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Abstract

Computational approaches to variable selection have become increasingly im-
portant with the advent of high-throughput technologies in genomics and brain
imaging studies, where the data has become massive, yet where it is believed that
the number of truly important variables is small relative to the total number of
variables. Although many approaches have been developed for main effects, less
attention has been paid to interaction models. Here, starting from the hypoth-
esis that a binary exposure variable can alter correlation patterns between clus-
ters of high-dimensional variables, i.e. alter network properties of the variables,
we explore whether such exposure-dependent clustering relationships can improve
predictive modelling of an outcome or phenotype variable. Hence, we propose a
modelling framework called ECLUST to test this hypothesis, and evaluate perfor-
mance through extensive simulations. We see improved model fit in many scenarios.
We further illustrate the framework through the analysis of three data sets from
very different fields, each with high dimensional data, a binary exposure, and a
phenotype of interest. Our method is available in the eclust CRAN package.
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1 Introduction

In this article, we consider the prediction of an outcome variable y observed on n individ-
uals from p variables, where p is much larger than n. In addition to problems related to
overfitting, it can be very challenging to interpret the results of prediction models with
ultra-high dimensional predictor sets. For example, multiple different sets of covariates
may provide equivalent measures of goodness of fit (Fan et al., 2014). In consequence,
many authors have suggested a two-step procedure where the first step is to cluster or
group variables in the design matrix, and the model fitting in the second step uses a
summary measure of each group of variables.

This two-step idea dates back to 1957 when Kendall (Kendall, 1957) first proposed using
principal components in regression. Hierarchical clustering based on the correlation of
the design matrix has also been used to create groups of genes in microarray studies.
For example, at each level of a hierarchy, cluster averages have been used as new sets
of potential predictors in both forward-backward selection (Hastie et al., 2001) or the
lasso (Park et al., 2007). Biithlmann et al. (Bithlmann et al., 2013) proposed a bottom-up
agglomerative clustering algorithm based on canonical correlations and used the group
lasso on the derived clusters. A more recent proposal performs sparse regression on cluster
prototypes (Reid and Tibshirani, 2016), i.e., extracting the most representative gene in
a cluster instead of averaging them.

There are several advantages to these two-step methods. Through the reduction of the
dimension of the model, the results are often more stable with smaller prediction variance,
and through identification of sets of correlated variables, the resulting clusters can provide
an easier route to interpretation. From a practical point of view two-step approaches are
both flexible and easy to implement because efficient algorithms exist for both clustering
(e.g. Miillner (2013)) and model fitting (e.g. Friedman et al. (2010); Yang and Zou (2014);
Kuhn (2008)), particularly in the case when the outcome variable is continuous.

These two-step approaches usually group variables based on a matrix of correlations or
some transformation of the correlations. However, when there are external factors, such
as exposures, that can alter correlation patterns, a dimension reduction step that ignores
this information may be suboptimal. Many of the high-dimensional genomic data sets
currently being generated capture a possibly dynamic view of how a tissue is function-
ing, and demonstrate differential patterns of coregulation or correlation under different
conditions. We illustrate this critical point with an example of a microarray gene expres-
sion dataset available in the COPDSezualDimorphism.data package (Sathirapongsasuti,
2013) from Bioconductor. This study measured gene expression in Chronic Obstructive
Pulmonary Disease (COPD) patients and controls in addition to their age, gender and
smoking status. To see if there was any effect of smoking status on gene expression, we
plotted the expression profiles separately for current and never smokers. To balance the
covariate profiles, we matched subjects from each group on age, gender and COPD case
status, resulting in a sample size of 7 in each group. Heatmaps in Figures 1a, 1b, 1c and
1d show gene expression levels and the corresponding correlation matrices as a function
of dichotomized smoking status for 2,900 genes with large variability. Evidently, there are
substantial differences in correlation patterns between the smoking groups (Figures 1b
and la). However, it is difficult to discern any patterns or major differences between
the groups when examining the gene expression levels directly (Figures 1d and 1c). This


https://doi.org/10.1101/102475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/102475; this version posted January 24, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

example highlights two key points; 1) environmental exposures can have a widespread
effect on regulatory networks and 2) this effect may be more easily discerned by looking
at a measure for gene similarity, relative to analyzing raw expression data.
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Figure 1: Heatmaps of gene expression data (top - rows are genes and columns are
subjects), and correlations between genes (bottom) stratified by smoking status from a
microarray study of COPD (Sathirapongsasuti, 2013). The 20% most variable genes are
displayed (2,900 genes). There are 7 subjects in each group, matched on COPD case sta-
tus, gender and age. Data available on Bioconductor in the COPDSexualDimorphism.data
package.

Many other examples of altered co-regulation and phenotype associations can be found.
For instance, in a pediatric brain development study, very different correlation patterns of
cortical thickness within brain regions were observed across age groups , consistent with
a process of fine-tuning an immature brain system into a mature one (Khundrakpam
et al., 2013). A comparison of gene expression levels in bone marrow from 327 children
with acute leukemia found several differentially coexpressed genes in philadelphia positive
leukemias compared to the cytogenetically normal group (Kostka and Spang, 2004). To
give a third example, an analysis of RNA-sequencing data from The Cancer Genome
Atlas (TCGA) revealed very different correlation patterns among sets of genes in tumors
grouped according to their missense or null mutations in the TP53 tumor suppressor
gene (Oros Klein et al., 2016).

Therefore, in this paper, we pose the question whether clustering that incorporates known
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covariate or exposure information can improve prediction models in high dimensional
genomic data settings. Substantial evidence of dysregulation of genomic coregulation
has been observed in a variety of contexts, however we are not aware of any work that
carefully examines how this might impact the performance of prediction models.

We propose a conceptual analytic strategy called ECLUST for prediction of a continuous
outcome in high dimensional contexts while exploiting exposure-sensitive data clusters.
We restrict our attention to two-step algorithms in order to implement a covariate-driven
clustering. Specifically, we hypothesize that within two-step methods, variable grouping
that considers exposure information can lead to improved predictive accuracy and in-
terpretability. In section 2, we describe conceptually the model that is being proposed,
particularly focusing on the dimension reduction step (Step 1) of the two step approaches,
then in section 3 we use simulations to compare our proposed method to comparable ap-
proaches that combine data reduction with predictive modelling. Since we are focusing
our attention primarily on the performance of alternative strategies within the first step,
we compare performance across a selection of step 2 predictive models that are best
adapted to our data. Finally, in section 4 we illustrate these concepts more concretely by
analyzing three data sets.

2 Methods

Assume there is a single binary environmental factor E of importance, and an n x p high
dimensional (HD) data set X (n observations, p features) of relevance. This could be
genome-wide epigenetic data, gene expression data, or brain imaging data, for example.
Assume there is a continuous or binary phenotype of interest Y and that the environment
has a widespread effect on the HD data, i.e., affects many elements of the HD data. The
primary goal is to improve prediction of Y by identifying interactions between E and
X through a carefully constructed data reduction strategy that exploits £ dependent
correlation patterns. The secondary goal is to improve identification of the elements
of X that are involved; we denote this subset by Sy;. We hypothesize that a systems-
based perspective will be informative when exploring the factors that are associated
with a phenotype of interest, and in particular we hypothesize that incorporation of
environmental factors into predictive models in a way that retains a high dimensional
perspective will improve results and interpretation.

2.1 Potential impacts of covariate-dependent coregulation

Motivated by real world examples of differential coexpression, we first demonstrate that
environment-dependent correlations in X can induce an interaction model. Without
loss of generality, let p = 2 and the relationship between X; and X, depend on the
environment such that

Xio =V XaE; + ¢ (1)

where ¢; is an error term and ¢ is a slope parameter, that is:

X VX, +¢  when E; =1
N € when E; =0
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Consider the 2-predictor regression model
Y = B0+ f1Xis + BoXio + €] (2)

where €} is another error term which is independent of ¢;. At first glance (2) does not
contain any interaction terms. However, substituting (1) for X, in (2) we get

Y, = Bo + b1 Xt + Bot (Xin Es) + €82 + €5 (3)

The third term in (3) resembles an interaction model, with (57 being the interaction
parameter. We present a second illustration showing how non-linearity can induce inter-
actions. Suppose
=\ 2
Vi = Bo + 51X + B2 Xio + B3 max (X5 — X;)
jef1.2}

+ &5 (4)
Substituting (1) for X;s in (4) we get a non-linear interaction term.

2.2 Proposed framework and algorithm

We restrict attention to methods containing two phases as illustrated in Figure 2: 1a) a
clustering stage where variables are clustered based on some measure of similarity, 1b) a
dimension reduction stage where a summary measure is created for each of the clusters,
and 2) a simultaneous variable selection and regression stage on the summarized cluster
measures. Although this framework appears very similar to any two-step approach, our
hypothesis is that allowing the clustering in Step 1a to depend on the environment variable
can lead to improvements in prediction after Step 2. Hence, methods in Step la are
adapted to this end, as decribed in section 2.2.1.

Our focus in this manuscript is on the clustering and cluster representation steps. There-
fore, we compare several well known methods for variable selection and regression that
are best adapted to our simulation designs and data sets.
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Figure 2: Overview of our proposed method
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2.2.1 Step la: Clustering using co-expression networks that are influenced by the environ-
ment

In agglomerative clustering, a measure of similarity between sets of observations is re-
quired in order to decide which clusters should be combined. Common choices include
Euclidean, maximum and absolute distance. A more natural choice in genomic or brain
imaging data is to use Pearson correlation (or its absolute value) because the derived
clusters are biologically interpretable. Indeed, genes that cluster together are correlated
and thus likely to be involved in the same cellular process. Similarly, cortical thickness
measures of the brain tend to be correlated within pre-defined regions such as the left and
right hemisphere, or frontal and temporal regions (Sato et al., 2013). However, the infor-
mation on the connection between two variables, as measured by the Pearson correlation
for example, may be noisy or incomplete. Thus it is of interest to consider alternative
measures of pairwise interconnectedness. Gene co-expression networks are being used to
explore the system-level function of genes, where nodes represent genes and are connected
if they are significantly co-expressed (Zhang and Horvath, 2005), and here we use their
overlap measure (Ravasz et al., 2002) to capture connectnedness between two X variables
within each environmental condition.

As was discussed earlier, genes can exhibit very different patterns of correlation in one
environment versus the other (e.g. Figure 1). Furthermore, measures of similarity that go
beyond pairwise correlations and consider the shared connectedness between nodes can
be useful in elucidating networks that are biologically meaningful. Therefore, we propose
to first look at the topological overlap matrix (TOM) separately for exposed (E = 1) and
unexposed (E = 0) individuals (see Section A.1 for details on the TOM). We then seek to
identify nodes that are very different between environments. We determine differential co-
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expression using the absolute difference TOM (Xqgir) = |TOMp—1 —TOMFp—o| (Oros Klein
et al., 2016). We then use hierarchical clustering with average linkage on the derived
difference matrix to identify these differentially co-expressed variables. Clusters are au-
tomatically chosen using the dynamicTreeCut (Langfelder et al., 2008) algorithm. Of
course, there could be other clusters which are not sensitive to the environment. For
this reason we also create a set of clusters based on the TOM for all subjects denoted
TOM (X.y). This will lead to each covariate appearing in two clusters. In the sequel
we denote the clusters derived from TOM (X)) as the set Cyy = {C1, ..., Ck}, and those
derived from TOM (Xqig) as the set Cair = {Cr1,...,Cr} where k < ¢ < p.

2.2.2 Step 1b: Dimension reduction via cluster representative

Once the clusters have been identified in phase 1, we proceed to reduce the dimensionality
of the overall problem by creating a summary measure for each cluster. A low-dimensional
structure, i.e. grouping when captured in a regression model, improves predictive per-
formance and facilitates a model’s interpretability. We propose to summarize a clus-
ter by a single representative number. Specifically, we chose the average values across
all measures (Park et al., 2007; Biithlmann et al., 2013), and the first principal compo-
nent (Langfelder and Horvath, 2007). These representative measures are indexed by their

cluster, i.e., the variables to be used in our predictive models are )N(au = {X(jl? e ,)’Eck}

for clusters that do not consider E, as well as Xaig = {)N(Ck T 7XC£} for E-derived

clusters. The tilde notation on the X is to emphasize that these variables are different
from the separate variables in the original data.

2.2.3 Step 2: Variable Selection and Regression

Because the clustering in phase 1 is unsupervised, it is possible that the derived latent
representations from phase 2 will not be associated with the response. We therefore
use penalized methods for supervised variable selection, including the lasso (Tibshirani,
1996) and elasticnet (Zou and Hastie, 2005) for linear models, and multivariate adaptive
regression splines (MARS) (Friedman, 1991) for nonlinear models. We argue that the
selected non-zero predictors in this model will represent clusters of genes that interact
with the environment and are associated with the phenotype. Such an additive model
might be insufficient for predicting the outcome. In this case we may directly include the
environment variable, the summary measures and their interaction.

In the light of our goals to improve prediction and interpretability, we consider the fol-
lowing model

¢ ¢
9(p) = Bo + Z B Xc, + BpE + Z @ (XCJE) +e (5)
j=1 j=1

where ¢(-) is a known link function, p = E[Y|X, F, 3, a] and )?Cj are linear combinations
of X (from Step 1b). The primary comparison is models with X, only versus models

with )N(au and )N(diﬁ. Given the context of either the simulation or the data set, we use
either linear models or non linear models. Our general approach, ECLUST, can therefore

be summarized by the algorithm in Table 1.
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Table 1: Details of ECLUST algorithm

Step  Description, Software®and Reference

i Calculate TOM separately for observations with £ = 0 and F = 1 using
WGCNA: : TOMsimilarityFromExpr (Langfelder and Horvath, 2008)

ii Compute the Euclidean distance matrix of |[TOMpg—1 — TOMEg—o| using

stats::dist
1la
) iii Run the dynamicTreeCut algorithm (Langfelder et al., 2008, 2016) on the

distance matrix to determine the number of clusters and cluster mem-
bership using dynamicTreeCut: : cutreeDynamic with minClusterSize =
50

i Calculate the 1st principal component or average for each cluster using
stat::prcomp or base: :mean

ii. For the penalized regression models, create a design matrix of the
1b) derived cluster representatives and their interactions with E using
stats::model.matrix

iii. For the MARS model, create a design matrix of the derived cluster repre-
sentatives and F

e For linear models, run penalized regression on design matrix from step 1b)
using glmnet: :cv.glmnet (Friedman et al., 2010).Elasticnet mixing param-
eter alpha=1 corresponds to the lasso and alpha=0.5 corresponds to the
value we used in our simulations for elasticnet. The tuning parameter alpha
is selected by minimizing 10 fold cross-validated mean squared error (MSE).

e For non-linear effects, run MARS on the design matrix from step 1b) using
earth::earth (Milborrow. Derived from mda:mars by T. Hastie and R.
Tibshirani., 2011) with pruning method pmethod = "backward" and maxi-
mum number of model terms nk = 1000. The degree=1,2 is chosen using
10 fold cross validation (CV), and within each fold the number of terms in
the model is the one that minimizes the generalized cross validated (GCV)
€error.

@ All functions are implemented in R (R Core Team, 2016). The naming convention
is as follows: package name: :package_function. Default settings used for all
functions unless indicated otherwise.

3  Simulation Studies

We have evaluated the performance of our ECLUST method in a variety of simulated
scenarios. In each, we compared analytic approaches that do not cluster the variables at
all, methods that cluster variables but do not account for the environmental exposure in
the clustering step, and finally ECLUST, which clusters both with and without consider-
ing the environmental exposure. A detailed description of the methods being compared is
summarized in Table 2. We have designed 6 simulation scenarios that illustrate different
kinds of relationships between the variables and the response. For all scenarios, we have
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created high dimensional data sets with p predictors (p = 5000), and sample sizes of
n = 200. We also assume that we have two data sets for each simulation - a training data
set where the parameters are estimated, and a testing data set where prediction perfor-
mance is evaluated, each of size nyqqin = Ngess = 200. The number of subjects who were
exposed (ngp—; = 100) and unexposed (ng—o = 100) and the number of truly associated
parameters (|So| = 500) remain fixed across the 6 simulation scenarios.

Let
Y=Y"+k- ¢ (6)

where Y* is the linear predictor, the error term ¢ is generated from a standard normal dis-
tribution, and k is chosen such that the signal-to-noise ratio SNR = (Var(Y*)/Var(e))
is 0.2, 1 and 2 (e.g. the variance of the response variable Y due to € is 1/SNR of the
variance of Y due to Y*).

Table 2: Summary of methods used in simulation study

Summary Measure
of Feature Clusters

ab

General Approach Description

Regression of the original predictors {X1,...,X,} on the

SEPARATE NA response i.e. no transformation of the predictors is being
done here
1st principal Create clusters of predictors without using the environment
CLUST component, variable {C1,...,C;}. Use the summary measure of each
average cluster as inputs of the regression model.

Create clusters of predictors using the environment variable
{Ck+1,...,C¢} where k < £ < p, as well as clusters with-
out the environment variable {C1,...,C;}. Use summary
measures of {C1,...,C;} as inputs of the regression model.

1st principal
ECLUST component,
average

@ Simulations 1 and 2 used lasso and elasticnet for the linear models, and simulation 3 used MARS for
estimating non-linear effects

b Simulations 4, 5 and 6 convert the continuous response generated in simulations 1, 2 and 3,
respectively, into a binary response

3.1 The Design Matrix

We generated covariate data in blocks using the simulateDatExpr function from the
WGCNA package in R (version 1.51). This generates data from a latent vector: first a seed
vector is simulated, then covariates are generated with varying degree of correlation with
the seed vector in a given block. We simulated five clusters (blocks), each of size 750
variables, and labeled them by colour (turquoise, blue, red, green and yellow), while the
remaining 1250 variables were simulated as independent standard normal vectors (grey)
(Figure 3). For the unexposed observations (E = 0), only the predictors in the yellow
block were simulated with correlation, while all other covariates were independent within
and between blocks. The TOM values are very small for the yellow cluster because it
is not correlated with any of its neighbors. For the exposed observations (E = 1), all
5 blocks contained predictors that are correlated. The blue and turquoise blocks are
set to have an average correlation of 0.6. The average correlation was varied for both
green and red clusters p = {0.2,0.9} and the active set Sy, that are directly associated

9
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with y, was distributed evenly between these two blocks. Heatmaps of the TOM for this
environment dependent correlation structure are shown in Figure 3 with annotations for
the true clusters and active variables. This design matrix shows widespread changes in
gene networks in the exposed environment, and this subsequently affects the phenotype
through the two associated clusters. There are also pathways that respond to changes
in the environment but are not associated with the response (blue and turquoise), while
others that are neither active in the disease nor affected by the environment (yellow).

N O I N | active S 1111 S 1 N o 'tive
N0 00001 0T 000001000000 000000000000 OO0 1O ORI O moqule 1| 1110 — |

—
I

5

H

L

H

=

|i

(€) [TOM(XEp=1) — TOM(Xg—o)| (d) TOM(Xan)

Figure 3: Topological overlap matrices (TOM) of simulated predictors based on subjects
with (a) £ =0, (b) £ = 1, (c) their absolute difference and (d) all subjects. Dendrograms
are from hierarchical clustering (average linkage) of one minus the TOM for a, b, and
d and the euclidean distance for c. Some variables in the red and green clusters are
associated with the outcome variable. The module annotation represents the true cluster
membership for each predictor, and the active annotation represents the truly associated
predictors with the response.

3.2 The response

The first three simulation scenarios differ in how the linear predictor Y* in (6) is defined,
and also in the choice of regression model used to fit the data. In simulations 1 and

10
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2 we use lasso (Tibshirani, 1996) and elasticnet (Zou and Hastie, 2005) to fit linear
models; then we use MARS (Friedman, 1991) in simulation 3 to estimate non-linear
effects. Simulations 4, 5 and 6 use the GLM version of these models, respectively, since
the responses are binary.

Simulation 1

Simulation 1 was designed to evaluate performance when there are no explicit interactions
between X and E (see (3)). We generated the linear predictor from

Y* =Y 8X;+ BsE (7)
je{1,...,250}
J€ red, green block

where f; ~ Unif[0.9,1.1] and g = 2. That is, only the first 250 predictors of both the
red and green blocks are active. In this setting, only the main effects model is being fit
to the simulated data.

Simulation 2

In the second scenario we explicitly simulated interactions. All non-zero main effects also
had a corresponding non-zero interaction effect with . We generated the linear predictor
from

Y* =Y BiX;+ oy X;E+ BpE (8)

jef{1,...,125}
j€ red, green block

where 3; ~ Unif[0.9,1.1], ; ~ Unif[0.4,0.6] or a; ~ Unif[1.9,2.1], and Sr = 2. In this
setting, both the main effects and their interactions with E are being fit to the simulated
data.

Simulation 3

In the third simulation we investigated the performance of the ECLUST approach in the
presence of non-linear effects of the predictors on the phenotype:

Y7 =) 5 Xy + BeBi + agEi - f(Qi) (9)

je{1,...,250}
j€ red, green block

11
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where

Qi = —Inax (XZ] — XZ)Q (10)

j€{1,...,250}
j€ red, green block

u; — min
€{1,...,n}

— min wu;
ie{l,...,n}

— 1
Xi = — Xij
500

j€{1,...,250}
J€ red, green block

In this third simulation, we set §; ~ Unif[0.9,1.1], fg =2 and ag = 1. We assume
the data has been appropriately normalized, and that the correlation between any two
features is greater than or equal to 0.

In simulation 3, we tried to capture the idea that an exposure could lead to coregulation
or disregulation of a cluster of X’s, which in itself directly impacts Y. Hence, we defined
coregulation as the X’s being similar in magnitude and disregulation as the X’s being
very different. The @; term in (10) is defined such that higher values would correspond
to strong coregulation whereas lower values correspond to disregulation. For example,
suppose @); ranges from -5 to 0. It will be -5 when there is lots of variability (disregulation)
and 0 when there is none (strong coregulation). The function f(-) in (11) simply maps
@; to the [0,1] range. In order to get an idea of the relationship in (9), Figure 4 displays
the response Y as a function of the first principal component of ) ;i BiXij (denoted by
1st PC) and f(Q;). We see that lower values of f(Q;) (which implies disregulation of the
features) leads to a lower Y. In this setting, although the clusters do not explicitly include
interactions between the X variables, the MARS algorithm allows for the possibility of
two way interactions between any of the variables.

Figure 4: Visualization of the relationship between the response, the first principal com-
ponent of the main effects and f(Q;) in (9) for £ = 0 (left) and £ = 1 (right) in simulation
scenario 3.

Simulation 4, 5 and 6

We used the same simulation setup as above, except that we took the continuous outcome
Y, defined p = 1/(1 + exp(—Y")) and used this to generate a two-class outcome z with
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Pr(z = 1) = p and Pr(z = 0) = 1 — p. Simulations 4, 5 and 6 are the binary response
versions of simulations 1, 2 and 3, respectively.

3.3 Measures of Performance

Simulation performance was assessed with measures of model fit, prediction accuracy and
feature stability. Several measures for each of these categories, and the specific formulae
used are provided in Table 3. We simulated both a training data set and a test data
set for each simulation: all tuning parameters for model selection were selected using the
training sets only. Although most of the measures of model fit were calculated on the
test data sets, true positive rate, false positive rate and correct sparsity were calculated
on the training set only. The root mean squared error is determined by predicting the
response for the test set using the fitted model on the training set. The area under the
curve is determined using the trapezoidal rule (Robin et al., 2011).

The stability of feature importance is defined as the variability of feature weights under
perturbations of the training set, i.e., small modifications in the training set should not
lead to considerable changes in the set of important covariates (Tologi and Lengauer,
2011). A feature selection algorithm produces a weight (e.g. 3 = (f1,...,5,)), a ranking
(e.g. rank(B) : r = (r1,...,r,)) and a subset of features (e.g. s = (s1,...,5,),5; =
I{5; # 0} where I{-} is the indicator function). In the CLUST and ECLUST methods,
we defined a predictor to be non-zero if its corresponding cluster representative weight
was Nnon-zero.

Using 10-fold cross validation (CV), we evaluated the similarity between two features and
their rankings using Pearson and Spearman correlation, respectively. For each CV fold
we re-ran the models and took the average Pearson/Spearman correlations of the (120)
combinations of estimated coefficients vectors. To measure the similarity between two
subsets of features we took the average of the Jaccard distance in each fold. A Jaccard
distance of 1 indicates perfect agreement between two sets while no agreement will result
in a distance of 0. For MARS models we do not report the Pearson/Spearman stability
rankings due to the adaptive and functional nature of the model (there are many possible

combinations of predictors, each of which are linear basis functions).
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Table 3: Measures of Performance

Measure Formula
Model Fit
True Positive Rate (TPR) IS € Sol /|50l
False Positive Rate (TPR) 15 ¢ Sol/15 & Sol
Correct Sparsity (Witten et al., 2014) % ;’:1 A;

1 if8;=8=0
Aj=q1 if B #8; #0

0 if else
Prediction Accuracy
Root Mean Squared Error (RMSE) 1Y test — m(Xiest) |l
Area Under the Curve (AUC) Trapezoidal rule

Feature Stability using K -fold Cross-Validation on training set (Kalousis et al., 2007)

(K)*l 5 cov(B),B5))

Pearson Correlation (p) (Pearson, 1895) 9 —
ije{l,...K},i%j P& PG

2
Spearman Correlation (r) (Spearman, 1904) (12()_1 > ll -6 %
iEll, K} i m
Jaccard Distance (Jaccard, 1912) GIEL
5@ US|

@ p: fitting procedure on the training set

b Sy: index of active set = {j; B? =+ 0}

¢ S: index of the set of non-zero estimated coefficients = {j; Ej #* 0}
4| Al: is the cardinality of set A

3.4 Results

All reported results are based on 200 simulation runs. We graphically summarized the
results across simulations 1-3 for model fit (Figure 5) and feature stability (Figure 6). The
results for simulations 4-6 are shown in the supplemental material (Figures C.1 and C.2).
We restrict our attention to SNR =1, p = 0.9, and a; ~ Unif[1.9,2.1]. Complete results
for different values of p, SNR and «; (when applicable) are available in the supplemental
material (Section D). The model names are labeled as summary measure model (e.g.
avg_lasso corresponds using the average of the features in a cluster as inputs into a lasso
regression model). When there is no summary measure appearing in the model name,
that indicates that the original variables were used (e.g. enet means all separate features
were used in the elasticnet model).

In panel A of Figure 5, we plot the true positive rate against the false positive rate for
each of the 200 simulations. We see that across all simulation scenarios, the SEPARATE
method has extremely poor sensitivity compared to both CLUST and ECLUST, which
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do much better at identifying the active variables, though the resulting models are not
always sparse. The relatively few number of green points in panel A is due to the small
number of estimated clusters (see Figure F.1 for details) leading to very little variability
in performance across simulations. The better performance of ECLUST over CLUST is
noticeable as more points lie in the top left part of the plot. The horizontal banding
in panel A reflects the stability of the TOM-based clustering approach; these jumps in
sensitivity were not seen when correlation-based measures of distance were used (not
shown). ECLUST also does better than CLUST in correctly determining whether a
feature is zero or nonzero (Figure 5, panel B). Importantly, across all three simulation
scenarios, ECLUST outperforms the competing methods in terms of RMSE (Figure 5,
panel C), regardless of the summary measure and modeling procedure.

A
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Figure 5: Model fit results in simulations. SEPARATE results are in pink, CLUST in
green and ECLUST in blue.

While the approach using all separate original variables (SEPARATE) produce sparse
models, they are sensitive to small perturbations of the data across all stability measures
(Figure 6), i.e, similar datasets produce very different models. Although the median
for the CLUST approach is always slightly better than the median for ECLUST across
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all stability measures, CLUST results can be much more variable, particularly when
stability is measured by the agreement between the value and the ranking of the estimated
coefficients across CV folds (Figure 6, panels B and C). The number of estimated clusters,
and therefore the number of features in the regression model, tends to be much smaller
in CLUST compared to ECLUST, and this explains its poorer performance using the
stability measures in Figure 6, since there are more coefficients to estimate. Overall, we
observe that the relative performance of ECLUST versus CLUST in terms of stability
is consistent across the two summary measures (average or principal component) and
across the penalization procedures. The complete results in the supplemental material
show that these conclusions are not sensitive to the SNR, p or «;. Similar conclusions
are made for a binary outcome using logistic regression versions of the lasso, elasticnet
and MARS.

We also ran all our simulations using the Pearson correlation matrix as a measure of sim-
ilarity (Figure B.1) in order to compare its performance against the TOM. The complete
results are in the supplemental material (Section E). In general, we see slightly better
performance of CLUST over ECLUST when using Pearson correlations. This result is
probably due to the imprecision in the estimated correlations. The exposure dependent
similarity matrices are quite noisy, and the variability is even larger when we examine
the differences between two correlation matrices. Such large levels of variability have a
negative impact on the clustering algorithm’s ability to detecting the true clusters.

4 Analysis of three data sets

In this section we demonstrate the performance of ECLUST on three high dimensional
datasets with contrasting motivations and features. In the first data set, normal brain
development is examined in conjunction with intelligence scores. In the second data
set we aim to identify molecular subtypes of ovarian cancer using gene expression data.
The investigators’ goal in the third data set is to examine the impact of gestational
diabetes mellitus (GDM) on childhood obesity in a sample of mother-child pairs from a
prospective birth cohort. The datasets comprise a range of sample sizes, and both the
amount of clustering in the HD data and the strength of the effects of the designated
exposure variables vary substantially. Due to the complex nature of these datasets, we
decided to use MARS models for step 2 of our algorithm for all 3 datasets, as outlined
in Table 1.

In order to assess performance in these data sets, we have computed the 0.632 estima-
tor (Efron, 1983) and the 95% confidence interval of the R? and RMSE from 100 bootstrap
samples. The R? reported here is defined as the squared Pearson correlation coefficient
between the observed and predicted response (Kvalseth, 1985), and the RMSE is defined
as in Table 3. Because MARS models can result in unstable predictors (Kuhn, 2008),
we also report the results of bagged MARS from B = 50 bootstrap samples, where bag-
ging (Breiman, 1996) refers to averaging the predictions from each of the MARS models
fit on the B bootstrap samples.
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Figure 6: Stability results in simulations. SEPARATE results are in pink, CLUST in
green and ECLUST in blue.

4.1 NIH MRI Study of Normal Brain Development

The NIH MRI Study of Normal Brain Development, started in 2001, was a 7 year lon-
gitudinal multi-site project that used magnetic resonance technologies to characterize
brain maturation in 433 medically healthy, psychiatrically normal children aged 4.5-18
years (Evans et al., 2006). The goal of this study was to provide researchers with a repre-
sentative and reliable source of healthy control subject data as a basis for understanding
atypical brain development associated with a variety of developmental, neurological, and
neuropsychiatric disorders affecting children and adults. Brain imaging data (e.g. cortical
surface thickness, intra-cranial volume), behavioural measures (e.g. IQ scores, psychiatric
interviews, behavioral ratings) and demographics (e.g. socioeconomic status) were col-
lected at two year intervals for three time points and are publically available upon request.
Previous research using these data found that level of intelligence and age correlate with
cortical thickness (Shaw et al., 2006; Khundrakpam et al., 2013), but to our knowledge no
such relation between income and cortical thickness has been observed. We therefore used
this data to see the performance of ECLUST in the presence (age) and absence (income)
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of an effect on the correlations in the HD data. We analyzed the 10,000 most variable
regions on the cortical surface from brain scans corresponding to the first sampled time
point only. We used binary age (166 age < 11.3 and 172 > 11.3) and binary income (142
high and 133 low income) indicator as the environment variables and standardized 1Q
scores as the response. We identified 22 clusters from TOM (X,;) and 57 clusters from
TOM (Xair) when using age as the environment, and 86 clusters from TOM (X,y) and 49
clusters from TOM (Xgg) when using income as the environment. Results are shown in
Figure 7, panels C and D. The method which uses all individual variables as predictors
(pink), has better R? but also worse RMSE compared to CLUST and ECLUST, likely
due to over-fitting. There is a slight benefit in performance for ECLUST over CLUST
when using age as the environment (panel D). Importantly, we observe very similar per-
formance between CLUST and ECLUST across all models (panel C), suggesting very
little impact on the prediction performance when including features derived both with
and without the E variable, in a situation where they are unlikely to be relevant.

4.2 Gene Expression Study of Ovarian Cancer

Differences in gene expression profiles have led to the identification of robust molecular
subtypes of ovarian cancer; these are of biological and clinical importance because they
have been shown to correlate with overall survival (Tothill et al., 2008). Improving predic-
tion of survival time based on gene expression signatures can lead to targeted therapeutic
interventions (Helland et al., 2011). The proposed ECLUST algorithm was applied to
gene expression data from 511 ovarian cancer patients profiled by the Affymetrix Human
Genome U133A 2.0 Array. The data were obtained from the TCGA Research Network:
http://cancergenome.nih.gov/ and downloaded via the TCGA2STAT R library (Wan
et al., 2015). Using the 881 signature genes from Helland et al. (2011) we grouped subjects
into two groups based on the results in this paper, to create a “positive control” environ-
mental variable expected to have a strong effect. Specifically, we defined an environment
variable in our framework as: E = 0 for subtypes C1 and C2 (n = 253), and E =1 for
subtypes C4 and C5 (n = 258). Overall survival time (log transformed) was used as the
response variable. Since these genes were ascertained on survival time, we expected the
method using all genes without clustering to have the best performance, and hence one
goal of this analysis was to see if ECLUST performed significantly worse as a result of
summarizing the data into a lower dimension. We found 3 clusters from TOM (X,;) and
3 clusters from TOM (Xgg); results are shown in Figure 7, panel C. Across all models,
ECLUST performs slightly better than CLUST. Furthermore it performs almost as well
as the separate variable method, with the added advantage of dealing with a much smaller
number of predictors (881 with SEPARATE compared to 6 with ECLUST).

4.3 Gestational diabetes, epigenetics and metabolic disease

Events during pregnancy are suspected to play a role in childhood obesity development
but only little is known about the mechanisms involved. Indeed, children born to women
who had GDM in pregnancy are more likely to be overweight and obese (Wendland
et al., 2012), and evidence suggests epigenetic factors are important piece of the puz-
zle (Bouchard et al., 2010, 2012). Recently, methylation changes in placenta and cord

18


https://doi.org/10.1101/102475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/102475; this version posted January 24, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

blood were associated with GDM (Ruchat et al., 2013), and here we explore how these
changes are associated with obesity in the children at the age of about 5 years old. DNA
methylation in placenta was measured with the Infinium HumanMethylation450 Bead-
Chip (Illumina, Inc (Bibikova et al., 2011)) microarray, in a sample of 28 women, 20 of
whom had a GDM-affected pregnancy, and here, we used GDM status as our E variable,
assuming that this has widespread effects on DNA methylation and on its correlation
patterns. Our response, Y, is the standardized body mass index (BMI) in the offspring
at the age of 5. In contrast to the previous two examples, here we had no particular
expectation of how ECLUST would perform.

Using the 10,000 most variable probes, we found 2 clusters from TOM (X)), and 75 clus-
ters from TOM (Xqg). The predictive model results from a MARS analysis are shown
in Figure 7, panel A. When using R? as the measure of performance, ECLUST outper-
forms both SEPARATE and CLUST methods. When using RMSE as the measure of
model performance, performance tended to be better with CLUST rather than ECLUST
perhaps in part due to the small number of clusters derived from TOM (X,y) relative
to TOM (Xgig). Overall, the ECLUST algorithm with bagged MARS and the 1st PC
of each cluster performed best, i.e., it had a better R? than CLUST with comparable
RMSE. The sample size here is very small, and therefore the stability of the model fits is
limited stability.

The probes in these clusters mapped to 164 genes and these genes were selected to con-
duct pathway analyses using the Ingenuity Pathway Analysis (IPA) software (Ingenuity
System). IPA compares the selected genes to a reference list of genes included in many
biological pathways using a hypergeometric test. Smaller p values are evidence for over-
represented gene ontology categories in the input gene list. The results are summarized in
Table 4 and provide some biological validation of our ECLUST method. For example, the
Hepatic system is involved with the metabolism of glucose and lipids (Saltiel and Kahn,
2001), and behavior and neurodevelopment are associated with obesity (Epstein et al.,
2004). Furthermore, it is interesting that embryonic and organ development pathways
are involved since GDM is associated with macrosomia (Ehrenberg et al., 2004).

5 Discussion

The challenge of precision medicine is to appropriately fit treatments or recommendations
to each individual. Data such as gene expression, DNA methylation levels, or magnetic
resonance imaging (MRI) signals are examples of HD measurements that capture multiple
aspects of how a tissue is functioning. These data often show patterns associated with
disease, and major investments are being made in the genomics research community to
generate such HD data. Analytic tools increasing prediction accuracy are needed to
maximize the productivity of these investments. However, the effects of exposures have
usually been overlooked, but these are crucial since they can lead to ways to intervene.
Hence, it is essential to have a clear understanding of how exposures modify HD measures,
and how the combination leads to disease. Existing methods for prediction (of disease),
that are based on HD data and interactions with exposures, fall far short of being able to
obtain this clear understanding. Most methods have low power and poor interpretability,
and furthermore, modelling and interpretation problems are exacerbated when there is
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Figure 7: Model fit measures from analysis of three data sets: (A) Gestational diabetes
birth-cohort (B) TCGA Ovarian Cancer study (C) NIH MRI Study with income as the
environment variable (D) NIH MRI Study with age as the environment variable

interest in interactions. In general, power to estimate interactions is low, and the number
of possible interactions could be enormous.

Therefore, here we have proposed a strategy to leverage situations where a covariate
(e.g. an exposure) has a wide-spread effect on one or more HD measures, e.g. GDM on
methylation levels. We have shown that this expected pattern can be used to construct
dimension-reduced predictor variables that inherently capture the systemic covariate ef-
fects. These dimension-reduced variables, constructed without using the phenotype, can
then be used in predictive models of any type. In contrast to some common analysis
strategies that model the effects of individual predictors on outcome, our approach makes
a step towards a systems-based perspective that we believe will be more informative when
exploring the factors that are associated with disease or a phenotype of interest. We have
shown, through simulations and real data analysis, that incorporation of environmental
factors into predictive models in a way that retains a high dimensional perspective can
improve results and interpretation for both linear and non linear effects.

We proposed two key methodological steps necessary to maximize predictive model in-
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Table 4: Ingenuity Pathway Analysis Results — top-ranked diseases and disorders, and
physiological system development and function epigentically affected by gestational diabetes
mellitus and associated with childhood body mass index

Category Name p values n

Hepatic System

Diseases and Disorders . 9.6le—7 — 5.17e—7 75
Disease

Physiological ~ System

Development and

Function
Behavior 1.35e—2 — 7.82e—8 33
Embryonic Development 1.35e—2 — 2.63e—8 26
Nervous System Development 1.350—92 — 2.630—8 43
and Function
Organ Development 1.35e—2 — 2.63e—8 20
Organismal Development 1.35e—2 — 2.63e—8 34

? number of genes involved in each pathway

terpretability when using HD data and a binary exposure: (1) dimension reduction of
HD data built on exposure sensitivity, and (2) implementation of penalized prediction
models. In the first step, we proposed to identify exposure-sensitive HD pairs by contrast-
ing the TOM between exposed and unexposed individuals; then we cluster the elements
in these HD pairs to find exposure-sensitive co-regulated sets. New dimension-reduced
variables that capture exposure-sensitive features (e.g. the first principal component of
each cluster) were then defined. In the second step we implemented linear and non-linear
variable selection methods using the dimension-reduced variables to ensure stability of
the predictive model. The ECLUST method has been implemented in the eclust (Bhat-
nagar) R package publicly available on CRAN. Our method along with computationally
efficient algorithms, allows for the analysis of up to 10,000 variables at a time on a laptop
computer.

The methods that we have proposed here are currently only applicable when three data
elements are available. Specifically a binary environmental exposure, a high dimensional
dataset that can be affected by the exposure, and a single phenotype. When comparing
the TOM and Pearson correlations as a measure of similarity, our simulations showed
that the performance of ECLUST was worse with correlations. This speaks to the po-
tential of developing a better measure than the difference of two matrices. For example,
we are currently exploring ways in which to handle continuous exposures or multiple
exposures. The best way to construct an exposure-sensitive distance matrix that can be
used for clustering is not obvious in these situations. One possible solution relies on a
non-parametric smoothing based approach where weighted correlations are calculated.
These weights can be derived from a kernel-based summary of the exposure covariates
(e.g. (Qiu et al., 2016)). Then, contrasting unweighted and weighted matrices will allow
construction of covariate-sensitive clusters.

The choice of summary measure for each cluster also warrants further study. While princi-
pal components and averages are well understood and easy to implement, the main short-
coming is that they involve all original variables in the group. As the size of the groups
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increase, the interpretability of these measures decreases. Non-negative matrix factor-
ization (Lee and Seung, 2001) and sparse principal component analysis (SPCA) (Witten
et al., 2009) are alternatives which find sparse and potentially interpretable factors. Fur-
thermore, structured SPCA (Jenatton et al., 2009) goes beyond restricting the cardinality
of the contributing factors by imposing some a priori structural constraints deemed rele-
vant to model the data at hand.

We are all aware that our exposures and environments impact our health and risks of
disease, however detecting how the environment acts is extremely difficult. Furthermore,
it is very challenging to develop reliable and understandable ways of predicting the risk of
disease in individuals, based on high dimensional data such as genomic or imaging mea-
sures, and this challenge is exacerbated when there are environmental exposures that lead
to many subtle alterations in the genomic measurements. Hence, we have developed an
algorithm and an easy-to use software package to transform analysis of how environmen-
tal exposures impact human health, through an innovative signal-extracting approach for
high dimensional measurements. Evidently, the model fitting here is performed using ex-
isting methods; our goal is to illustrate the potential of improved dimension reduction in
two-stage methods, in order to generate discussion and new perspectives. If such an ap-
proach can lead to more interpretable results that identify gene-environment interactions
and their effects on diseases and traits, the resulting understanding of how exposures
influence the high-volume measurements now available in precision medicine will have
important implications for health management and drug discovery.
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