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Figure 4: Time-calibrated species tree of Neotropical sea catfishes.
a) Map of Panama and north-western South America with sampling locations of specimens
used in this study. Colors of circles indicate genera of specimens sampled at a location:
Ariopsis, red; Sciades, purple; Bagre, blue; Notarius, green; Cathorops, orange. b) Posterior
distribution of time-calibrated species trees inferred with SNAPP, with fossil taxa added a
posteriori (images of otoliths and partial skulls are from Aguilera and de Aguilera 2004b
and from Aguilera et al. 2013, 2014; see Supplementary Table S6). Branch color indicates
reconstructed geography: Caribbean; green, or Tropical Eastern Pacific (TEP); dark blue.
Posterior densities of divergence times between Caribbean and Pacific lineages within No-
tarius (green), Bagre (blue), and Cathorops (orange) are shown below the species tree. Note
that two divergence events around 10 Ma have nearly identical posterior density distribu-
tions: the divergence between N. grandicassis and N. biffi and the divergence between B.
panamensis and the ancestor of B. bagre and B. marinus. Pie charts on nodes correspond-
ing to divergences between Caribbean and Pacific lineages indicate posterior probabilities
of ancestral distributions. All posterior estimates of node support, divergence times, and
ancestral geography are summarized in Supplementary Table S7.
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outgroup to the other four genera (Bayesian posterior probability, BPP: 1.0) and that the580

earliest divergence between these groups probably occurred in what is now the Caribbean581

(BPP: 0.81). The four genera Notarius, Bagre, Sciades, and Ariopsis diverged (probably in582

this order; BPP: 0.92) in a rapid series of splitting events that occurred between 22 and 19583

Ma, most likely also in the Caribbean (BPP: 0.89-1.0). Within-genus diversification of the584

sampled extant lineages began between 12 (Notarius) and 5 (Ariopsis) Ma, and these585

initial within-genus divergences occurred both within the Caribbean (Sciades, BPP: 1.0;586

Bagre, BPP: 0.77) and the TEP (Ariopsis, BPP: 0.89; Cathorops, BPP: 0.80). The most587

recent divergence between Caribbean and Pacific sea catfishes separated the Caribbean588

Cathorops nuchalis and C. wayuu from the Pacific C. tuyra, which occurred around 2.58589

Ma (95% HPD: 3.37-1.87 Ma). Assuming a generation time of 2 years for sea catfishes590

(Betancur-R. et al. 2008; Meunier 2012), the estimated population size was N = 127 250591

(95% HPD: 105 120-151 900) diploid individuals.592

Discussion593

Divergence-Time Estimation with Genome-Wide SNP Data594

Our analyses based on simulated SNP data demonstrate that SNAPP, combined595

with a molecular clock model, allows the precise and unbiased estimation of divergence596

times in the presence of incomplete lineage sorting. As expected, the precision of estimates597

increased with the number of SNPs used for the analysis. With 3 000 SNPs, the largest598

number of simulated SNPs used in our analyses, uncertainty in divergence times resulted599

almost exclusively from the width of the calibration density (Fig. 1). In addition to data-set600

size, the placement of the node-age calibration also had an effect on the precision of601

divergence-time estimates, which was improved when the root node was calibrated instead602
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of a younger node. This suggests that future studies employing divergence-time estimation603

with SNAPP should make use of constraints on the root node if these are available from604

the fossil record, from biogeographic scenarios, or from previously published time-calibrated605

phylogenies (as in our analyses of empirical SNP data of Neotropical army ants and sea606

catfishes). While we did not test the performance of multiple calibration points with607

simulated data, the use of additional calibration points can be expected to further improve608

the precision of divergence-time estimates; therefore these should be used if available.609

It should be noted that even though all our analyses of both simulated and610

empirical data sets were calibrated through node-age constraints, this so-called “node611

dating” approach has been criticized for several reasons (Heath et al. 2014; O’Reilly et al.612

2015; Matschiner et al. 2017). One problem associated with node dating is that prior613

distributions defined for node-age constraints are often chosen arbitrarily when minimum614

ages are provided by specific fossils but maximum ages are unknown. This problem has615

been adressed by using fossils as terminal taxa in “total-evidence dating” (Ronquist et al.616

2012) and the “fossilized birth-death process” (Heath et al. 2014; Gavryushkina et al.617

2017), but unfortunately, both of these approaches are not yet compatible with SNAPP.618

However, as a third alternative that overcomes the limitations of node dating, Matschiner619

et al. (2017) developed prior distributions for clade ages based on a model of diversification620

and fossil sampling and showed that these distributions allow unbiased inference when621

estimates for the rates of diversification and fossil sampling are available. The approach of622

Matschiner et al. (2017) is implemented in the CladeAge package for BEAST, which can be623

used in combination with SNAPP.624

A limitation of our approach is the assumption of equal and constant population625

sizes on all branches of the phylogeny, which corresponded to the settings used in our626

simulations but may rarely be met in nature. Population growth or decline within a lineage627

is generally not estimated by SNAPP and may be only weakly identifiable in some cases628
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Kuhner et al. (1998). Furthermore, the linking of population sizes was necessary to achieve629

feasible run times for analyses of data sets with around 20 species (with this number of630

species, assuming an individual population size for each branch would require an additional631

37 model parameters). The single population-size parameter estimated with our method632

will therefore most commonly represent an intermediate value within the range of the true633

population sizes of the taxa included in the data set. As a result, divergence times might634

be slightly overestimated for groups in which the population size is underestimated and635

vice versa. Nevertheless, we expect that the degree of this misestimation is minor636

compared to the bias introduced by the alternative strategy of concatenation (Fig. 3, Table637

4), which is equivalent to the MSC model only when all population sizes are so small that638

incomplete lineage sorting is absent and all gene trees are identical in topology and branch639

lengths (Edwards et al. 2016).640

As a further limitation of our approach, only the strict molecular clock model is641

currently available in SNAPP; relaxed clock models such as the commonly used642

uncorrelated lognormal clock model of Drummond et al. (2006) have not yet been643

implemented. This means that particularly in clades that may be expected to have644

different mutation rates in different lineages, the precision of divergence-time estimates645

may be exaggerated, which should be considered in the interpretation of such results.646

Our experiment 4 revealed that when SNP data sets are used without the addition647

of invariant sites, SNAPP’s estimates for the clock rate and Θ did not match those used in648

simulations (Fig. 2a,b, Table 3). While this mismatch might appear as a weakness of our649

approach, we do not consider it unexpected that these estimates change when650

slowly-evolving sites are excluded from the data set. Nevertheless, there are reasons why651

SNP-only data sets might be preferred over data sets that also include all invariant sites652

(Leaché and Oaks 2017). These reasons may be of practical nature, such as the653

comparative ease with which SNP-only data sets can be handled computationally due to654
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their smaller file sizes, or the lower cost of genotyping when SNP arrays are used (even655

though these may by affected by additional biases; Leaché and Oaks 2017). A more656

important reason to use SNP-only data sets, however, is that determining whether or not657

sites are truly invariant is often not trivial due to low read coverage or mapping quality. As658

a result, the number of sites assumed to be invariant depends on the filters applied in659

variant calling and the ideal filtering settings that would result in the correct proportion of660

invariant sites are usually unknown. On the other hand, if the investigator chooses to focus661

exclusively on SNPs, strict filtering threshold can be applied that result in a conservative662

data set consisting only of sites that are known with high confidence to be variable. Based663

on the results of our analyses with simulated and empirical data, we argue that such data664

sets are highly suitable for phylogenetic inference with SNAPP, even though clock rate and665

Θ-values estimated from these data do not represent their genome-wide analogues. In our666

view, this mismatch is irrelevant for most phylogenetic analyses (even though users should667

be aware of it) because the clock rate and Θ usually represent nuisance parameters whereas668

the phylogeny, the divergence times, and the population size are of interest. As669

demonstrated in our experiments, all of these parameters of interest are estimated reliably670

from SNP data with our approach of divergence-time estimation with SNAPP, provided671

that SNAPP’s ascertainment-bias correction is applied.672

Insights Into the Taxonomy of Neotropical Sea Catfishes673

Different views on the taxonomy of sea catfishes (Ariidae) have been supported by674

phylogenetic inference based on morphological features (Marceniuk et al. 2012b) and675

molecular data (Betancur-R. et al. 2007; Betancur-R. 2009). In the following, we address676

the most important differences between these views and how they are supported by our677

results, as well as new findings with regard to cryptic species.678
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Bagre and Cathorops.— The morphology-based phylogenetic analysis of Marceniuk et al.679

(2012b) supported an earlier proposal by Schultz (1944) to raise the genus Bagre to family680

status due to its extraordinary morphological distinctiveness and its inferred position681

outside of a clade combining almost all other genera of sea catfishes. On the other hand,682

molecular studies have recovered Bagre in a nested position within sea catfishes, a position683

that is also supported by our results (Betancur-R. et al. 2007, 2012; Betancur-R. 2009).684

The proposed status of Bagre as a separate family is therefore not supported by molecular685

data. Instead of Bagre, our phylogeny identified the genus Cathorops as the sister of a686

clade combining Notarius, Bagre, Sciades, and Ariopsis, in contrast not only to687

morphology-based analyses but also to previous molecular studies that recovered a clade688

combining Cathorops, Bagre, and Notarius, albeit with low support (Betancur-R. et al.689

2007, 2012; Betancur-R. 2009).690

Within the genus Bagre, the existence of cryptic species has previously been691

suggested in B. pinnimaculatus based on cranio-morphological differences and distinct692

mitochondrial haplotypes of populations from the Bay of Panama and from Rio Estero693

Salado, Panama (Stange et al. 2016). Our current results corroborate this view, given that694

the estimated divergence time of the two populations (B. pinnimaculatus 1 and B.695

pinnimaculatus 2 in Fig. 5) is old (1.66 Ma; 95% HPD: 2.30-1.08 Ma) compared to the696

expected coalescence time within a species (Texp = 2 ×Ng = 2 × 127 250 × 2 yr =697

509 000 yr; with N according to SNAPP’s population size estimate and g according to an698

assumed generation time of two years for sea catfishes; Betancur-R. et al. 2008).699

While Cathorops nuchalis has been declared a valid taxon based on morphological700

differentiation (Marceniuk et al. 2012a), mitochondrial sequences of this species were found701

to be indistinguishable from its sister species C. wayuu (Stange et al. 2016). In contrast,702

the nuclear SNP variation investigated here suggests that the two species are well703

differentiated and diverged 460 ka (95% HPD: 740-220 ka).704
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Notarius.— According to our results, Notarius quadriscutis is either the sister to a Pacific705

clade composed of N. cookei, N. kessleri, and N. planiceps (BPP: 0.54), the sister to N. biffi706

and N. grandicassis (BPP: 0.07), or the sister to all other sampled extant members of the707

genus (BPP: 0.39). Based on morphology, the species has previously been placed in genus708

Aspistor together with N. luniscutis and the extinct N. verumquadriscutis (Marceniuk709

et al. 2012b; Aguilera and Marceniuk 2012). However, molecular phylogenies have710

commonly recovered species of the genus Aspistor as nested within Notarius (Betancur-R.711

and Acero P. 2004; Betancur-R. et al. 2012) and thus do not support the distinction of the712

two genera. Regardless of the exact relationships of Notarius quadriscutis in our species713

tree, our analyses suggest that the lineage originated around the time of the crown714

divergence of Notarius (11.61 Ma; 95% HPD: 13.23-10.21 Ma) and is thus younger than the715

earliest fossils assigned to the genus, Notarius sp. (Early Miocene; Aguilera et al. 2014).716

This implies that considering Aspistor as separate from Notarius would also require a717

reevaluation of fossils assigned to Notarius.718

Ariopsis and Sciades.— While molecular studies have supported the reciprocal monophyly719

of the genera Ariopsis and Sciades (Betancur-R. et al. 2007, 2012), species of the genus720

Ariopsis appeared paraphyletic in the morphology-based cladogram of Marceniuk et al.721

(2012b) and were there considered as members of Sciades. Our species tree inferred with722

SNAPP supports the results of previous molecular analyses since both genera appear as723

clearly monophyletic sister groups (BPP: 1.0) that diverged already in the Early Miocene724

(19.06 Ma; 95% HPD: 20.94-17.45 Ma).725

Within Sciades, differentiation of mitochondrial haplotypes has been observed726

between brackish-water and marine populations of S. herzbergii from Clarines, Venezuela,727

and from the Golf of Venezuela (Stange et al. 2016). Our relatively old divergence-time728

estimate (1.64 Ma; 95% HPD: 2.20-1.04 Ma) provides further support for substantial729
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differentiation of the two populations (S. herzbergii 1 and S. herzbergii 2 in Fig. 5) that730

could be driven by ecological adaptations to their contrasting habitats.731

Implications for the Closure of the Panamanian Isthmus732

In agreement with our results based on simulated data, our reanalysis of733

genome-wide army ant data with both the MSC model and with concatenation indicated734

that recent divergence times can be overestimated if incomplete lineage sorting is not735

accounted for. As a result, the colonization of the North American landmass by army ants736

prior to the final closure of the Isthmus of Panama (2.8 Ma; O’Dea et al. 2016) was737

supported by our analyses using concatenation, but not by those using the MSC model.738

However, even the divergence times estimated with concatenation were generally younger739

than the divergence times reported by Winston et al. (2017), also on the basis of740

concatenation. This suggests that besides the variation introduced by the use of741

concatenation and the MSC, age estimates of army ant divergences were also influenced by742

other differences between our Bayesian divergence-time estimation and the analyses of743

Winston et al. (2017), which employed a penalized likelihood approach (Sanderson 2002) to744

estimate divergence times. These differences included not only the methodology used for745

time calibration, but also the number of specimens and alignment sites used in the analysis,746

as we had to filter the data set to comply with the assumption of the tree prior and to747

reduce the computational demands of the BEAST analysis. Nevertheless, our results748

suggest that previous claims of army ant migration to the North American landmass prior749

to the final isthmus closure (Winston et al. 2017) should be viewed with caution.750

By combining Bayesian phylogenetic inference with reconstruction of ancestral751

geographic distributions, our analyses of sea catfish SNP data allowed us to estimate the752

timing and the location of divergence events separating lineages of Caribbean and Pacific753

sea catfishes (Fig. 5). The youngest of these events is the divergence of the Caribbean754
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common ancestor of Cathorops nuchalis and C. wayuu from the Pacific C. tuyra, which we755

estimated to have occurred around 2.58 Ma (95% HPD: 3.37-1.87 Ma). As this age756

estimate coincides with the final closure of the Panamanian Isthmus around 2.8 Ma (O’Dea757

et al. 2016; Groeneveld et al. 2014), it appears likely that the closure was causal for758

vicariant divergence within Cathorops. According to our reconstruction of ancestral759

geographic distributions, the common ancestor of the three species C. nuchalis, C. wayuu,760

and C. tuyra more likely lived in the TEP (BPP: 0.64) than in the Caribbean. We note761

that this discrete type of inference may appear incompatible with the assumption that762

these lineages speciated through vicariance, given that in this case, the geographic763

distribution of the common ancestor should have extended across both regions as long as764

they were still connected. While our discrete ancestral reconstructions did not allow us to765

model this scenario of partially continuous distributions explicitly, our reconstructions can766

be reconciled with it if the inferred discrete geography is viewed not as the exclusive767

distribution of a species, but as the center of its distribution instead.768

Surprisingly, the divergence of Caribbean and Pacific lineages within Cathorops was769

the only splitting event in our sample of sea catfishes that could be associated with the770

final closure of the Panamanian Isthmus around 2.8 Ma, even though the closure could be771

expected to affect a large number of species simultaneously. Instead, near-simultaneous772

divergence events between Caribbean and Pacific lineages were inferred at a much earlier773

time, about 10 Ma, in the genera Bagre and Notarius. Within Notarius, N. grandicassis of774

the Caribbean and the West Atlantic diverged from N. biffi of the TEP around 9.63 Ma775

(95% HPD: 10.99-8.30 Ma). This event may have coincided with the separation of776

Caribbean and Pacific lineages within Bagre (9.70 Ma; 95% HPD: 11.05-8.50 Ma), where777

the Pacific species B. panamensis diverged from a predominantly Caribbean (BPP: 0.81)778

ancestor that later gave rise to B. bagre and B. marinus. Two further divergence events779

between Caribbean and Pacific lineages of Bagre and Notarius were inferred slightly earlier,780
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around 11 Ma. At 10.93 Ma (95% HPD: 12.29-9.60 Ma), the Pacific species Bagre781

pinnimaculatus diverged from the common ancestor of B. marinus, B. bagre, and B.782

panamensis, which likely had a distribution centered in the Caribbean (BPP: 0.77).783

Additionally, the common ancestor of the Pacific clade comprising Notarius cookei, N.784

kessleri, and N. planiceps diverged from the predominantly Caribbean (BPP: 0.70) lineage785

leading to N. quadriscutis at 11.29 Ma (95% HPD: 12.75-9.86 Ma).786

Our time-calibrated species tree with reconstructed ancestral distributions (Fig. 5)787

shows further divergence events that separated Caribbean and Pacific lineages. The two788

sampled species of Ariopsis both occur in the TEP and diverged at about 19.06 Ma (95%789

HPD: 20.94-17.45 Ma) from the predominantly Caribbean genus Sciades. However, since790

Ariopsis also contains Caribbean species that we did not include in our data set, it remains791

unclear when and how often transitions between the Caribbean and the TEP took place in792

this genus. Caribbean origins of the genus Cathorops and of the species Sciades dowii are793

suggested by fossils from the Pirabas and Urumaco formations and indicate that these two794

lineages migrated to the Pacific after or simultaneous to the divergence from the fossil795

representatives. But since these divergence times were not estimated in our SNAPP796

analysis, the timing of migration of Cathorops and Sciades dowii also remains uncertain.797

Regardless of these uncertainties, the near-simultaneous occurrence of several798

divergence events between Pacific and Caribbean lineages around 11-10 Ma suggests that799

geological processes associated with the emergence of the Panamanian Isthmus promoted800

vicariance long before the final closure of the isthmus around 2.8 Ma. Thus, even though801

our reanalysis of Neotropical army ant data suggested that army ants did not colonize the802

North American landmass before the final isthmus closure, our results based on sea catfish803

data add to the body of molecular evidence that indicates the emergence of temporary land804

bridges in the Late Miocene, leading to the separation of marine populations and migration805

of terrestrial animals (Donaldson and Wilson Jr 1999; Musilová et al. 2008; Bacon et al.806
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2015a,b; Carrillo et al. 2015; Acero P. et al. 2016; Huang 2016) long before the Great807

American Biotic Interchange (Woodburne 2010). While Miocene land bridges have been808

supported by a number of studies (Collins et al. 1996; Montes et al. 2015; Bacon et al.809

2015a), it remains debated whether all of the connections between the Caribbean and the810

Pacific closed prior to 2.8 Ma, and whether they were blocked at the same time (O’Dea811

et al. 2016). Nevertheless, even if land bridges did not block all passages simultaneously,812

their emergence might have disrupted the distributions of catfish populations if these were813

localized in areas away from the remaining openings.814

Although the rapid succession of divergence events between Caribbean and Pacific815

sea catfish lineages around 11-10 Ma indicates vicariance as the result of emerging land816

bridges, we cannot exclude that these events were driven by other modes of speciation,817

such as ecological speciation, and that their clustering within this relatively short period is818

coincidential. To discriminate between these possible explanations, a better understanding819

of the ecology of the diverging taxa will be important. In addition, the compilation of820

further diversification timelines for other groups of marine Neotropical species may821

strengthen the support for vicariance if divergences in these groups were found to cluster822

around the same times as in sea catfishes. As our results based on simulations suggest,823

these future analyses may benefit from genome-wide SNP data; however, concatenation824

should be avoided in favor of the MSC model to produce the most accurate estimates of825

divergence times. Importantly, our results clearly demonstrate that regardless of the causes826

of splitting events around 11-10 Ma, divergences between Caribbean and Pacific taxa are827

not necessarily linked to the final closure of the Panamanian Isthmus around 2.8 Ma.828

Thus, we reiterate earlier conclusions (Bacon et al. 2015a; De Baets et al. 2016) that the829

time of the final closure of the isthmus should no longer be used as a strict biogeographic830

calibration point for divergence-time estimation.831
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Conclusion832

We have demonstrated that the software SNAPP, combined with a molecular clock833

model, allows highly precise and accurate divergence-time estimation based on SNP data834

and the multi-species coalescent model. Our method thus provides molecular biologists835

with a powerful tool to investigate the timing of recent divergence events with genome-wide836

data. Our application of this method to two genomic data sets of Neotropical army ants837

and sea catfishes led to mixed support for the suggested closure of the Isthmus of Panama838

in the Miocene. We showed that army ants of the genus Eciton may have colonized the839

North American landmass only after the final closure of the Isthmus around 2.8 Ma and840

that previous conclusions supporting Miocene and Pliocene colonization events may have841

been influenced by branch-length bias resulting from concatenation. In contrast, we842

identify a series of four nearly coinciding divergence events around 10 Ma, as well as a final843

divergence around 2.8 Ma, between sea catfishes of the Caribbean and the TEP, which844

lends support to the hypothesis of Miocene isthmus closure and reopening. The rigorous845

application of divergence-time estimation with the multi-species coalescent model in future846

studies based on genomic data promises to contribute conclusive evidence for the timing847

and the effect of the emergence of the Panamanian Isthmus, one of the most significant848

events in recent geological history.849
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