Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Spatial Attention Enhances the Neural Representation of Invisible Signals Embedded in Noise

Cooper A. Smout, Jason B. Mattingley
doi: https://doi.org/10.1101/102731
Cooper A. Smout
1Queensland Brain Institute, University of Queensland, Brisbane, QLD 4067 Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: c.smout@uq.edu.au
Jason B. Mattingley
1Queensland Brain Institute, University of Queensland, Brisbane, QLD 4067 Australia
2School of Psychology, University of Queensland, Brisbane, QLD 4067 Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Recent evidence suggests that voluntary spatial attention can affect neural processing of visual stimuli that do not enter conscious awareness (i.e. invisible stimuli), supporting the notion that attention and awareness are dissociable processes (Watanabe et al., 2011; Wyart, Dehaene, & Tallon-Baudry, 2012). To date, however, no study has demonstrated that these effects reflect enhancement of the neural representation of invisible stimuli per se, as opposed to other neural processes not specifically tied to the stimulus in question. In addition, it remains unclear whether spatial attention can modulate neural representations of invisible stimuli in direct competition with highly salient and visible stimuli. Here we developed a novel electroencephalography (EEG) frequency-tagging paradigm to obtain a continuous readout of human brain activity associated with visible and invisible signals embedded in dynamic noise. Participants (N = 23) detected occasional contrast changes in one of two flickering image streams on either side of fixation. Each image stream contained a visible or invisible signal embedded in every second noise image, the visibility of which was titrated and checked using a two-interval forced-choice detection task. Steady-state visual-evoked potentials (SSVEPs) were computed from EEG data at the signal and noise frequencies of interest. Cluster-based permutation analyses revealed significant neural responses to both visible and invisible signals across posterior scalp electrodes. Control analyses revealed that these responses did not reflect a subharmonic response to noise stimuli. In line with previous findings, spatial attention increased the neural representation of visible signals. Crucially, spatial attention also increased the neural representation of invisible signals. As such, the present results replicate and extend previous studies by demonstrating that attention can modulate the neural representation of invisible signals that are in direct competition with highly salient masking stimuli.

Footnotes

  • This research was supported by the Australian Research Council (ARC) Centre of Excellence for Integrative Brain Function (ARC Centre Grant CE140100007). J.B.M was supported by an ARC Australian Laureate Fellowship (FL110100103). The authors declare no competing financial interests.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 30, 2018.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Spatial Attention Enhances the Neural Representation of Invisible Signals Embedded in Noise
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Spatial Attention Enhances the Neural Representation of Invisible Signals Embedded in Noise
Cooper A. Smout, Jason B. Mattingley
bioRxiv 102731; doi: https://doi.org/10.1101/102731
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Spatial Attention Enhances the Neural Representation of Invisible Signals Embedded in Noise
Cooper A. Smout, Jason B. Mattingley
bioRxiv 102731; doi: https://doi.org/10.1101/102731

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (3477)
  • Biochemistry (7316)
  • Bioengineering (5294)
  • Bioinformatics (20189)
  • Biophysics (9972)
  • Cancer Biology (7698)
  • Cell Biology (11243)
  • Clinical Trials (138)
  • Developmental Biology (6416)
  • Ecology (9912)
  • Epidemiology (2065)
  • Evolutionary Biology (13271)
  • Genetics (9347)
  • Genomics (12544)
  • Immunology (7667)
  • Microbiology (18928)
  • Molecular Biology (7415)
  • Neuroscience (40870)
  • Paleontology (298)
  • Pathology (1226)
  • Pharmacology and Toxicology (2125)
  • Physiology (3138)
  • Plant Biology (6836)
  • Scientific Communication and Education (1268)
  • Synthetic Biology (1891)
  • Systems Biology (5295)
  • Zoology (1083)