur 1962; Roughgarden 1979; Boyce95
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1984), variants of these models using other functional forms for the absolute fitness penal-96

ties of crowding (Kimura, 1978; Charlesworth, 1971; Lande et al., 2009; Nagylaki, 1979;97

Lande et al., 2009), and the “R∗ rule” of resource competition theory (which states that the98

type able to deplete a shared limiting consumable resource to the lowest equilibrium density99

R∗ excludes the others; Grover 1997). Density also changes in response to selection in the100

Lotka-Volterra competition model, at least during a sweep (except in special cases; Gill 1974;101

Smouse 1976; Mallet 2012).102

The constant-N , constant-s description of selection also limits consideration of longer-103

term aspects of the interplay between evolution and ecology such as population extinction and104

trait evolution. A variety of approaches have been developed to address this in quantitative105

genetics (Burger and Lynch, 1995; Engen et al., 2013), population genetics (Bertram et al.,106

2017) and adaptive dynamics (Ferriére and Legendre, 2013; Dieckmann and Ferrière, 2004).107

Although density-dependent selection is pertinent to these longer-term issues, our focus here108

is the description of the time-dependent process by which selection changes allele frequencies.109

This is particularly critical for making sense of evolution at the genetic level, for which we110

now have abundant data.111

In light of the complications arising from density-dependence, the assignment of density-112

independent relative fitnesses has been justified as an approximation that holds when se-113

lection is weak and N changes slowly (Kimura and Crow 1969; Ewens 2004, pp. 277;114

Charlesworth 1994, Chap. 4). Under these conditions, s is approximately constant in Eq. (1),115

at least for some number of generations. If s depends only on density, not frequency, this116

approximate constancy can hold over entire selective sweeps (Otto and Day, 2011).117

However, the preceding arguments do not imply that the constant relative fitness ideal-118

ization of population genetics only applies when selection is weak and N is stable (or when119

selection is actually density-independent). The idealization of assigning relative fitness val-120

ues to genotypes is powerful, and so it is important to understand the specifics of when121
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dn1
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Figure 1: Phase diagram for the densities of two types n1 and n2 undergoing selection. (a)
The logistic model dn1

dt
= r1(1 − n1+n2

K1
)n1 and dn2

dt
= r2(1 − n1+n2

K2
)n1 with r1 = r2 and

K2 > K1. (b) The constant-N , relative fitness description of selection.

and how it succeeds or fails when selection is not weak, or N is not stable. For instance,122

in wild Drosophila, strong seasonally-alternating selection happens concurrently with large123

“boom-bust” density cycles (Messer et al., 2016; Bergland et al., 2014). Are we compelled to124

switch to a more ecologically-detailed model of selection based on Malthusian parameters or125

birth/death rates in this important model system? And if we make this switch, how much126

ecological detail do we need?127

Here we argue that the simplified models of density-regulated growth mentioned above128

are potentially misleading in their representation of the interplay between selection and den-129

sity. This ultimately derives from their failure to account for “reproductive excess”, that130

is, an excess of juveniles that experience stronger selection than their adult counterparts131

(Turner and Williamson, 1968). By allowing selection to be concentrated at a juvenile “bot-132

tleneck”, reproductive excess makes it possible for the density of adults to remain constant133

even under strong selection. Reproductive excess featured prominently in early debates134
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about the regulation of population density (e.g. Nicholson 1954), and also has a long history135

in evolutionary theory, particularly related to Haldane’s “cost of selection” (Haldane, 1957;136

Turner and Williamson, 1968). Additionally, reproductive excess is implicit in foundational137

evolutionary-genetic models like the Wright-Fisher, where each generation involves the pro-138

duction of an infinite number of zygotes, of which a constant number N are sampled to form139

the next generation of adults. Likewise in the Moran model, a juvenile is always available to140

replace a dead adult every iteration no matter how rapidly adults are dying, and as a result141

N remains constant.142

Nevertheless, studies of density-dependent selection rarely incorporate reproductive ex-143

cess. This requires that we model a finite, density-dependent excess, which is substantially144

more complicated than modeling either zero (e.g. logistic) or infinite (e.g. Wright-Fisher)145

reproductive excess. Nei’s “competitive selection” model incorporated a finite reproductive146

excess to help clarify the “cost of selection” (Nei, 1971; Nagylaki et al., 1992), but used an147

unusual representation of competition based on pairwise interactions defined for at most two148

different genotypes, and was also restricted to equal fertilities for each genotype.149

In models with detailed age structure, it is often assumed that the density of a “crit-150

ical age group” mediates the population’s response to crowding (Charlesworth, 1994, pp.151

54). Reproductive excess is a special case corresponding to a critical pre-reproductive age152

group. A central result of the theory of density-regulated age-structured populations is that153

selection proceeds in the direction of increasing equilibrium density in the critical age group154

(Charlesworth, 1994, pp. 148). This is a form of the classical K-selection ideas discussed155

above, but restricted to the critical age group (juveniles, in this case). The interdepen-156

dence of pre-reproductive selection and reproductive density is thus overlooked as a result157

of focusing on density in the critical age group.158

We re-evaluate the validity of the constant relative fitness description of selection in a159

novel model of density-regulated population growth that has a finite reproductive excess.160
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Our model is inspired by the classic discrete-time lottery model, which was developed by161

ecologists to study competition driven by territorial contests in reef fishes and plants (Sale,162

1977; Chesson and Warner, 1981), and which has some similarities to the Wright-Fisher163

model (Svardal et al., 2015). Each type is assumed to have three traits: fecundity b, mortality164

d, and competitive ability c. In each iteration of the classic lottery model, each type produces165

a large number of juveniles, such that N remains constant (infinite reproductive excess).166

Competitive ability c affects the probability of winning a territory, and behaves like a pure167

relative fitness trait. Thus, fitness involves a product of fertility and juvenile viability akin168

to standard population genetic models of selection (e.g. Crow et al. 1970, pp. 185). We169

relax the large-juvenile-number assumption of the lottery model to derive a variable-density170

lottery with a finite, density-dependent reproductive excess.171

The properties of density-dependent selection in our model are strikingly different from172

the classical literature discussed above. The strong connection between crowding and selec-173

tion for greater equilibrium density is broken: selection need not affect density at all. And174

when it does, the density-independent discrete-time selection equation (2) is almost exact175

even for strong selection, provided that any changes in density are driven only by selection176

(as opposed to large deviations from demographic equilibrium), and that selection occurs on177

only one of the traits b, c, or d. On the flip side, the constant relative fitness approximation178

fails when strong selection acts concurrently on two or more of these traits, or when the179

population is far from demographic equilibrium.180

Model181

Assumptions and definitions182

We restrict our attention to asexual haploids, since it is then clearer how the properties183

of selection are tied to the underlying population ecological assumptions. We assume that184
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Chance 
to win 
territory

Random Dispersal

Death

Lottery 
competition

Figure 2: One iteration of our model. Propagules are dispersed by adults at random (only
those propagules landing on unoccupied territories are shown). Some territories may receive
zero propagules. Lottery competition then occurs in each territory that receives more than
one propagule (only illustrated in one territory). In a given territory, type i has probability
proportional to cixi of winning the territory, where ci measures competitive ability and xi is
the number of i propagules present. In the illustrated territory, more black propagules are
present, but white is a stronger competitor and has a higher probability of winning. Adult
deaths make new territories available for the next iteration (red crosses).

reproductively mature individuals (“adults”) require their own territory to survive and re-185

produce. All territories are identical, and the total number of territories is T . Time advances186

in discrete iterations, each representing the time from birth to reproductive maturity. In a187

given iteration, the number of adults of the i’th type will be denoted by ni, the total number188

of adults by N =
∑

i ni, and the number of unoccupied territories by U = T−N . We assume189

that the ni are large enough that stochastic fluctuations in the ni (drift) can be ignored,190

with T also assumed large to allow for low type densities ni/T � 1.191

Each iteration, adults produce propagules which disperse at random, independently of192

distance from their parents, and independently of each other (undirected dispersal). We193

assume that each adult from type i produces bi propagules on average, so that the mean194
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number of i propagules dispersing to unoccupied territories is mi = biniU/T (the factor U/T195

represents the loss of those propagules landing on occupied territories). Random dispersal196

is modeled using a Poisson distribution pi(xi) = lxii e
−li/xi! for the number xi of i propagules197

dispersing to any particular unoccupied territory, where li = mi/U is the mean propagule198

density of type i per unoccupied territory. The total propagule density per unoccupied199

territory will be denoted L =
∑

i li.200

We assume that adults cannot be ousted by juveniles, so that recruitment to adulthood201

occurs exclusively in unoccupied territories. When multiple propagules land on the same202

unoccupied territory, the winner is determined by lottery competition: type i wins a territory203

with probability cixi/
∑

i cixi, where ci is a constant representing relative competitive ability204

(Fig. 2). Since the expected fraction of unoccupied territories with propagule composition205

x1, . . . , xG is p1(x1) · · · pG(xG) where G is the number of types present, and type i is expected206

to win a proportion cixi/
∑

i cixi of these, type i’s expected territorial acquisition is given by207

∆+ni = U
∑

x1,...,xG

cixi∑
i cixi

p1(x1) · · · pG(xG). (3)

Here the sum only includes territories with at least one propagule present. Note that ∆+ni208

denotes the expected territorial acquisition. Fluctuations about ∆+ni (i.e. drift) will not be209

analyzed in this manuscript. Note that drift can become important if U is not sufficiently210

large even though ni and T are large (by assumption); we do not consider this scenario on211

biological grounds, since it implies negligible population turnover.212

Adult mortality occurs after lottery recruitment at a constant, type-specific per-capita213

rate di ≥ 1, and can affect adults recruited in the current iteration, such that the new214

abundance at the end of the iteration is (ni+∆+ni)/di (Fig. 2). In terms of absolute fitness,215

this can be written as216

Wi =
1

di

(
1 +

∆+ni
ni

)
. (4)
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Here ∆+ni

ni
is the per-capita rate of territorial acquisition, and 1/di is the fraction of type217

i adults surviving to the next iteration. Note that our model of mortality differs from218

the classic lottery model (Chesson and Warner, 1981), where mortality affects adults only219

and occurs after propagule production but before juvenile recruitment. In the latter case,220

selection on mortality exhibits some density-dependence, although this reflects the fact that221

newly recruited adults are guaranteed to reproduce before dying, which is not interesting for222

our purposes here. Our mortality model ensures that selection on di is density-independent,223

allowing us to more clearly separate different sources of density-dependence and density224

regulation.225

Connection to the classic lottery model226

In the classic lottery model (Chesson and Warner, 1981), unoccupied territories are assumed227

to be saturated with propagules from every type (li → ∞ for all i). From the law of large228

numbers, the composition of propagules in each territory will not deviate appreciably from229

the mean composition l1, l2, . . . , lG. Type i is thus expected to win a proportion cili/
∑

i cili230

of the U available territories,231

∆+ni =
cili∑
i cili

U =
cili
cL

U, (5)

where c =
∑

i cimi/
∑

imi is the mean competitive ability for a randomly selected propagule.232

Note that all unoccupied territories are filled in a single iteration of the classic lottery model,233

whereas our more general model Eq. (3) allows for territories to be left unoccupied and hence234

also accommodates low propagule densities.235
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Results236

Analytical approximation of the variable-density lottery237

Here we evaluate the expectation in Eq. (3) to better understand the dynamics of density-238

dependent lottery competition. Similarly to the classic lottery model, we replace the xi,239

which take different values in different territories, with “effective” mean values. However,240

since we want to allow for low propagule densities, we cannot simply replace the xi with241

the means li as in the classic lottery. For a low density type, growth comes almost entirely242

from territories with xi = 1, for which its mean density li � 1 is not representative. We243

therefore separate Eq. (3) into xi = 1 and xi > 1 components, taking care to ensure that the244

effective mean approximations for these components are consistent with each other (details245

in Appendix A). The resulting variable-density approximation only requires that there are246

no large discrepancies in competitive ability (i.e. we do not have ci/cj � 1 for any two247

types). We obtain248

∆+ni ≈
[
e−L + (Ri + Ai)

ci
c

]
liU, (6)

where249

Ri =
ce−li(1− e−(L−li))

ci + cL−cili
L−li

L−1+e−L

1−(1+L)e−L

,

and250

Ai =
c(1− e−li)

1−e−li

1−(1+li)e−li
cili + cL−cili

L−li

(
L 1−e−L

1−(1+L)e−L − li 1−e−li

1−(1+li)e−li

) .
Comparing Eq. (6) to Eq. (5), the classic lottery per-propagule success rate ci/cL has251

been replaced by three separate terms. The first, e−L, accounts for propagules which land252

alone on unoccupied territories; these propagules secure the territories without contest. The253

second, Rici/c, represents competitive victories on territories where only a single i propagule254

lands, together with at least one other propagule from a different type (this term dominates255
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Figure 3: Comparison of Eq. (6), the classic lottery model, and simulations. The vertical
axis is per-propagule success rate for all propagules ∆+ni/mi, and for the three separate
components in Eq. (6). Two types are present with c1 = 1, c2 = 1.5 and l2/l1 = 0.1.
Simulations are conducted as follows: x1, x2 values are sampled U = 105 times from Poisson
distributions with respective means l1, l2, and the victorious type in each territory is then
decided by random sampling weighted by the lottery win probabilities cixi/(c1x1 + c2x2).
Dashed lines show the failure of the classic lottery model at low density.

the growth of a rare invader in a high density population and determines invasion fitness).256

The third term, Aici/c, represents competitive victories in territories where two or more i257

type propagules are present. The relative importance of these three terms varies with both258

the overall propagule density L and the relative propagule frequencies li/L. If li � 1 for all259

types, we recover the classic lottery model (only the Aici/c term remains, and Ai → 1/L).260

Fig. 3 shows that Eq. (6) and its components closely approximate simulations of our261

variable-density lottery model over a wide range of propagule densities. Two types are262

present, one of which is at low frequency. The growth of the low-frequency type relies263

crucially on the low-density competition term Rici/c. On the other hand, Rici/c is negligible264

for the high-frequency type, which depends instead on high density territorial victories. Fig. 3265

also shows the breakdown of the classic lottery model at low propagule densities.266
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In the special case that all types are competitively equivalent (identical ci), Eq. (6) takes267

a simpler form,268

∆+ni =
li
L

(1− e−L)U =
bi

b

1− e−bN/T

N
(T −N), (7)

where we have used the fact that L = bN/T to make the dependence on b and N explicit (b269

is the population mean b). Eq. (7) happens to be exact even though it is a special case of the270

approximation Eq. (6). This can be deduced directly from Eq. (3): 1 − e−L is the fraction271

of territories that receive at least one propagule under Poisson dispersal, (1 − e−L)U is the272

total number of such territories, and type i is expected to receive a fraction li/L of these.273

By similar reasoning, the total number of territories acquired is given by274

∆+N = (1− e−L)U = (1− e−bN/T )(T −N). (8)

This formula is also exact, but unlike Eq. (7), it also applies when the ci differ between types.275

Density regulation and selection in the variable-density lottery276

Equipped with Eq. (6) we now outline the basic properties of the b, c and d traits. Adult277

density N is regulated by the birth and mortality rates b and d; b controls the fraction278

of unoccupied territories that are contested (see Eq. (8)), while d controls adult mortality.279

Competitive ability c does not enter Eq. (8), and therefore does not regulate total adult280

density: c only affects the relative likelihood of winning a contested territory.281

Selection in our variable-density lottery model is in general density-dependent, by which282

we mean that the discrete-time selection factor (W2 − W1)/W from Eq. (2) may depend283

on N . More specifically, as we show below, b- and c- selection are density-dependent, but284

d-selection is not. Note that density-dependent selection is sometimes taken to mean a285

qualitative change in which types are fitter than others at different densities (Travis et al.,286

2013). While reversal in the order of fitnesses and co-existence driven by density-regulation287
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are possible in our variable-density lottery (a special case of the competition-colonization288

trade-off; Levins and Culver 1971; Tilman 1994; Bolker and Pacala 1999), questions related289

to co-existence are tangential to the aims of the current manuscript and will not be pursued290

further here.291

The strength of b-selection declines with increasing density. When types differ in b only292

(b-selection), Eq. (6) simplifies to Eq. (7), and absolute fitness can be written as Wi =293

(1 + bi
b
f(b,N))/di where f(b,N) = 1−e−bN/T

N
(T − N) is a decreasing function of N . Thus,294

the selection factor W2−W1

W
= f(b,N)

1+f(b,N)
b2−b1
b

declines with increasing density: the advantage of295

having greater b gets smaller the fewer territories there are to be claimed (Fig. 4).296

In the case of c-selection, Eq. (6) implies that W2 − W1 is proportional to297

T−N
T

[(R2 + A2)c2 − (R1 + A1)c1] /c. The strength of c-selection thus peaks at an interme-298

diate density (Fig. 4), because most territories are claimed without contest at low density299

(R1, R2, A1, A2 → 0), whereas at high density few unoccupied territories are available to be300

contested (T −N → 0).301

Selection on d is independent of density, because the density-dependent factor 1 + ∆+ni

ni
302

in Eq. (4) is the same for types that differ in d only.303

The response of density to selection; c-selection versus K-selection304

We now turn to the issue of how density changes as a consequence of selection in our variable-305

density lottery, and in more familiar models of selection in density-regulated populations.306

In the latter, selection under crowded conditions typically induces changes in equilibrium307

density (see Introduction). In our variable-density lottery model, however, the competitive308

ability trait c is not density-regulating, even though c contributes to fitness under crowded309

conditions. Consequently, c-selection does not cause density to change. In this section we310

compare this c-selection behavior with the previous literature, which we take to be exempli-311

fied by MacArthur’s K-selection argument (MacArthur and Wilson, 1967).312

16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2018. ; https://doi.org/10.1101/102087doi: bioRxiv preprint 

https://doi.org/10.1101/102087
http://creativecommons.org/licenses/by/4.0/


0.0 0.2 0.4 0.6 0.8 1.0
Density N/T

0.00

0.02

0.04

0.06

0.08

0.10

(W
2
−
W

1
)/
W

b c d

Figure 4: The density-dependence of selection in our variable-density lottery between an
adaptive variant 2 and a wildtype variant 1 with at equal frequencies. Here b1 = 1, d1 = 2 and
c1 = 1. For b-selection we set b2 = b1(1+ε), and similarly for c and d, with ε = 0.1. d-selection
is density-independent, b-selection gets weaker with lower territorial availability, while c-
selection initially increases with density as territorial contests become more important, but
eventually also declines as available territories become scarce.
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MacArthur considered two types (with densities n1 and n2) in a constant environment313

subject to density-dependent growth,314

dn1

dt
= f1(n1, n2)

dn2

dt
= f2(n1, n2). (9)

The outcome of selection is determined by the relationship between the nullclines f1(n1, n2) =315

0 and f2(n1, n2) = 0. Specifically, a type will be excluded if its nullcline is completely316

contained in the region bounded by the other type’s nullcline.317

MacArthur used the four intersection points of the nullclines with the axes, defined by

f1(K11, 0) = 0, f1(0, K12) = 0, f2(K21, 0) = 0 and f2(0, K22) = 0, to analyze each type’s

exclusion or persistence. Note that only K11 and K22 are equilibrium densities akin to the

K parameter in the logistic model; the other intersection points, K12 and K21, are related to

competition between types. For instance, in the Lotka-Volterra competition model we have

f1(n1, n2) = r1(1− α11n1 − α12n2)n1

f2(n1, n2) = r2(1− α22n1 − α21n2)n2 (10)

where α11 = 1/K11 and α22 = 1/K22 measure competitive effects within types, while α12 =318

1/K12 and α21 = 1/K21 measure competitive effects between types. Hence, “fitness is K”319

in crowded populations (MacArthur and Wilson, 1967, pp. 149) in the sense that selection320

either favors the ability to keep growing at ever higher densities (moving a type’s own nullcline321

outwards), or the ability to suppress the growth of competitors at lower densities (moving the322

nullcline of competitors inwards; Gill 1974). However, even if the initial and final densities323

of an adaptive sweep in the Lotka-Volterra model are the same, N nevertheless does change324

transiently (Fig. 5a). Constant-N over a sweep only occurs for a highly restricted subset of325

r and α values (Appendix B; Mallet 2012; Gill 1974; Smouse 1976).326
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Figure 5: Selection between types with identical equilibrium density but different inter-type
competitive ability. (a) Lotka-Volterra competition (Eq. 10) with r1 = r2 = 1, α11 = α22 = 1,
α12 = 0.9 and α21 = 1.2. Trajectories do not follow the line N = K11 = K22. (b) Lottery
competition (Eq. 6) with b1 = b2 = 5, d1 = d2 = 1.1 and c1/c2 = 5. The lottery model
nullclines are defined by W1 = 1 (lower nullcline) and W2 = 1 respectively in Eq. (4). For the
discrete-time Eq. (6), trajectories are the flow lines of the vector field obtained by evaluating
the direction of the local changes in n1 and n2; these converge on the line N = K11 = K22.
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In contrast, density trajectories for c-selection in our variable-density lottery converge on327

a line of constant equilibrium density (Fig. 5b). This means that once N reaches demographic328

equilibrium, selective sweeps behave indistinguishably from a constant-N relative fitness329

model(Fig. 1b). Thus, for c-sweeps in a constant environment, the selection factor (W2 −330

W1)/W in Eq. (2) is density-independent. This uncoupling of density from c-selection arises331

due to the presence of an excess of propagules which pay the cost of selection without affecting332

adult density (Nei, 1971).333

Density-regulating traits under strong selection334

For density to matter in Eq. (2), selection must be density-dependent and density must be335

changing. This can occur in a constant environment if selection acts on a density-regulating336

trait. Consider the simple birth-death model (Kostitzin, 1939)337

dni
dt

= (bi − δiN)ni, (11)

where δi is per-capita mortality due to crowding. Starting from a type 1 population in338

equilibrium, a variant with δ2 = δ1(1 − ε) has density-dependent selection coefficient s =339

εδ1N , which will change over the course of the sweep as N shifts from its initial type 1340

equilibrium to a type 2 equilibrium. The equilibrium densities at the beginning and end of341

the sweep are Ninitial = b1/δ1 and Nfinal = b1/(δ1(1 − ε)) = Ninitial/(1 − ε) respectively, and342

so sinitial = εb1 and sfinal = sinitial/(1− ε). Consequently, substantial deviations from Eq. (1)343

occur if there is sufficiently strong selection on δ (Fig. 6; Kimura 1978; Kimura and Crow344

1969).345

In our variable density lottery, b regulates density and is subject to density-dependent346

selection, yet b-sweeps are qualitatively different from δ sweeps in the above example. Greater347

bmeans not only that more propagules contest the available territories, but also that a greater348
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Figure 6: Change in the selection coefficient between the beginning and end of a sweep of a
type that experiences proportionally 1 − ε fewer crowding-induced deaths. The population
is in demographic equilibrium at the start and end of the sweep.

fraction of unoccupied territories receive propagules. Together, the net density-dependent349

effect on b-selection is negligible: in a single-type equilibrium we have Wi = 1 and bi/b = 1,350

and hence the density-dependence factor f(b,N) = 1−e−bN/T

N
(T −N) in Eq. (7) has the same351

value di − 1 at the beginning and end of a b-sweep (recall that W2−W1

W
= f(b,N)

1+f(b,N)
b2−b1
b

for352

b-selection). During the sweep there is some deviation in f(b,N), but this deviation is an353

order of magnitude smaller than for a δ-sweep (the density-dependent deviation in Fig. 6 is354

of order ε, whereas the analogous effect for a b-sweep in our variable-density lottery is only355

of order ε2; see Appendix C for details). Since selection must already be strong for a δ-sweep356

to invalidate Eq. (1), the density-independent model applies almost exactly for equilibrium357

b-sweeps (Fig. 7).358

However, if selection acts simultaneously on more than one trait in our variable-density359

lottery, then evolution in a density-regulating trait can drive changes in the strength of360

selection on another trait subject to density-dependent selection. For instance, if selection361
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Figure 7: Equilibrium b-sweeps behave as though selection is independent of density even
though b-selection is density-dependent in general. Panel (b) shows the density-dependent
selection factor (W2−W1)/W predicted by Eq. (6) (solid line) compared to the same selection
factor with the density-dependence term f(b,N) held constant at its initial value (dashed
line).
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Figure 8: Simultaneous selection on b and d induces density-dependence in the selection
factor (W2−W1)/W . Panel (b) shows the predictions of Eq. (7) (solid line) versus the same
with the density-dependence factorf(b,N) held constant at its initial value.

acts simultaneously on b and d, then f(b,N) changes value from d1 − 1 to d2 − 1 over a362

sweep. The dynamics of density will then affect the selection factor (W2−W1)/W and cause363

deviations analogous to selection on δ in the continuous time case (Fig. 8).364

Discussion365

Summarizing the properties of selection in our variable-density lottery model: (i) c-selection366

is density-dependent, but c does not regulate density; (ii) d regulates density, but d-selection367

is density-independent; (iii) b regulates density and b-selection is density-dependent. Yet,368

despite the differences between b, c and d, selection in a constant environment that only369

involves one of these traits obeys the density-independent relative fitness description of se-370

lection almost exactly (that is, (W2 −W1)/W in Eq. (2) is approximately independent of371

density). This density-independence breaks down when strong selection acts on more than372
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one of b, c and d (Fig. 8). The c and d traits exemplify the two distinct directions in which373

density and selection can interact: selection may depend on density, and density may change374

in response to ongoing selection (Prout, 1980). The combination of both is necessary to375

invalidate the constant-s approximation. Remarkably, the b trait demonstrates that the376

combination is not sufficient; the density-dependence of b-selection effectively disappears377

over equilibrium-to-equilibrium b-sweeps.378

The distinctive properties of selection in the variable-density lottery arise from a repro-379

ductive excess which appears when the number of propagules is greater than the number380

of available territories. Then only ≈ 1/L of the juveniles contesting unoccupied territories381

survive to adulthood. Unlike the role of adult density ni in single-life-stage models, it is382

the propagule densities li that represent the crowding that drives competition. Reproduc-383

tive excess produces relative contests in which fitter types grow at the expense of others by384

preferentially filling the available adult “slots”. The number of available slots can remain385

fixed or change independently of selection at the juvenile stage. By ignoring reproductive386

excess, single life-stage models are biased to have total population density be more sensi-387

tive to ongoing selection. In this respect, the viability selection heuristics that are common388

in population genetics (Gillespie, 2010, pp. 61) actually capture an important ecological389

process without making the full leap to complex age-structured models.390

Traits like b, c and d will often have pleiotropic interactions which mean that adaptive391

sweeps will behave similarly to the familiar “δ sweeps” (“Density regulating traits under392

strong selection”). Thus, our analysis of the variable density lottery does not necessarily393

imply that Eq. (1) and (2) should apply more broadly than previously thought. Rather,394

b, c and d represent a possible set of idealized fitness components mediating the interplay395

between selection and density in density-regulated populations. The conceptual distinctions396

they highlight will hopefully be useful regardless of the biological realism of our variable397

density lottery model.398
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Apart from familiar examples such as reef fishes (Chesson and Warner, 1981), many bi-399

ological systems do not obviously satisfy the assumptions of our variable density lottery.400

However, even if competition occurs primarily via consumable resource exploitation, spatial401

localization of consumable resources (e.g. for plants due to restricted movement of nutrients402

through soils) will tend to create territorial contests similar to the lottery model, where403

resource competition only occurs locally and can be sensitive to contingencies such as the404

timing of propagule arrival (Bolker and Pacala, 1999). In this case, resource competition is405

effectively subsumed into a territorial competitive ability trait akin to c, which would likely406

affect N much more weakly than suggested by the R∗ rule (assuming no pleiotropic inter-407

actions with b or d). Moreover, even in well-mixed populations, competition does not only408

involve indirect exploitation of shared resources, but also direct interference. Interference409

competition can dramatically alter the dynamics of resource exploitation (Case and Gilpin,410

1974; Amarasekare, 2002), and is more likely than the exploitation of shared resource pools411

to involve relative contests akin to c-selection. For instance, sexual selection can be viewed412

as a form of relative interference competition between genotypes.413

In the analysis presented here we have restricted our attention to selection in demo-414

graphically stable populations. The largest deviations from the approximation of density-415

independent selection (as represented by Eqs. (1) and (2)) will likely occur in populations416

far from demographic equilibrium e.g. as a result of a temporally-variable environment. This417

is because extremely strong selection is needed to change population density by an amount418

comparable to environmental varability (see Fig. 6). By contrast, temporally-variable envi-419

ronments can dramatically alter frequency trajectories for individual sweeps (e.g. Fig. 9.5 in420

Otto and Day (2011); Fig. 5 in Mallet (2012)), as well as the long-term outcomes of selection421

(Lande et al., 2009).422

This suggests that in systems like the wild Drosophila example mentioned in the Intro-423

duction, there may indeed be no choice but to abandon relative fitness. Our variable-density424
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lottery could provide a useful starting point for analyzing evolution in this and other far-425

from-equilibrium situations for two reasons: 1) the b, c, d trait scheme neatly distinguishes426

between different aspects of the interplay between density and selection; 2) lottery models in427

general are mathematically similar to the Wright-Fisher model, which should facilitate the428

analysis of genetic drift when N is unstable.429
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Appendix A: Growth equation derivation544

Here we derive Eq. (6). Following the notation in the main text, the Poisson distributions545

for the xi (or some subset of the xi) will be denoted p, and we use P as a general shorthand546

for the probability of particular outcomes. We denote the vector of propagule abundances547

by x = (x1, . . . , xG) in a given territory, and the analogous vector of nonfocal abundances548

by xi = (x1, . . . , xi−1, xi+1 . . . , xG). The corresponding total propagule numbers are denoted549

X =
∑

j xj and Xi = X − xi.550

Similar to the classic lottery model, our approximation involves replacing the xi with551

effective mean values. However, as discussed in the text preceding Eq. (6), it is important552

to treat the xi = 1 case separately when allowing for low propagule densities. We thus start553

by separating the right hand side of Eq. (3) into three components554

∆+ni = ∆uni + ∆rni + ∆ani. (12)

The relative magnitude of these components depends on the propagule densities li. The first555
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component, ∆uni, accounts for territories where only one focal propagule is present (xi = 1556

and xj = 0 for j 6= i; u stands for “uncontested”). The proportion of territories where this557

occurs is lie
−L, and so558

∆uni = Ulie
−L = mie

−L. (13)

The second component, ∆rni, accounts for territories where a single focal propagule is559

present along with at least one non-focal propagule (r stands for “rare”). The number of560

territories where this occurs is Upi(1)P (Xi ≥ 1) = mie
−li(1− e−(L−li)). Thus561

∆rni = mie
−li(1− e−(L−li))

〈
ci

ci +
∑

j 6=i cjxj

〉
p(x|xi=1,Xi≥1)

, (14)

where 〈〉p(x|xi=1,Xi≥1) denotes the expectation with respect to the conditional probability562

distribution p(x|xi = 1, Xi ≥ 1) of propagule abundances in those territories where exactly563

one focal propagule, and at least one non-focal propagule, landed.564

The final contribution, ∆ani, accounts for territories where two or more focal propagules565

are present (a stands for “abundant”). Similar to Eq. (14), we have566

∆ani = U(1− (1 + li)e
−li)

〈
cixi∑
j cjxj

〉
p(x|xi≥2)

. (15)

To derive Eq. (6) we approximate the expectations in Eq. (14) and Eq. (15) by replacing567

xi and the xj with “effective” mean values as follows568

〈
ci

ci +
∑

j 6=i cjxj

〉
p(x|xi=1,Xi≥1)

≈ ci
ci +

∑
j 6=i cj〈xj〉r

. (16)

569 〈
cixi∑
j cjxj

〉
p(x|xi≥2)

≈ ci〈xi〉a∑
j cj〈xj〉a

. (17)

Here 〈〉r and 〈〉a are the effective means, which are defined in the following subsection.570
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The effective means 〈〉r and 〈〉a571

The decomposition Eq. (12) is exact and involves no additional assumptions. However this572

decomposition complicates our approximation procedure because the separate components573

in Eq. (12) must be approximated in a consistent manner.574

To illustrate this consistency requirement, suppose that two identical types (same b, c575

and d) are present, the first with small density l1 � 1 and the second with large density576

l2 � 1. In this case, uncontested territories make up a negligible fraction of U ; the first577

type’s territorial acquisition is almost entirely due to ∆rn1; and the second type’s territorial578

acquisition is almost entirely due to ∆an2. For consistency, the approximate per-capita579

growth rates in (16) and (17) must be equal ∆rn1/m1 = ∆an2/m2. Even small violations580

of this consistency condition would mean exponential growth of one type relative to the581

other. This behavior is pathological, because any single-type population can be arbitrarily582

partitioned into identical rare and common subtypes. Thus, predicted growth or decline583

would depend on an arbitrary assignment of rarity.584

Suppose that we naively used the conditional distributions p(x|xi = 1, Xi ≥ 1) and585

p(x|xi ≥ 2) to calculate the effective means, such that 〈〉r = 〈〉p(x|xi=1,Xi≥1) and 〈〉a =586

〈〉p(x|xi≥2). Then, in the example from the previous paragraph (l1 � 1, l2 � 1), the right587

hand side of Eq. (16) would be ≈ 1/(l2 + 1), and so ∆rn1/m1 ≈ 1/(l2 + 1) in Eq. (14).588

Similarly,
∑

j〈xj〉a ≈ l2 in Eq. (17), and so ∆an2/m2 ≈ 1/l2. Thus, the rare type would be589

predicted to decline in frequency even though it has identical traits.590

This pathological behavior occurs because the expected total density of propagules in the591

respective groups of territories are different: 〈X〉p(x|x1=1,X1≥1) ≈ l2 + 1 > 〈X〉p(x|x2≥2) ≈ l2.592

As a result, the rare type’s behavior is approximated as though it experiences more intense593

lottery competition than the common type, which cannot be the case since the two types are594

identical. The effective means must thus be taken in a way that ensures that the expected595

total propagule density is the same in Eq. (16) and Eq. (17).596
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We achieve this as follows. For nonfocal types j 6= i, we separately evaluate the X-597

dependence of the conditional dispersal probabilities to ensure that X has the same distri-598

bution for both 〈〉r and 〈〉a. Specifically, we assume that X follows a Poisson distribution599

with rate parameter L, conditional on X ≥ 2; this distribution will be denoted P (X|X ≥ 2).600

However, for the focal type i, we use the exact conditional dispersal distributions p to cal-601

culate the effective mean,602

〈xi〉r = 1, 〈xi〉a = 〈xi〉p(xi|xi≥2). (18)

As we will see, these effective means are straightforward to calculate analytically, and ensure603

that the expected total propagule density 〈xi〉+
∑

j 6=i〈xj〉 is the same in Eq. (16) and Eq. (17).604

Starting with Eq. (16), we only need to evaluate 〈xj〉r since 〈xi〉r = 1. To evaluate the

X-dependence separately, we first hold X fixed to obtain

∑
xj

p(xj|xi = 1, X)xj =
lj

L− li
(X − 1) j 6= i. (19)

The right hand side is obtained by observing that the sum on the left is the expected number

of propagules with type j that will be found in a territory which received X − 1 nonfocal

propagules in total. We then take the expectation with respect to P (X|X ≥ 2) to give

〈xj〉r =
lj

L− li

∞∑
X=2

P (X|X ≥ 2)(X − 1)

=
lj

L− li
L− 1 + e−L

1− (1 + L)e−L
, (20)

where the last line follows from P (X|X ≥ 2) = 1
1−(1+L)e−LP (X) and

∑∞
X=2 P (X)(X − 1) =605
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∑∞
X=1 P (X)(X − 1) = L− 1 + e−L. Substituting Eqs. (16) and (20) into Eq. (14), we obtain606

∆rni ≈ miRi
ci
c
, (21)

where Ri is defined in Eq. (7).607

Turning now to Eq. (17), from Eq. (18) the mean focal abundance is

〈xi〉a =
∑
xi

p(xi|xi ≥ 2)xi

=
1

1− (1 + li)e−li

∑
xi≥2

p(xi)xi

= li
1− e−li

1− (1 + li)e−li
. (22)

For nonfocal types j 6= i, we have analogously to Eq. (19),

∑
xi

p(xi|xi ≥ 2, X)xj =
∑
xi

p(xi|Xi = X − xi)xj

=
lj(X − xi)
L− li

. (23)

Again taking the expectation with respect to P (X|X ≥ 2) yields

〈xj〉a =
lj

L− li

[
∞∑
X=2

P (X|X ≥ 2)X − 〈xi〉a

]

=
lj

L− li

(
L

1− e−L

1− (1 + L)e−L
− li

1− e−li
1− (1 + li)e−li

)
. (24)

Combining these results with Eqs. (15) and (17), we obtain608

∆ani = miAi
ci
c
, (25)
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where Ai is defined in Eq. (7).609

It is easily verified from Eqs. (20), (22) and (24) that the total expected propagule610

density is the same in in Eq. (16) and Eq. (17) i.e. 〈xi〉r +
∑

j 6=i〈xj〉r = 〈xi〉a +
∑

j 6=i〈xj〉a =611

〈X〉P (X|X≥2). As a result, Eq. (6) satisfies the consistency requirement (see Fig. 9).612

Approximation limits613

Having derived the approximation Eq. (6), we now evaluate its domain of validity. Eq. (6)614

relies on ignoring the fluctuations in xi and xj, such that we can replace them with615

constant effective mean values. To justify this, we show that the standard deviations616

σp(x|xi=1,Xi≥1)(
∑

j 6=i cjxj) and σp(x|xi≥2)(
∑

j cjxj) are small compared to the corresponding617

means 〈
∑

j 6=i cjxj〉p(x|xi=1,Xi≥1) and 〈
∑

j cjxj〉p(x|xi≥2) in Eqs. (16) and (17). This result means618

that using the exact distributions p(x|xi = 1, Xi ≥ 1) and p(x|xi ≥ 2) for the effective means619

would produce an accurate approximation of the components in (12) (though, as we have620

seen, not a consistent one). It is then clear that the effective means derived in the previous621

section will also give an accurate approximation since their magnitudes are similar to the622

exact means; this is obvious from the fact that the expected total number of propagules is623

of order max{L, 2} in both cases.624

We first consider the means and standard deviations in Eq. (16). We have

〈xj〉p(x|xi=1,Xi≥1) = lj/C, where C = 1 − e−(L−li), and the corresponding variances and

covariances are given by

σ2
p(x|xi=1,Xi≥1)(xj) = 〈x2

j〉p(x|xi=1,Xi≥1) − 〈xj〉2p(x|xi=1,Xi≥1)

=
l2j + lj

C
−

l2j
C2

=

(
1− 1

C

)
l2j
C

+
lj
C
, (26)
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and

σp(x|xi=1,Xi≥1)(xj, xk) = 〈xjxk〉p(x|xi=1,Xi≥1) − 〈xj〉p(x|xi=1,Xi≥1)〈xk〉p(x|xi=1,Xi≥1)

=
1

C
〈xjxk〉p(x|xi=1,Xi≥1) −

ljlk
C2

=

(
1− 1

C

)
ljlk
C

j 6= k. (27)

Note that 1− 1/C is negative because C < 1. Decomposing the variance in
∑

j 6=i cjxj,625

σ2(
∑
j 6=i

cjxj) =
∑
j 6=i

[
c2
jσ

2(xj) + 2
∑

k>j,k 6=i

cjckσ(xj, xk)

]
, (28)

we obtain626

σp(x|xi=1,Xi≥1)(
∑

j 6=i cjxj)

〈
∑

j 6=i cjxj〉p(x|xi=1,Xi≥1)

= C1/2

(∑
j 6=i c

2
j lj + (1− 1

C
)
(∑

j 6=i cjlj

)2
)1/2

∑
j 6=i cjlj

. (29)

Eq. (29) shows that, when the cj have similar magnitudes (their ratios are of order one),627

Eq. (16) is an excellent approximation. The right hand side of Eq. (29) is then approximately628

equal to C1/2
(

1
L−li + 1− 1

C

)1/2

, which is small for both low and high nonfocal densities. The629

worst case scenario occurs when L − li is of order one, and it can be directly verified that630

Eq. (16) is then still a good approximation (see Fig. 9).631

Turning to Eq. (17), all covariances between nonfocal types are now zero, so that632

σ2
p(x|xi≥2)(

∑
cjxj) =

∑
c2
jσ

2
p(x|xi≥2)(xj). For nonfocal types (j 6= i) σ2

p(x|xi≥2)(xj) = lj, whereas633

for the focal type we have634

σ2
p(x|xi≥2)(xi) =

li
D

(
li + 1− e−li − li

D

(
1− e−li

)2
)
, (30)

37

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2018. ; https://doi.org/10.1101/102087doi: bioRxiv preprint 

https://doi.org/10.1101/102087
http://creativecommons.org/licenses/by/4.0/


where D = 1− (1 + li)e
−li , and635

σp(x|xi≥2)(
∑
cjxj)

〈
∑
cjxj〉p(x|xi≥2)

=

(∑
j 6=i c

2
j lj + c2

iσ
2
p̂(xi)

)1/2∑
j 6=i cjlj + cili(1− e−li)/D

. (31)

Similarly to Eq. (29), the right hand side of Eq. (31) is small for both low and high nonfocal636

densities provided that the cj have similar magnitudes. Again, the worst case scenario occurs637

when li and L − li are of order 1, but Eq. (17) is still a good approximation in this case638

(Fig. 9).639

In both Eqs. (29) and (31), the standard deviation in
∑

j 6=i cjxj can be large relative to640

its mean if some of the cj are much larger than the others. Specifically, in the presence of641

a rare, strong competitor (cjlj � cj′lj′ for all other nonfocal types j′, and lj � 1), then the642

right hand side of Eqs. (29) and (31) can be large and we cannot make the replacement643

Eq. (16). Fig. 9 shows the breakdown of the effective mean approximation when there are644

large differences in c.645

Appendix B: Total density under Lotka-Volterra com-646

petition647

Here we show that under the Lotka-Volterra model of competition, total density N does not648

in general remain constant over a selective sweep in a crowded population even if the types649

have the same equilibrium density (for a related discussion on the density- and frequency-650

dependence of selection in the Lotka-Volterra model, see (Smouse, 1976; Mallet, 2012)).651

We assume equal effects of crowding within types α11 = α22 = αintra and N = 1/αintra and

check whether it is then possible for dN
dt

to be zero in the sweep (n1, n2 6= 0). Substituting
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Figure 9: Comparison of our effective mean approximation Eq. (6) with simulations, and
also with the naive 〈〉r = 〈〉p(x|xi=1,Xi≥1) and 〈〉a = 〈〉p(x|xi≥2) approximation, as a function of
the relative c difference between two types. Eq. (6) breaks down in the presence of large c
differences. The inset shows the pathology of the naive approximation — growth rates for
rare and common types are not equal in the neutral case c1 = c2. Simulation procedure is
the same as in Fig. 3, with U = 105.

39

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 2, 2018. ; https://doi.org/10.1101/102087doi: bioRxiv preprint 

https://doi.org/10.1101/102087
http://creativecommons.org/licenses/by/4.0/


these conditions into Eq. (10), we obtain

dn1

dt
= r1(α11 − α12)n1n2

dn2

dt
= r2(α22 − α21)n1n2 (32)

Adding these together, dN
dt

can only be zero if652

r1(αintra − α12) + r2(αintra − α21) = 0. (33)

To get some intuition for Eq. (33), suppose that a mutant arises with improved competitive653

ability but identical intrinsic growth rate and equilibrium density (r1 = r2 and α11 = α22).654

This could represent a mutation to an interference competition trait, for example (Gill,655

1974). Then, according the above condition, for N to remain constant over the sweep, the656

mutant must find the wildtype more tolerable than itself by exactly the same amount that657

the wildtype finds the mutant less tolerable than itself.658

Even if we persuaded ourselves that this balance of inter-type interactions is plausible659

in some circumstances, when multiple types are present the requirement for constant N660

becomes661 ∑
ij

ri(αintra − αij)pipj = 0, (34)

which depends on frequency and thus cannot be satisfied in general for constant inter-type662

coefficients αij. Therefore, Lotka-Volterra selection will generally involve non-constant N .663

Appendix C: Density-dependence of b-selection664

In section “Density-regulating traits under strong selection” we argued that the density-665

dependent factor f(b,N) = 1−e−bN/T

N
(T −N) is unchanged at the beginning and end points666
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of an equilibrium to equilibrium sweep of a type with higher b. Here we estimate the667

magnitude of the deviation in f(b,N) during the sweep.668

For simplicity, we introduce the notation D = N/T and assume that D is small. We

can thus make the approximation 1 − e−bD ≈ bD and f(b,N) ≈ b(1 − D). We expect

this to be a conservative approximation based on the worst case scenario, because N is

most sensitive to an increase in b in this low-density linear regime. We first calculate the

value of f(b,N) at the halfway point in a sweep, where the halfway point is estimated with

simple linear averages for b and N . The sweep is driven by a b variant with b2 = b1(1 + ε),

and we denote the initial and final densities by D1 and D2 respectively, where we have

finitial = b1(1−D1) = d1 − 1 = ffinal = b2(1−D2). We obtain

fhalf = f(
b1 + b2

2
,
N1 +N2

2
) =

b1 + b2

2

(
1− D1 +D2

2

)
=

1

4
(b1 + b2)(2−D1 −D2)

=
1

4
(2(d1 − 1) + b1(1−D2) + b2(1−D1)). (35)

Dividing by d1 − 1, the proportional deviation in f(N) at the midpoint of the sweep is

fhalf

d1 − 1
=

1

4

(
2 +

b1

b2

+
b2

b1

)
=

1

4

(
2 +

1

1 + ε
+ 1 + ε

)
= 1 +

1

4
(ε2 − ε3 + . . .), (36)

where we have used the Taylor expansion 1
1+ε

= 1− ε+ ε2 − ε3 + . . ..669

By contrast, for a δ sweep in Eq. (11), the density-dependent term N increases by a670

factor of 1
1−ε = 1 + ε + ε2 + . . .. Thus, the deviations in f(N) are an order of magnitude671

smaller than those shown in Fig. (6).672
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