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ABSTRACT	
Genetics	 can	 provide	 a	 systematic	 approach	 to	 discovering	 the	 tissues	 and	 cell	 types	
relevant	for	a	complex	disease	or	trait.	Identifying	these	tissues	and	cell	types	is	critical	for	
following	 up	 on	 non-coding	 allelic	 function,	 developing	 ex-vivo	 models,	 and	 identifying	
therapeutic	targets.	Here,	we	analyze	gene	expression	data	from	several	sources,	including	
the	 GTEx	 and	 PsychENCODE	 consortia,	 together	 with	 genome-wide	 association	 study	
(GWAS)	 summary	 statistics	 for	 48	 diseases	 and	 traits	 with	 an	 average	 sample	 size	 of	
169,331,	 to	 identify	 disease-relevant	 tissues	 and	 cell	 types.	 We	 develop	 and	 apply	 an	
approach	 that	 uses	 stratified	 LD	 score	 regression	 to	 test	 whether	 disease	 heritability	 is	
enriched	 in	 regions	 surrounding	 genes	 with	 the	 highest	 specific	 expression	 in	 a	 given	
tissue.	We	detect	tissue-specific	enrichments	at	FDR	<	5%	for	34	diseases	and	traits	across	
a	 broad	 range	 of	 tissues	 that	 recapitulate	 known	 biology.	 In	 our	 analysis	 of	 traits	 with	
observed	 central	 nervous	 system	 enrichment,	 we	 detect	 an	 enrichment	 of	 neurons	 over	
other	 brain	 cell	 types	 for	 several	 brain-related	 traits,	 enrichment	 of	 inhibitory	 over	
excitatory	 neurons	 for	 bipolar	 disorder	 but	 excitatory	 over	 inhibitory	 neurons	 for	
schizophrenia	and	body	mass	index,	and	enrichments	in	the	cortex	for	schizophrenia	and	in	
the	 striatum	 for	 migraine.	 In	 our	 analysis	 of	 traits	 with	 observed	 immunological	
enrichment,	we	identify	enrichments	of	T	cells	for	asthma	and	eczema,	B	cells	for	primary	
biliary	 cirrhosis,	 and	 myeloid	 cells	 for	 Alzheimer’s	 disease,	 which	 we	 validated	 with	
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independent	 chromatin	 data.	 Our	 results	 demonstrate	 that	 our	 polygenic	 approach	 is	 a	
powerful	way	to	leverage	gene	expression	data	for	interpreting	GWAS	signal.	
	
INTRODUCTION	
	
There	 are	 many	 diseases	 whose	 causal	 tissues	 or	 cell	 types	 are	 uncertain	 or	 unknown.	
Identifying	 these	 tissues	 and	 cell	 types	 is	 critical	 for	developing	 systems	 to	 explore	gene	
regulatory	mechanisms	that	contribute	to	disease.	 In	recent	years,	researchers	have	been	
gaining	an	increasingly	clear	picture	of	which	parts	of	the	genome	are	active	in	a	range	of	
tissues	 and	 cell	 types:	 	 for	 example,	 which	 parts	 of	 the	 genome	 are	 accessible,	 which	
enhancers	are	active,	and	which	genes	are	expressed1–3.	Combining	this	type	of	information	
with	GWAS	data	offers	the	potential	to	identify	causal	tissues	and	cell	types	for	disease.	
	
Many	different	types	of	data	characterizing	tissue-	and	cell-type-specific	activity	have	been	
analyzed	 together	 with	 GWAS	 data	 to	 identify	 disease-relevant	 tissues	 and	 cell	 types:	
histone	marks4–8,	DNase	I	hypersensitivity	(DHS)9–12,	eQTLs3,13,	and	gene	expression	data14–
17.	 Of	 these	 data	 types,	 gene	 expression	 data	 (without	 genotypes	 or	 eQTLs)	 has	 the	
advantage	 of	 being	 available	 in	 the	 widest	 range	 of	 tissues	 and	 cell	 types.	 Therefore,	
methods	for	integrating	gene	expression	data	with	GWAS	data	have	the	potential	not	only	
to	 identify	 system-level	 differences	 among	 traits—e.g.,	 brain	 enrichment	 vs.	 immune	
enrichment—but	 also	 to	 obtain	 high	 resolution	 within	 a	 system—e.g.,	 differentiating	
among	brain	regions	or	among	immune	cell	types.	
	
Indeed,	 previous	 work	 has	 shown	 that	 gene	 expression	 can	 be	 a	 useful	 source	 of	
information	 for	 identifying	 disease-relevant	 tissues	 and	 cell	 types	 from	 GWAS	 data.	 An	
initial	application	of	the	SNPsea	algorithm14,15	analyzed	a	data	set	with	gene	expression	in	
249	 immune	 cell	 types	 from	 mouse,	 together	 with	 genome-wide	 significant	 SNPs	 from	
GWAS	 of	 several	 immunological	 diseases,	 and	 reported	 disease-specific	 patterns	 of	
enrichment13.	 The	 DEPICT	 software16	 includes	 a	 method	 for	 joint	 analysis	 of	 GWAS	
summary	statistics	with	a	 large	gene	expression	data	set18,	and	has	been	used	to	 identify	
enriched	 tissues	 for	 height19	 and	 BMI20.	 In	 a	 recent	 study	 of	 migraine17,	 an	 analysis	 of	
genome-wide	 significant	 loci	 with	 expression	 data	 from	 the	 GTEx	 project	 identified	
cardiovascular	 and	 digestive/smooth	muscle	 enrichments.	 These	 studies	 show	 that	 gene	
expression	data	are	informative	for	disease-relevant	tissues	and	cell	types,	and	have	led	to	
biological	insights	about	the	diseases	and	traits	studied.	However,	the	methods	applied	in	
these	studies	restrict	 their	analyses	 to	subsets	of	SNPs	that	pass	a	significance	threshold.	
To	 our	 knowledge,	 no	 previous	 study	 has	 modeled	 genome-wide	 polygenic	 signals	 to	
identify	disease-relevant	tissues	and	cell	types	from	GWAS	and	gene	expression	data.	
	
Here,	we	apply	stratified	LD	score	regression7,	a	method	for	partitioning	heritability	from	
GWAS	 summary	 statistics,	 to	 sets	 of	 specifically	 expressed	 genes	 to	 identify	 disease-
relevant	tissues	and	cell	types	across	48	diseases	and	traits	with	an	average	GWAS	sample	
size	 of	 169,331.	 We	 first	 analyze	 two	 gene	 expression	 data	 sets3,16,18	 containing	 a	 wide	
range	of	 tissues	to	 infer	system-level	enrichments,	recapitulating	known	biology.	We	also	
analyze	chromatin	data	from	the	Roadmap	Epigenomics	and	ENCODE	projects1,2	across	the	
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same	set	of	diseases	and	traits,	and	find	that	tissue-specific	chromatin	data	can	be	used	to	
validate	results	from	tissue-specific	gene	expression.	We	then	analyze	gene	expression	data	
sets	that	allow	us	to	achieve	higher	resolution	within	a	system3,21–23,	 identifying	enriched	
brain	 regions,	 brain	 cell	 types,	 and	 immune	 cell	 types	 for	 several	 brain-	 and	 immune-
related	 diseases	 and	 traits;	 we	 validate	 several	 of	 our	 immune	 enrichments	 using	
independent	chromatin	data	with	a	coarser	representation	of	 immune	cells	(13	cell	types	
instead	of	252).	Our	results	underscore	that	a	heritability-based	framework	applied	to	gene	
expression	data	allows	us	to	achieve	high-resolution	enrichments,	even	for	very	polygenic	
traits.	
	
RESULTS	
	
Overview	of	methods	
	
We	analyzed	the	five	gene	expression	data	sets	listed	in	Table	1,	mapping	mouse	genes	to	
orthologous	human	genes	when	necessary.		To	assess	the	enrichment	of	a	focal	tissue	for	a	
given	 trait,	 we	 follow	 the	 procedure	 described	 in	 Figure	 1.	 We	 begin	 with	 a	 matrix	 of	
normalized	 gene	 expression	 values	 across	 genes,	 with	 samples	 from	 multiple	 tissues	
including	the	focal	tissue.	For	each	gene,	we	compute	a	t-statistic	for	specific	expression	in	
the	focal	tissue	(Online	Methods).	We	rank	all	genes	by	their	t-statistic,	and	define	the	10%	
of	genes	with	the	highest	t-statistic	to	be	the	gene	set	corresponding	to	the	focal	tissue;	we	
call	 this	 the	 set	 of	 specifically	 expressed	 genes,	 but	 we	 note	 that	 this	 includes	 not	 only	
genes	 that	 are	 strictly	 specifically	 expressed	 (i.e.	 only	 expressed	 in	 the	 focal	 tissue),	 but	
also	genes	that	are	weakly	specifically	expressed	(i.e.	higher	average	expression	in	the	focal	
tissue).	For	a	few	of	the	data	sets	analyzed,	we	modified	our	approach	to	constructing	the	
set	 of	 specifically	 expressed	 genes	 to	better	 take	 advantage	of	 the	data	 available	 (Online	
Methods).	We	add	100kb	windows	on	either	side	of	the	transcribed	region	of	each	gene	in	
the	set	of	specifically	expressed	genes	to	construct	a	genome	annotation	corresponding	to	
the	 focal	 tissue.	 (The	 choice	 of	 the	 parameters	 10%	 and	 100kb	 is	 discussed	 in	 Online	
Methods;	our	results	are	robust	to	these	choices	(see	below).)	Finally,	we	apply	stratified	
LD	score	regression7	to	GWAS	summary	statistics	to	evaluate	the	contribution	of	the	focal	
genome	annotation	to	trait	heritability	(Online	Methods).	We	jointly	model	the	annotation	
corresponding	to	the	focal	tissue,	a	genome	annotation	corresponding	to	all	genes,	and	the	
52	 annotations	 in	 the	 “baseline	model”7	 (including	 genic	 regions,	 enhancer	 regions,	 and	
conserved	regions;	see	Table	S1).	A	positive	regression	coefficient	for	the	focal	annotation	
in	this	regression	represents	a	positive	contribution	of	this	annotation	to	trait	heritability,	
conditional	 on	 the	 other	 annotations.	 We	 report	 regression	 coefficients,	 normalized	 by	
mean	 per-SNP	 heritability,	 together	 with	 a	 P-value	 to	 test	 whether	 the	 regression	
coefficient	is	significantly	positive.	Stratified	LD	score	regression	requires	GWAS	summary	
statistics	 for	 the	 trait	 of	 interest,	 together	 with	 an	 LD	 reference	 panel	 (e.g.	 1000	
Genomes24),	and	has	been	shown	to	produce	robust	results	with	properly	controlled	type	I	
error7.	We	have	released	open	source	software	implementing	our	approach,	and	have	also	
released	all	genome	annotations	derived	from	the	publicly	available	gene	expression	data	
that	 we	 analyzed	 (see	 URLs).	 	 We	 call	 our	 approach	 LD	 score	 regression	 applied	 to	
specifically	expressed	genes	(LDSC-SEG).	
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Analysis	of	48	complex	traits	across	multiple	tissues	
	
We	 first	 analyzed	 two	 gene	 expression	 data	 sets.	 The	 first	 data	 set,	 from	 the	 GTEx	
consortium	v6p3,	consists	of	RNA-seq	data	for	53	tissues,	with	an	average	of	161	samples	
per	tissue	(Table	S2,	Online	Methods).	The	second	data	set,	which	we	call	the	Franke	lab	
data	 set,	 is	 an	 aggregation	 of	 publicly	 available	 microarray	 gene	 expression	 data	 sets	
comprising	37,427	samples	in	human,	mouse,	and	rat16,18.	After	removing	redundant	data,	
this	 data	 set	 contained	 152	 tissues,	 including	 much	 better	 representation	 of	 immune	
tissues	 and	 cell	 types	 than	 the	 GTEx	 data	 set	 (Table	 S3,	 Online	 Methods).	 The	 gene	
expression	 values	 in	 the	 publicly	 available	 Franke	 lab	 data	 set	 already	 quantify	 relative	
expression	 for	 a	 tissue/cell-type	 rather	 than	 absolute	 expression	 for	 a	 single	 sample16,18,	
and	 so	 we	 used	 these	 values	 in	 place	 of	 our	 t-statistics.	 For	 visualization	 purposes,	 we	
classified	 the	 205	 tissues	 and	 cell	 types	 in	 these	 data	 sets	 into	 nine	 categories;	 the	
classification	is	described	in	Table	S2	and	Table	S3.	The	main	goal	of	this	multiple-tissue	
analysis	was	to	identify	system-level	enrichments.	
	
We	analyzed	GWAS	summary	statistics	for	48	diseases	and	traits	with	an	average	sample	
size	of	169,331	(Table	 S4),	applying	LDSC-SEG	for	each	of	 the	205	specifically	expressed	
gene	annotations	 in	 turn.	The	48	 traits	 included	13	 traits	 from	the	UK	Biobank25	 (Online	
Methods),	 16	 traits	 with	 publicly	 available	 GWAS	 summary	 statistics26–36,	 and	 19	 traits	
from	the	Brainstorm	Consortium17,37–45.	We	excluded	the	HLA	region	from	all	analyses,	due	
to	 its	unusual	genetic	architecture	and	pattern	of	LD.	For	34	of	 the	48	 traits,	at	 least	one	
tissue	was	significant	at	FDR<5%	(Figure	2,	Figure	S1	and	Tables	S5	and	S6).	Several	of	
our	 results	 recapitulate	 known	 biology:	 immunological	 traits	 exhibit	 immune	 cell-type	
enrichments,	 psychiatric	 traits	 exhibit	 strong	 brain	 enrichment,	 LDL	 and	 triglycerides	
exhibit	 liver-specific	 enrichments,	 BMI-adjusted	 waist-hip	 ratio	 exhibits	 adipose	
enrichment,	 type	 2	 diabetes	 exhibits	 enrichment	 in	 the	 pancreas,	 and	 height	 exhibits	
enrichments	in	a	variety	of	tissues	in	a	pattern	similar	to	previous	analyses	of	this	trait19.	In	
addition,	several	of	our	results	validate	very	recent	findings	from	other	genetic	analyses:	in	
particular,	smoking	status,	years	of	education,	BMI,	and	age	at	menarche	show	robust	brain	
enrichments	 that	 recapitulate	results	 from	our	previous	analysis	of	genetic	data	 together	
with	chromatin	data7.	Our	results	were	robust	to	the	choice	of	percent	of	genes	used	(10%)	
and	 to	 the	 size	 of	 the	 window	 used	 (100kb)	 (Figure	 S2).	 We	 assessed	 correlations	 in	
enrichment	patterns	 for	pairs	of	 traits	 (Online	Methods),	 and	 found	 large	and	 significant	
correlations	 among	 many	 brain-related	 phenotypes,	 among	 many	 immune-related	
phenotypes,	and	among	a	third	set	of	phenotypes	including	height	and	blood	pressure	that	
tended	 to	 have	 enrichments	 in	 the	 musculosketal/connective,	 cardiovascular,	 and	 other	
categories	(Figure	S3).		
	
Averaging	 across	 the	 most	 significant	 tissue	 for	 each	 of	 these	 34	 traits,	 the	 specifically	
expressed	 gene	 annotation	 spanned	 16%	 of	 the	 genome	 and	 explained	 36%	 of	 SNP-
heritability,	a	2.3x	enrichment	(Table	S5).	The	sizes	of	the	annotations	varied	from	11%	to	
23%	of	the	genome,	due	to	gene	size,	amount	of	overlap	in	the	windows	around	genes,	and	
differences	in	the	number	of	genes	passing	QC	in	the	Franke	lab	data	set	and	the	GTEx	data.	
The	most	significant	annotations	 for	each	 trait	explained	between	21%	and	62%	of	SNP-
heritability,	with	enrichments	varying	from	1.4x	to	4.7x.	
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In	a	data	set	with	many	tissues/cell	types,	related	tissues	will	have	highly	overlapping	gene	
sets.	Because	of	this,	and	because	we	fit	each	tissue	without	adjusting	for	the	other	tissues	
analyzed,	related	tissues	often	appear	enriched	as	a	group.	In	this	analysis,	we	are	focused	
on	 identifying	 system-level	 enrichments,	 and	 so	 these	 correlated	 results	 do	 not	 limit	
interpretability.	 The	 following	 section	 similarly	 focuses	 on	 identifying	 system-level	
enrichments,	while	in	later	sections	we	focus	on	differentiating	among	related	tissues/cell	
types	within	a	system.	We	note	also	that	the	correlation	structure	among	annotations	can	
lead	to	a	distribution	of	P	values	that	is	highly	non-uniform,	with	many	P-values	close	to	0	
or	1;	 this	 is	 caused	by	our	one-sided	 test	 for	 enrichment,	 testing	whether	 the	 regression	
coefficient---which	represents	the	change	in	per-SNP	heritability	due	to	a	given	annotation,	
beyond	what	is	explained	by	the	set	of	all	genes	as	well	as	the	baseline	model---is	positive.	
The	P-values	near	0	occur	due	to	correlated	annotations	with	true	signal,	and	the	P-values	
near	1	occur	due	to	annotations	without	true	signal	that,	conditional	on	the	baseline	model,	
are	 negatively	 correlated	 to	 annotations	 with	 true	 signal	 as	 a	 consequence	 of	 our	
construction	of	sets	of	specifically	expressed	genes;	 these	annotations	thus	have	negative	
regression	coefficients.	
	
Validation	using	independent	chromatin	data	
	
We	 analyzed	 the	 same	 48	 diseases	 and	 traits	 using	 stratified	 LD	 score	 regression7	 in	
conjunction	with	chromatin	data	from	the	Roadmap	Epigenomics	and	ENCODE	projects1,2	
(see	 URLs)	 instead	 of	 gene	 expression	 data,	with	 three	 goals:	 (1)	 to	 validate	 the	 results	
from	 our	 analysis	 of	 gene	 expression	 data	 using	 a	 different	 type	 of	 data	 from	 an	
independent	source	(2)	to	identify	new	enrichments	using	chromatin	data	that	we	did	not	
observe	using	gene	expression	data,	and	(3)	to	compare	enrichments	from	the	two	types	of	
data.	Using	Roadmap	data,	we	constructed	396	cell-type-/tissue-specific	annotations	from	
narrow	 peaks	 in	 six	 chromatin	 marks—DNase	 hypersensitivity,	 H3K27ac,	 H3K4me3,	
H3K4me1,	 H3K9ac,	 and	 H3K36me3—each	 in	 a	 subset	 of	 a	 set	 of	 88	 primary	 cell	
types/tissues.	This	analysis	differed	from	our	previous	analysis	of	chromatin	data7	in	that	
we	used	more	 recently	 available	 data	 on	 a	 larger	 set	 of	 chromatin	marks,	we	used	peak	
calls	for	all	marks,	and	we	controlled	not	only	for	the	union	of	annotations	for	each	mark,	
but	also	for	the	average	of	annotations	for	each	mark	(Online	Methods).	We	used	a	subset	
of	the	ENCODE	data	from	a	subproject	called	EN-TEx,	which	includes	epigenetic	data	on	a	
set	of	tissues	that	match	a	subset	of	the	tissues	from	the	GTEx	project	but	are	from	different	
donors.	Specifically,	we	used	EN-TEx	data	to	construct	93	annotations	from	peaks	for	four	
chromatin	marks—H3K27ac,	H3K4me3,	H3K4me1,	and	H3K36me3—each	in	a	subset	of	a	
set	of	27	tissues	that	were	also	included	in	the	GTEx	data	set.	We	analyzed	GWAS	summary	
statistics	for	the	48	traits,	applying	stratified	LD	score	regression	to	each	of	the	489	tissue-
specific	chromatin-based	annotations	in	turn.		
	
We	considered	two	types	of	validation	for	the	results	of	the	multiple-tissue	analysis	of	gene	
expression	described	above:	validation	at	the	system	level	and	validation	at	the	tissue/cell-
type	 level.	 For	 validation	 at	 the	 system	 level,	we	 classified	 the	 top	 tissue	or	 cell	 type	 for	
each	trait	with	a	significant	enrichment	into	one	of	nine	categories	(Online	Methods),	and	
we	considered	an	enrichment	to	be	validated	if	a	tissue	or	cell	type	from	the	same	system	
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passed	FDR	<	5%	for	the	same	phenotype	in	the	chromatin	analysis.	For	validation	at	the	
tissue/cell-type	 level,	we	only	analyzed	 the	27	 tissues	present	 in	both	GTEx	and	EN-TEx,	
and	we	 considered	 an	 enrichment	 of	 a	 tissue	 in	GTEx	 to	 be	 validated	 if	 any	mark	 in	 the	
same	tissue	in	EN-TEx	passed	FDR	<	5%	for	the	same	phenotype.	The	top	enrichment	from	
our	multi-tissue	analysis	of	gene	expression	was	validated	at	the	system	level	for	33	out	of	
34	 phenotypes	 (Figure	 3a,	 Table	 S5).	 Of	 these,	 29	 enrichments	 had	 previously	 been	
identified	in	analyses	of	chromatin	data6,7,37,46–48	and	one	had	previously	been	identified	in	
analyses	of	gene	expression	data17.	Out	of	20	phenotypes	with	an	enrichment	of	a	tissue	or	
cell	type	shared	between	GTEx	and	EN-TEx	that	passed	FDR<5%,	the	top	enrichment	was	
validated	 at	 the	 tissue/cell-type	 level	 for	 13	 phenotypes	 (Table	 S5).	 If	 we	 allowed	 an	
enrichment	of	any	artery	sample	 in	GTEx	 to	be	validated	by	an	enrichment	of	any	artery	
sample	in	EN-TEx	(instead	of	requiring	strict	matching	of	aorta,	tibial	artery,	and	coronary	
artery),	 the	number	of	validations	 rose	 from	13	 to	16.	Of	 the	 four	 remaining	 results	 that	
were	not	validated,	three	were	an	enrichment	in	lung	for	an	immunological	disease;	for	all	
three	 diseases,	 the	 top	 enrichment	 in	 the	 analysis	 of	 gene	 expression	 (not	 restricting	 to	
tissues	shared	between	GTEx	and	EN-TEx)	was	an	 immune	category	 from	the	Franke	 lab	
dataset,	and	the	top	enrichment	in	the	analysis	of	chromatin	data	was	an	immune	category	
in	the	Roadmap	dataset.	We	hypothesize	that	the	lung	samples	analyzed	in	GTEx	may	have	
contained	 substantial	 amounts	 of	 blood	 and	 thus	 exhibited	 a	 gene	 expression	 signature	
reflecting	immune	activity;	this	is	supported	by	a	GO	enrichment	analysis	of	the	lung	gene	
set,	in	which	the	top	three	results	were	related	to	antigen	presentation,	immune	response,	
and	cytokine-mediated	signaling,	respectively.	In	many	instances,	the	analysis	of	chromatin	
data	detected	more	enrichments	and/or	enrichments	at	higher	significance	levels	than	the	
analysis	of	gene	expression	data,	though	this	was	not	always	the	case	(see	Figure	S4	and	
Discussion).	We	note	that	in	analyses	of	tissues/cell	types	for	which	both	gene	expression	
and	chromatin	data	are	available,	it	could	be	of	interest	to	combine	these	types	of	data;	we	
leave	this	challenge	to	future	work	(see	Discussion).	
	
Aggregating	all	results	of	the	Roadmap	and	EN-TEx	chromatin	analyses,	at	least	one	tissue	
was	significant	at	FDR<5%	for	44	of	the	48	traits	(Figure	S5	and	Tables	S5	and	S7).	The	
enrichment	 correlations	 in	 this	 analysis	 showed	a	 similar	pattern	 to	 the	gene	expression	
analysis	 above	 (Figure	 S6).	Averaging	 across	 the	most	 significant	 annotation	 for	 each	of	
these	44	traits,	the	tissue-specific	chromatin	annotation	spanned	3.3%	of	the	genome	and	
explained	43%	of	the	SNP-heritability	(Table	S5).	The	sizes	of	the	annotation	ranged	from	
0.8%	to	7.8%,	and	the	estimates	of	enrichment	varied	from	3.5x	to	33x,	representing	much	
more	 variability	 than	 for	 the	 top	 annotations	 in	 the	 multiple-tissue	 gene	 expression	
analysis.	 Because	 the	 annotations	 were	 much	 smaller,	 the	 estimates	 of	 proportion	 of	
heritability	tended	to	be	much	noisier.		
	
Our	results	for	migraine	are	reported	in	Figure	3b.	We	analyzed	three	migraine	GWAS	data	
sets	 that	were	 recently	 published17:	 a	 GWAS	of	migraine	with	 aura,	 a	 GWAS	of	migraine	
without	aura	that	had	disjoint	cases	and	overlapping	controls	with	the	migraine	with	aura	
data	set,	and	a	migraine	(all	subtypes)	data	set	that	contained	the	cases	from	both	of	these	
subtypes	as	well	as	a	large	number	of	additional	cases	whose	subtype	was	unknown.	There	
is	a	long-standing	scientific	debate	as	to	whether	migraine	has	a	primarily	neurological	or	
vascular	basis49,	and	a	previous	analysis	of	the	migraine	(all	subtypes)	GWAS	data	together	
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with	 the	 GTEx	 gene	 expression	 data	 reported	 both	 cardiovascular	 and	 digestive/smooth	
muscle	 enrichments17.	We	 detected	 similar	 cardiovascular	 enrichments	 using	 GTEx	 gene	
expression	 data,	 although	 in	 our	 analysis	 the	 only	 significant	 enrichments	 were	 for	
migraine	without	aura.	With	EN-TEx,	we	again	saw	cardiovascular	enrichments,	 this	time	
for	 migraine	 without	 aura	 and	 migraine	 (all	 subtypes).	 Our	 analysis	 of	 Roadmap	 data,	
however,	yielded	qualitatively	different	results:	the	strongest	enrichment	for	migraine	(all	
subtypes)	 was	 a	 neurological	 enrichment	 that	 was	 completely	 absent	 in	 the	 analysis	 of	
migraine	without	aura,	 and	 in	 the	analyses	of	EN-Tex	and	gene	expression	data.	The	 top	
two	annotations	were	neurospheres	 and	 fetal	 brain,	 neither	of	which	was	present	 in	 the	
gene	expression	data	we	analyzed	nor	in	EN-TEx.	The	correlation	in	enrichments	between	
migraine	 (all	 subtypes)	 and	migraine	 without	 aura	 in	 the	 gene	 expression	 analysis	 was	
estimated	 to	be	0.48	 (s.e.	0.15),	and	 in	 the	chromatin	data	was	estimated	 to	be	0.60	 (s.e.	
0.13).	 Our	 results	 are	 consistent	 with	 the	 hypothesis	 that	 migraine	 without	 aura	 does	
indeed	 have	 a	 vascular	 component,	 and	 that	 another	 subtype	 of	 migraine	 may	 have	 a	
neurological	basis	which	is	sufficiently	cell-type	specific	that	the	relevant	cell	types	are	not	
represented	 in	 either	 the	 GTEx	 or	 Franke	 lab	 data	 sets.	 These	 results	 highlight	 the	
importance	of	having	as	many	tissues	and	cell	types	as	possible	represented	in	a	multiple-
tissue	analysis.	
	
A	major	 advantage	of	 gene	 expression	data	 is	 that	 it	 is	 available	 at	 finer	 tissue/cell-type	
resolution	within	several	systems.	In	the	within-system	analyses	that	follow,	we	investigate	
these	finer	patterns	of	tissue/cell-type	specificity.		
	
Analysis	of	12	brain-related	traits	using	fine-scale	brain	expression	data	
	
We	 identified	 12	 traits	with	 CNS	 enrichment	 at	 FDR<5%	 in	 our	 gene	 expression	 and/or	
chromatin	 analyses:	 schizophrenia,	 bipolar	 disorder,	 Tourette	 syndrome,	 epilepsy,	
generalized	epilepsy,	ADHD,	migraine,	depressive	symptoms,	BMI,	smoking	status,	years	of	
education,	and	neuroticism.	The	nervous	system	has	been	 implicated,	either	with	genetic	
evidence	or	non-genetic	evidence,	for	each	of	these	traits7,27,37,45,49–52.	
	
We	first	investigated	whether	some	brain	regions	are	enriched	over	other	brain	regions	for	
these	 traits.	 While	 the	 multiple-tissue	 analysis	 included	 annotations	 for	 many	 different	
brain	regions,	the	gene	sets	for	the	different	brain	regions	were	often	highly	overlapping	so	
that	 for	many	traits,	many	brain	regions	were	 identified	as	enriched.	For	example,	nearly	
every	 brain	 region	 in	 either	 the	 GTEx	 or	 Franke	 lab	 data	 was	 found	 to	 be	 enriched	 at	
FDR<5%	(Figure	2)	in	schizophrenia.	To	differentiate	among	brain	regions,	we	restricted	
ourselves	to	gene	expression	data	only	from	samples	from	the	brain	in	the	GTEx	data.	We	
computed	t-statistics	within	the	brain-only	data	set;	e.g.	we	computed	t-statistics	for	cortex	
vs.	other	brain	regions	instead	of	cortex	vs.	other	tissues	in	GTEx,	and	we	used	these	new	t-
statistics	to	construct	and	test	gene	sets	as	in	the	multiple-tissue	analysis.	Individual-level	
data	was	not	available	for	the	Franke	lab	data	set,	and	thus	we	could	not	compute	within-
brain	t-statistics	for	this	data	set.		
	
An	 alternative	 approach	 would	 be	 to	 undertake	 a	 joint	 analysis	 of	 the	 original	 13	
annotations	 from	 the	 multiple-tissue	 analysis.	 However,	 joint	 analysis	 of	 13	 highly	
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correlated	annotations	is	likely	to	be	underpowered,	while	re-computing	t-statistics	within	
the	 brain	 allows	 us	 to	 construct	 new	 annotations	 with	 lower	 correlations	 (Figure	 S7),	
increasing	our	power.	Moreover,	differential	expression	within	the	brain	may	allow	us	to	
isolate	 signals	 from	 cell	 types	 or	 processes	 that	 are	 unique	 to	 a	 single	 brain	 region,	
separately	from	the	cell	types	or	processes	that	are	unique	to	the	brain	but	shared	among	
brain	 regions.	 Thus,	 we	 use	 differential	 expression	 within	 the	 brain,	 rather	 than	 joint	
analysis	of	the	original	annotations,	to	differentiate	among	brain	regions.	
	
The	results	of	our	analysis	comparing	brain	regions	are	displayed	in	Figure	4a	and	Table	
S8a.	We	 identified	significant	enrichments	 in	the	cortex	relative	to	other	brain	regions	at	
FDR<5%	 for	 bipolar	 disorder,	 schizophrenia,	 depressive	 symptoms,	 and	 BMI,	 and	 in	 the	
striatum	 for	 migraine.	 These	 enrichments	 are	 consistent	 with	 our	 understanding	 of	 the	
biology	of	these	traits53–56,	but	to	our	knowledge	have	not	previously	been	reported	in	any	
integrative	 analysis	 using	 genetic	 data.	We	 also	 identified	 enrichments	 in	 cerebellum	 for	
bipolar	disorder,	years	of	education,	and	BMI.	However,	we	caution	that	differential	gene	
expression	in	samples	from	different	brain	regions	can	reflect	the	cell	type	composition	of	
these	brain	regions	as	well	as	their	function.	In	particular,	the	cerebellum	is	known	to	have	
a	 very	 high	 concentration	 of	 neurons57,	 and	 thus	 cerebellar	 enrichments	 could	 indicate	
either	that	the	cerebellum	is	a	region	that	is	important	in	disease	etiology,	or	that	neurons	
are	 an	 important	 cell	 type.	 While	 many	 pairs	 of	 the	 phenotypes	 had	 high	 estimated	
enrichment	 correlations	 in	 this	 analysis,	 migraine	 tended	 to	 have	 low	 enrichment	
correlations	with	 other	 phenotypes	 (Figure	 S8);	 for	 example,	 the	 estimated	 enrichment	
correlation	between	migraine	and	schizophrenia	was	0.06	(s.e.=0.30)	while	the	estimated	
enrichment	correlation	between	bipolar	disorder	and	schizophrenia	was	0.96	(s.e.=0.05).		
	
To	address	the	question	of	the	relative	importance	of	brain	cell	types,	as	opposed	to	brain	
regions,	we	analyzed	the	same	set	of	traits	using	a	publicly	available	data	set	of	specifically	
expressed	genes	identified	from	different	brain	cell	types	purified	from	mouse	forebrain21.	
The	authors	of	this	data	set	made	lists	of	specifically	expressed	genes	for	each	of	the	three	
brain	cell	types	available,	and	these	lists	were	all	approximately	the	same	size	as	the	sets	of	
specifically	expressed	genes	in	our	previous	analyses.	We	created	annotations	from	these	
lists	 in	 the	 same	 way	 that	 we	 created	 annotations	 from	 the	 lists	 of	 top	 10%	 expressed	
genes.	The	results	of	this	analysis	are	displayed	in	Figure	4b	and	Table	S8b.	We	identified	
neuronal	enrichments	at	FDR<5%	for	five	traits:	bipolar	disorder,	schizophrenia,	years	of	
education,	BMI,	and	neuroticism.	The	other	cell	types	did	not	exhibit	significant	enrichment	
for	any	of	the	13	brain-related	traits.	The	enrichment	of	neurons	for	all	three	of	the	traits	
with	 enrichment	 in	 cerebellum	 in	 the	brain-region	 analysis	 supports	 the	hypothesis	 that	
analyses	of	brain	regions	may	be	confounded	by	cell-type	composition.		
	
To	more	precisely	characterize	the	neuronal	enrichments,	we	analyzed	the	five	traits	with	
neuronal	 enrichment	 at	 FDR<5%	 using	 t-statistics	 computed	 by	 the	 PsychENCODE	
consortium22	 on	 differential	 expression	 in	 glutamatergic	 (excitatory)	 vs.	 GABAergic	
(inhibitory)	 neurons.	 The	 results	 are	 displayed	 in	 Figure	 4c	 and	 Table	 S8c;	 we	 used	
Bonferroni	 correction	 in	 this	 analysis,	 as	 we	 were	 testing	 only	 5x2=10	 hypotheses.	 For	
bipolar	 disorder,	 genes	 that	 are	 specifically	 expressed	 in	 GABAergic	 neurons	 exhibited	
heritability	enrichment,	while	genes	specific	to	glutamatergic	neurons	did	not.	This	result	
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supports	the	theory	that	pathology	in	GABAergic	neurons	can	contribute	causally	to	risk	for	
bipolar	 disorder58,59.	 For	 BMI	 and	 schizophrenia,	 on	 the	 other	 hand,	 we	 found	 an	
enrichment	in	glutamatergic	neurons	but	not	in	GABAergic	neurons.		
	
We	were	unable	to	validate	the	results	of	these	analyses	using	independent	chromatin	data.	
For	 the	 two	 analyses	 of	 brain	 cell	 types,	 this	 was	 because	 we	 were	 not	 aware	 of	 any	
available	data	 sets	with	analogous	 chromatin	data.	For	 the	analysis	of	brain	 regions,	 this	
was	 because	 the	 chromatin	 annotations	 that	we	 analyzed	were	 highly	 correlated	 across	
different	 brain	 regions	 and	 thus	 some	 phenotypes	 were	 enriched	 in	 nearly	 every	 brain	
region;	we	did	not	consider	these	non-specific	enrichments	to	be	a	meaningful	validation	of	
our	region-specific	results	using	gene	expression	data.		 
	
Analysis	of	25	immune-related	traits	using	immune	cell	expression	data	
	
We	identified	25	traits	with	immune	enrichment	at	FDR<5%	in	our	gene	expression	and/or	
chromatin	 analyses.	 This	 includes	many	 immunological	 disorders:	 celiac	disease,	 Crohn’s	
disease,	inflammatory	bowel	disease,	lupus,	primary	biliary	cirrhosis,	rheumatoid	arthritis,	
type	1	diabetes,	ulcerative	colitis,	asthma,	eczema,	and	multiple	sclerosis.	 It	also	 includes	
Alzheimer’s	 and	 Parkinson’s	 diseases,	 which	 are	 neurodegenerative	 diseases	 with	 an	
immune	 component	 previously	 identified	 from	 genetics60,61,	 as	 well	 as	 several	 brain-
related	 traits---ADHD,	 anorexia	 nervosa,	 bipolar	 disorder,	 schizophrenia,	 Tourette	
syndrome,	 and	 neuroticism---and	 HDL,	 LDL,	 triglycerides,	 diastolic	 and	 systolic	 blood	
pressure,	hypertension,	and	BMI.	Several	of	 the	brain-related	 traits	have	been	previously	
suggested	 to	 have	 an	 immune	 component45,62,63;	 HDL,	 LDL,	 and	 triglycerides	 have	 been	
linked	to	immune	activation64–67;	immune	cells	are	causally	involved	in	blood	pressure	and	
hypertension68;	 and	 obesity,	 in	 addition	 to	 contributing	 to	 inflammation69,	 can	 also	 be	
induced	 in	mice	 through	 alterations	 of	 the	 immune	 system70.	We	 investigated	 cell-type-
specific	enrichments	for	these	traits	in	292	immune	cell	types	using	gene	expression	data	
from	the	ImmGen	project23,	which	contains	microarray	data	on	these	cell	types	from	mice.	
This	 data	 set	 contains	 data	 for	 many	 immune	 cell	 types	 that	 are	 not	 available	 in	 the	
multiple-tissue	analysis,	and	because	we	compute	t-statistics	within	the	data	set---i.e.,	each	
immune	cell	 vs.	 all	other	 immune	cells---the	gene	sets	are	 less	overlapping	 than	 those	of	
immune	cell	types	in	the	multiple-tissue	analysis.	
	
We	 identified	 enrichments	 at	 FDR<5%	 for	 16	 traits.	 Results	 are	 displayed	 in	 Figure	 5,	
Figure	S9	and	Tables	S9	and	S10,	and	reveal	highly	trait-specific	patterns	of	enrichment.	
For	 primary	biliary	 cirrhosis,	 the	 largest	 and	most	 significant	 enrichment	was	 in	B	 cells,	
consistent	with	literature	on	the	importance	of	B	cells	for	this	trait71,72.	Alzheimer’s	disease	
exhibits	 enrichment	 in	 myeloid	 cells,	 as	 seen	 previously	 from	 genetics73,74.	 Asthma	 and	
eczema	both	exhibited	enrichment	 in	T	 and	NKT	cells;	 several	 subclasses	of	T	 cells	have	
been	shown	to	be	important	in	asthma,75	and	a	previous	study	using	chromatin	data	found	
an	 enrichment	 in	 T	 cells	 for	 asthma	 but	 not	 in	 other	 immune	 cell	 types6.	 Rheumatoid	
arthritis,	Crohn’s	disease,	inflammatory	bowel	disease,	and	multiple	sclerosis	all	exhibited	
enrichments	in	a	variety	of	cell	types,	consistent	with	complex	etiologies	for	these	diseases	
that	 involve	 many	 different	 immune	 cell	 types76–78.	 Schizophrenia	 and	 bipolar	 disorder	
both	exhibited	an	enrichment	in	T	cells.	Patients	with	bipolar	disorder	have	been	shown	to	
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have	a	reduction	 in	certain	 types	of	T	cells,	but	have	equal	 levels	of	B	cells,	NK	cells,	and	
monocytes	 compared	 to	 controls79.	 T	 cell	 levels	 have	 been	 shown	 to	 vary	 between	
schizophrenia	cases	and	controls,	but	existing	literature	is	not	consistent	in	its	description	
of	 the	 direction	 of	 effect80.	 Note	 that	 our	 analysis	 excludes	 the	 HLA	 region;	 a	 previous	
analysis	of	the	HLA	region	for	schizophrenia	implicated	the	complement	system	through	its	
role	in	synaptic	pruning,	a	signal	that	is	distinct	from	the	signal	we	observe	here81.	Finally,	
we	identified	an	enrichment	in	stromal	cells	for	both	diastolic	and	systolic	blood	pressure.	
For	each	of	these	two	traits,	we	identified	enrichments	in	the	musculoskeletal/connective	
category	in	the	multiple-tissue	analysis	that	were	stronger	than	the	immune	enrichments	
in	 that	 analysis,	 and	 thus	 we	 hypothesize	 that	 the	 enrichment	 in	 stromal	 cells	 is	 not	
providing	 better	 resolution	 on	 the	 immune	 enrichment	 but	 instead	 reflects	 the	 more	
general	importance	of	connective	tissue.	In	enrichment	correlation	analyses,	schizophrenia	
and	 bipolar	 disorder	 clustered	 with	 immunological	 diseases,	 while	 metabolic	 traits,	
neurological	diseases,	and	other	psychiatric	diseases	did	not	(Figure	S10).	
	
To	 validate	 these	 results,	 we	 analyzed	 ATAC-seq	 (chromatin)	 data	 from	 13	 cell	 types	
spanning	 the	hematopoietic	hierarchy	 in	humans82.	The	13	cell	 types	did	not	allow	us	 to	
validate	at	very	high	resolution;	instead,	we	classified	all	cell	types	from	ImmGen	and	from	
the	hematopoiesis	data	set	into	five	categories:	B	cells,	T	cells,	NK	cells,	myeloid	cells,	and	
other	 cells.	 There	 were	 no	 stromal	 cells	 in	 the	 hematopoiesis	 data	 set	 and	 it	 was	 not	
possible	 to	validate	 the	enrichments	 for	diastolic	and	systolic	blood	pressure;	 this	 left	us	
with	14	phenotypes	with	an	enrichment	at	FDR<5%	in	the	ImmGen	analysis	where	the	top	
result	 fell	 into	one	of	 the	 first	 four	 categories	 (excluding	 “Other”).	We	 considered	one	of	
these	 14	 results	 to	 be	 validated	 if	 any	 cell	 type	 in	 the	 same	 category	 from	 the	
hematopoiesis	 data	 set	 passed	 FDR	 <	 5%.	 Of	 the	 14	 phenotypes,	 the	 top	 result	 was	
validated	for	10	phenotypes	(Table	S9).	The	only	immunological	disease	whose	result	was	
not	validated	was	lupus;	the	top	result	for	lupus	in	the	ImmGen	analysis	was	a	myeloid	cell	
type,	while	the	largest	and	most	significant	enrichment	in	the	hematopoiesis	data	set	was	a	
B	 cell	 enrichment,	 consistent	 with	 other	 genetic	 studies	 of	 this	 trait14.	 The	 other	 three	
phenotypes	whose	top	results	did	not	replicate	were	schizophrenia	and	bipolar	disorder	(T	
helper	cells)	and	neuroticism	(mast	cells).		
	
	
DISCUSSION	
	
We	have	shown	that	applying	stratified	LD	score	regression	to	sets	of	specifically	expressed	
genes	identifies	disease-relevant	tissues	and	cell	types.	Our	approach,	LDSC-SEG,	allows	us	
to	 take	advantage	of	 the	 large	amount	of	 gene	expression	data	available---including	 fine-
grained	data	for	which	we	do	not	currently	have	a	comparable	chromatin	counterpart---to	
ask	 questions	 ranging	 in	 resolution	 from	 whether	 a	 trait	 is	 brain-related	 to	 whether	
excitatory	 or	 inhibitory	 neurons	 are	 more	 important	 for	 disease	 etiology.	We	 identified	
many	significant	enrichments	that	confirm	or	extend	our	current	understanding	of	biology,	
including	 an	 enrichment	 of	 striatum	 for	 migraine,	 enrichment	 of	 inhibitory	 neurons	 for	
bipolar	disorder	and	excitatory	neurons	for	schizophrenia	and	BMI,	and	an	enrichment	of	T	
cells	for	Asthma.	These	results	improve	our	understanding	of	these	diseases,	and	highlight	
the	 power	 of	 GWAS	 as	 a	 source	 of	 biological	 insight.	 Our	 results	may	 also	 be	 useful	 for	
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choosing	 the	 relevant	 tissue	 or	 cell	 type	 for	 in-vitro	 experiments	 to	 further	 elucidate	
molecular	mechanisms	underlying	genome-wide	significant	loci	identified	in	genome-wide	
association	 studies.	 Additionally,	 cell	 type-specific	 annotations	 have	 been	 shown	 to	 be	
useful	 for	 fine-mapping11,	 but	 to	 our	 knowledge,	 all	 existing	 methods	 for	 functionally	
informed	 fine-mapping	only	examine	enrichments	 inferred	 from	genome-wide	significant	
loci;	our	work	makes	us	optimistic	that	enrichments	inferred	from	genome-wide	data	will	
further	 improve	 fine-mapping	 resolution	 and	 gene	 prioritization,	 if	 appropriate	methods	
can	be	developed.	
	
There	are	several	key	differences	between	LDSC-SEG,	which	relies	on	gene	expression	data	
without	genotypes	or	eQTLs,	and	approaches	that	require	eQTL	data3,13.	First,	our	approach	
can	be	applied	to	expression	data	sets	such	as	the	Franke	lab	data	set,	the	Cahoy	data	set,	
the	PsychENCODE	data	set,	and	the	ImmGen	data	set	that	do	not	have	genotypes	or	eQTLs	
available	(Table	1).	Second,	to	our	knowledge,	no	method	based	on	eQTLs	has	been	shown	
to	consistently	identify	system-level	enrichments	such	as	brain	enrichments	for	psychiatric	
traits	and	immune	enrichment	for	immunological	traits,	as	we	do	here3,13,83,84.	For	example,	
a	 recent	 study84	 tested	 30	 phenotypes	 for	 tissue-specific	 enrichment	 in	 44	 tissues	 from	
GTEx	using	the	TWAS	approach85	but	concluded	that	their	results	“did	not	suggest	tissue-
specific	 enrichment	 at	 the	 current	 sample	 sizes.”	We	 share	 their	 hypothesis	 that	 this	 is	
because	eQTLs	are	often	shared	across	tissues	even	when	overall	expression	levels	are	very	
different.	 Third,	methods	 based	 on	 eQTLs	 require	 gene	 expression	 sample	 sizes	 that	 are	
large	enough	to	detect	eQTLs.	In	an	analysis	of	data	from	the	GTEx	project,	we	determined	
that	we	could	identify	strong	enrichments	such	as	brain	enrichment	for	schizophrenia	with	
just	one	brain	sample,	though	subtler	enrichments	had	decreasing	levels	of	significance	as	
the	gene	expression	data	were	down-sampled	(Figure	S11,	Online	Methods).	Results	from	
our	analysis	of	ImmGen	data,	which	has	2.8	samples	per	cell	type	on	average,	confirm	that	
LDSC-SEG	can	 identify	significant	enrichments	even	when	the	gene	expression	data	has	a	
small	number	of	samples	per	tissue/cell	type,	in	contrast	to	eQTL-based	methods.	
	
Our	polygenic	approach	also	differs	from	other	gene	expression-based	approaches	such	as	
SNPsea14,15	 and	 DEPICT16,	 which	 restrict	 their	 analyses	 to	 subsets	 of	 SNPs	 that	 pass	 a	
significance	threshold.		For	comparison	purposes,	we	repeated	the	multiple-tissue	analysis	
using	SNPsea	and	DEPICT.		We	also	repeated	the	multiple-tissue	analysis	by	analyzing	our	
annotations	using	MAGMA,	a	recently	developed	gene	set	enrichment	method86	instead	of	
stratified	 LD	 score	 regression7.	 	 Results	 are	 displayed	 in	 Figures	 S12-S15	 (see	 Online	
Methods).	 Many	 broad	 patterns	 were	 consistent	 across	 all	 approaches:	 immune	
enrichment	 for	 many	 immunological	 diseases,	 liver	 enrichment	 for	 lipid	 traits,	 adipose	
enrichment	for	BMI-adjusted	waist-hip	ratio,	and	enrichment	in	several	tissues	for	height	
and	 heel	 T-score.	 However,	 there	 were	 also	 several	 discrepancies.	 First,	 SNPsea	 and	
DEPICT,	 the	 two	 approaches	 based	 on	 top	 SNPs,	 did	 not	 identify	 many	 of	 the	 CNS	
enrichments	 for	 brain-related	 traits	 identified	 by	 LDSC-SEG	 and	 by	 MAGMA.	 Second,	
DEPICT	and	MAGMA	identified	more	enrichments	 than	LDSC-SEG	overall,	 including	some	
enrichments	with	unclear	relationships	to	known	biology.	We	hypothesized	that	LDSC-SEG	
did	not	identify	some	of	these	enrichments	because	we	jointly	model	our	gene	expression-
based	annotations	with	the	many	potential	genomic	confounders	that	are	 included	 in	 the	
baseline	model	(e.g.	exons).	We	conducted	simulations	that	confirmed	that	LDSC-SEG	is	the	
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only	 one	 of	 the	 approaches	 tested	 that	 is	well-powered	 to	 identify	 true	 enrichments	 for	
polygenic	 traits	while	 avoiding	 genomic	 confounding	 (Figure	 S16;	 see	 Online	Methods).	
We	note,	however,	that	MAGMA	has	an	option	to	include	gene-level	covariates	and	that	the	
inclusion	of	 such	 covariates	 could	 ameliorate	 genomic	 confounding	when	using	MAGMA;	
we	did	not	explore	that	option	here.	
	
We	cannot	conclusively	say	whether	gene	expression	or	chromatin	data	is	preferable	when	
both	 types	 of	 data	 are	 available	 in	 the	 same	 tissues	 and	 cell	 types.	 Our	 estimated	
enrichments	 were	 higher	 for	 the	 chromatin-based	 annotations	 than	 for	 the	 gene	
expression-based	 annotations,	 but	 the	 gene	 expression-based	 annotations	 are	 larger	 and	
have	less	LD	to	the	rest	of	the	genome.	Some	chromatin	marks	tend	to	be	more	cell	type-
specific	 than	 overall	 gene	 expression,	 but	 our	 specifically	 expressed	 gene	 sets	 have	 low	
correlation	across	 tissues	(Figure	 S17).	There	were	 two	 instances	 in	which	we	had	gene	
expression	and	chromatin	data	on	the	same	set	of	tissues/cell	types,	and	we	compared	the	
P-values	in	our	analyses	of	these	data	sets.	First,	we	compared	our	results	from	GTEx	(gene	
expression)	and	EN-TEx	(chromatin)	for	the	tissues	shared	between	these	two	data	sets	in	
the	 multiple-tissue	 analysis,	 and	 we	 found	 that	 the	 two	 data	 sets	 had	 comparable	
distributions	of	P-values	 (Figure	 S4).	On	 the	other	hand,	 the	hematopoietic	data	set	 that	
we	 analyzed82	 had	matched	 ATAC-seq	 and	 RNA-seq	 data,	 and	 while	 our	 analysis	 of	 the	
ATAC-seq	peaks	lead	to	significant	enrichments	for	many	traits	(Figure	5,	Table	S10),	the	
RNA-seq	data	set	yielded	only	a	single	enrichment	for	a	single	trait	(Table	S11).	This	leads	
us	to	conclude	that	the	question	of	which	type	of	data	is	preferable	may	depend	on	complex	
factors	such	as	which	chromatin	marks	were	analyzed,	 the	overall	quality	of	 the	data	set,	
the	sample	size	with	which	the	specifically	expressed	genes	are	called,	and	how	similar	the	
tissues	are	 to	each	other.	When	gene	expression	and	chromatin	data	are	available	on	the	
same	 set	 of	 tissues	 or	 cell	 types,	 it	 may	 be	 possible	 to	 combine	 these	 types	 of	 data	 to	
improve	power.	For	example,	 it	may	be	useful	 to	 restrict	 an	annotation	 to	 tissue-specific	
chromatin	 marks	 near	 specifically	 expressed	 genes,	 or	 to	 combine	 the	 P-values	 from	
separate	analyses	of	the	two	types	of	data.	We	defer	a	thorough	exploration	of	this	set	of	
possibilities	to	future	work.	
	
Our	work	is	based	on	the	assumption	that	a	tissue	or	cell	type	is	important	for	a	particular	
disease	if	and	only	if	SNPs	near	genes	with	high	specific	expression	in	that	tissue/cell	type	
are	enriched	for	heritability.	This	assumption	leads	to	several	limitations	of	our	approach.	
First,	when	analyzing	gene	expression	data	from	different	tissues,	cell	type	composition	can	
confound	the	analysis,	as	we	demonstrated	in	our	comparison	of	brain	regions;	this	makes	
enrichments	 of	 organs	 such	 as	 the	 esophagus	 or	 uterus	 hard	 to	 interpret.	 Second,	
tissues/cell	types	with	similar	gene	expression	profiles	to	a	causal	tissue/cell	type	will	be	
identified	as	relevant	to	disease,	just	as	SNPs	in	LD	with	a	causal	SNP	will	be	identified	as	
associated	 to	disease	 in	 a	GWAS;	 thus,	 significant	 tissues/cell	 types	 should	be	 cautiously	
interpreted	 as	 the	 “best	 proxy”	 for	 the	 truly	 causal	 tissue/cell	 type,	 which	 may	 be	
unobserved.	 Third,	 our	 focus	 on	 nearby	 SNPs	 prevents	 us	 from	 leveraging	 signal	 from	
regulatory	SNPs	that	act	at	longer	distances.	Our	approach	is	also	fundamentally	limited	by	
the	availability	of	gene	expression	data	and	cannot	rule	out	the	importance	of	a	given	cell	
type;	for	example,	if	the	tissue/cell	type	that	is	most	relevant	for	a	disease	occurs	in	a	stage	
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of	development	or	under	a	stimulus	 that	has	not	been	assayed,	 then	we	may	not	 identify	
enrichments	in	that	tissue/cell	type.		
	
Our	use	of	a	heritability-based	approach	has	advantages	but	also	leads	to	some	limitations.	
First,	 our	 approach	 will	 not	 detect	 strong	 but	 highly	 localized	 signals.	 Second,	 power	
increases	only	modestly	with	sample	size	at	very	large	sample	sizes,	as	the	finite	size	of	the	
genome	is	a	stricter	constraint	for	highly	heritable	traits	at	these	sample	sizes:	for	example,	
LD	score	regression	coefficients	of	baseline	model	annotations	had	s.e.	that	were	only	1.29x	
lower	on	average	in	analyses	of	the	full	UK	Biobank	data	set	(average	N=438,682)	vs.	the	
interim	 UK	 Biobank	 data	 set	 (average	 N=140,026.)	 	 Also,	 because	 our	 approach	 uses	
stratified	 LD	 score	 regression,	 it	 cannot	 be	 applied	 to	 custom	 array	 data,	 it	 requires	 a	
sequenced	 reference	 panel	 that	 matches	 the	 population	 studied	 in	 the	 GWAS,	 and	 we	
cannot	rule	out	bias	due	to	model	misspecification7.	Augmentations	to	the	baseline	model87	
may	help	ameliorate	potential	model	misspecification,	but	we	leave	further	investigation	of	
this	to	future	work.	
	
Another	 limitation	 of	 our	 method	 is	 that	 its	 results	 may	 be	 difficult	 to	 validate.	 We	
undertook	 a	 type	 of	 validation	 using	 independent	 chromatin	 data,	 when	 there	 was	
comparable	chromatin	data	available.	However,	 this	type	of	validation	involves	a	number	
of	challenges.	First,	we	often	do	not	have	chromatin	data	in	the	same	tissues	and	cell	types	
as	the	gene	expression	data.	Second,	it	is	not	clear	that	we	should	always	expect	results	to	
replicate;	 for	 example,	 it	 is	 biologically	 plausible	 that	 SNPs	 near	 specifically	 expressed	
genes	 in	 the	 relevant	 tissue	 are	 enriched,	 while	 SNPs	 in	 H3K36me3	 peaks	 called	 in	 the	
tissue	 are	 not.	 Third,	 our	 gene	 expression	 annotations	 represent	 relative	 activity—we	
select	 genes	with	higher	 expression	 in	 the	 focal	 tissue	 compared	 to	other	 tissues—while	
the	chromatin	annotations	that	we	use	here	represent	absolute	activity	(although	relative	
chromatin	 annotations	 are	 also	 possible6,88).	 Despite	 these	 limitations,	 replicating	 an	
enrichment	 for	a	particular	system,	tissue,	or	cell	 type	using	 independent	chromatin	data	
can	provide	a	strong	validation	for	gene	expression	results.		
	
Our	power	to	 identify	disease-relevant	 tissues	and	cell	 types	will	 improve	as	 large	GWAS	
sample	 sizes	 become	 available	 for	 more	 phenotypes,	 and	 as	 gene	 expression	 data	 is	
generated	 in	 new	 tissues	 and	 cell	 types.	 This	 will	 help	 advance	 our	 understanding	 of	
disease	biology	and	lay	the	groundwork	for	future	experiments	exploring	specific	variants	
and	mechanisms.	
	
	
ACKNOWLEDGEMENTS	
	
We	are	thankful	to	Masahiro	Kanai,	Farhad	Hormozdiari,	Jacob	Ulirsch,	Tune	Pers,	Sam	
Riesenfeld,	Rebecca	Herbst,	Adrian	Veres,	and	Eran	Hodis	for	helpful	comments.	This	
research	has	been	conducted	using	the	UK	Biobank	Resource	(Application	Number:	
16549).	This	research	was	funded	by	NIH	grants	R01	MH107649,	R01	MH109978	and	U01	
CA194393.		HKF	is	supported	by	the	Fannie	and	John	Hertz	Foundation.	The	data	on	
neuron	types	were	generated	as	part	of	the	PsychENCODE	Consortium,	supported	by:	
U01MH103339,	U01MH103365,	U01MH103392,	U01MH103340,	U01MH103346,	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 14	

R01MH105472,	R01MH094714,	R01MH105898,	R21MH102791,	R21MH105881,	
R21MH103877,	and	P50MH106934	awarded	to:	Schahram	Akbarian	(Icahn	School	of	
Medicine	at	Mount	Sinai),	Gregory	Crawford	(Duke),	Stella	Dracheva	(Icahn	School	of	
Medicine	at	Mount	Sinai),	Peggy	Farnham	(USC),	Mark	Gerstein	(Yale),	Daniel	Geschwind	
(UCLA),	Thomas	M.	Hyde	(LIBD),	Andrew	Jaffe	(LIBD),	James	A.	Knowles	(USC),	Chunyu	
Liu	(UIC),	Dalila	Pinto	(Icahn	School	of	Medicine	at	Mount	Sinai),	Nenad	Sestan	(Yale),	
Pamela	Sklar	(Icahn	School	of	Medicine	at	Mount	Sinai),	Matthew	State	(UCSF),	Patrick	
Sullivan	(UNC),	Flora	Vaccarino	(Yale),	Sherman	Weissman	(Yale),	Kevin	White	
(UChicago)	and	Peter	Zandi	(JHU).	
	
	
URLs	
	

• LDSC	software,	including	LDSC-SEG:	https://github.com/bulik/ldsc.		
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group/LDSCORE/.		
• GTEx:	http://www.gtexportal.org.		
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References	
	
1.	The	ENCODE	Project	Consortium.	An	integrated	encyclopedia	of	DNA	elements	in	the	

human	genome.	Nature	489,	57–74	(2012).	

2.	Kundaje,	A.	et	al.	Integrative	analysis	of	111	reference	human	epigenomes.	Nature	518,	

317–330	(2015).	

3.	The	GTEx	Consortium.	The	Genotype-Tissue	Expression	(GTEx)	pilot	analysis:	

Multitissue	gene	regulation	in	humans.	Science	348,	648–660	(2015).	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 15	

4.	Ernst,	J.	et	al.	Mapping	and	analysis	of	chromatin	state	dynamics	in	nine	human	cell	

types.	Nature	473,	43–49	(2011).	

5.	Trynka,	G.	et	al.	Chromatin	marks	identify	critical	cell	types	for	fine	mapping	complex	

trait	variants.	Nat.	Genet.	45,	124–130	(2013).	

6.	Farh,	K.	K.-H.	et	al.	Genetic	and	epigenetic	fine	mapping	of	causal	autoimmune	disease	

variants.	Nature	518,	337–343	(2014).	

7.	Finucane,	H.	K.	et	al.	Partitioning	heritability	by	functional	annotation	using	genome-

wide	association	summary	statistics.	Nat.	Genet.	47,	1228–1235	(2015).	

8.	Li,	Y.	&	Kellis,	M.	Joint	Bayesian	inference	of	risk	variants	and	tissue-specific	epigenomic	

enrichments	across	multiple	complex	human	diseases.	Nucleic	Acids	Res.	(2016).	

doi:10.1093/nar/gkw627	

9.	Maurano,	M.	T.	et	al.	Systematic	Localization	of	Common	Disease-Associated	Variation	in	

Regulatory	DNA.	Science	337,	1190–1195	(2012).	

10.	 Pickrell,	J.	K.	Joint	Analysis	of	Functional	Genomic	Data	and	Genome-wide	

Association	Studies	of	18	Human	Traits.	Am.	J.	Hum.	Genet.	94,	559–573	(2014).	

11.	 Kichaev,	G.	et	al.	Integrating	Functional	Data	to	Prioritize	Causal	Variants	in	

Statistical	Fine-Mapping	Studies.	PLoS	Genet.	10,	e1004722	(2014).	

12.	 Gusev,	A.	et	al.	Partitioning	heritability	of	regulatory	and	cell-type-specific	variants	

across	11	common	diseases.	Am.	J.	Hum.	Genet.	95,	535–552	(2014).	

13.	 Ongen,	H.	et	al.	Estimating	the	causal	tissues	for	complex	traits	and	diseases.	bioRxiv	

(2016).	

14.	 Hu,	X.	et	al.	Integrating	Autoimmune	Risk	Loci	with	Gene-Expression	Data	Identifies	

Specific	Pathogenic	Immune	Cell	Subsets.	Am.	J.	Hum.	Genet.	89,	496–506	(2011).	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 16	

15.	 Slowikowski,	K.,	Hu,	X.	&	Raychaudhuri,	S.	SNPsea:	an	algorithm	to	identify	cell	

types,	tissues	and	pathways	affected	by	risk	loci.	Bioinformatics	30,	2496–2497	(2014).	

16.	 Pers,	T.	H.	et	al.	Biological	interpretation	of	genome-wide	association	studies	using	

predicted	gene	functions.	Nat.	Commun.	6,	5890	(2015).	

17.	 Gormley,	P.	et	al.	Meta-analysis	of	375,000	individuals	identifies	38	susceptibility	

loci	for	migraine.	Nat.	Genet.	48,	856–866	(2016).	

18.	 Fehrmann,	R.	S.	N.	et	al.	Gene	expression	analysis	identifies	global	gene	dosage	

sensitivity	in	cancer.	Nat.	Genet.	47,	115–125	(2015).	

19.	 Wood,	A.	R.	et	al.	Defining	the	role	of	common	variation	in	the	genomic	and	

biological	architecture	of	adult	human	height.	Nat.	Genet.	46,	1173–1186	(2014).	

20.	 Locke,	A.	E.	et	al.	Genetic	studies	of	body	mass	index	yield	new	insights	for	obesity	

biology.	Nature	518,	197–206	(2015).	

21.	 Cahoy,	J.	D.	et	al.	A	Transcriptome	Database	for	Astrocytes,	Neurons,	and	

Oligodendrocytes:	A	New	Resource	for	Understanding	Brain	Development	and	Function.	

J.	Neurosci.	28,	264–278	(2008).	

22.	 Akbarian,	S.	et	al.	The	PsychENCODE	project.	Nat.	Neurosci.	18,	1707–1712	(2015).	

23.	 Heng,	T.	S.	P.,	Painter,	M.	W.	&	Immunological	Genome	Project	Consortium.	The	

Immunological	Genome	Project:	networks	of	gene	expression	in	immune	cells.	Nat.	

Immunol.	9,	1091–1094	(2008).	

24.	 The	1000	Genomes	Project	Consortium.	A	global	reference	for	human	genetic	

variation.	Nature	526,	68–74	(2015).	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 17	

25.	 Sudlow,	C.	et	al.	UK	Biobank:	An	Open	Access	Resource	for	Identifying	the	Causes	of	

a	Wide	Range	of	Complex	Diseases	of	Middle	and	Old	Age.	PLOS	Med	12,	e1001779	

(2015).	

26.	 Okbay,	A.	et	al.	Genome-wide	association	study	identifies	74	loci	associated	with	

educational	attainment.	Nature	533,	539–542	(2016).	

27.	 Okbay,	A.	et	al.	Genetic	variants	associated	with	subjective	well-being,	depressive	

symptoms,	and	neuroticism	identified	through	genome-wide	analyses.	Nat.	Genet.	48,	

624–633	(2016).	

28.	 Teslovich,	T.	M.	et	al.	Biological,	clinical	and	population	relevance	of	95	loci	for	blood	

lipids.	Nature	466,	707–713	(2010).	

29.	 Schunkert,	H.	et	al.	Large-scale	association	analysis	identifies	13	new	susceptibility	

loci	for	coronary	artery	disease.	Nat.	Genet.	43,	333–338	(2011).	

30.	 Manning,	A.	K.	et	al.	A	genome-wide	approach	accounting	for	body	mass	index	

identifies	genetic	variants	influencing	fasting	glycemic	traits	and	insulin	resistance.	Nat.	

Genet.	44,	659–669	(2012).	

31.	 Okada,	Y.	et	al.	Genetics	of	rheumatoid	arthritis	contributes	to	biology	and	drug	

discovery.	Nature	506,	376–381	(2013).	

32.	 Jostins,	L.	et	al.	Host–microbe	interactions	have	shaped	the	genetic	architecture	of	

inflammatory	bowel	disease.	Nature	491,	119–124	(2012).	

33.	 Bradfield,	J.	P.	et	al.	A	Genome-Wide	Meta-Analysis	of	Six	Type	1	Diabetes	Cohorts	

Identifies	Multiple	Associated	Loci.	PLOS	Genet	7,	e1002293	(2011).	

34.	 Dubois,	P.	C.	A.	et	al.	Multiple	common	variants	for	celiac	disease	influencing	

immune	gene	expression.	Nat.	Genet.	42,	295–302	(2010).	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 18	

35.	 Bentham,	J.	et	al.	Genetic	association	analyses	implicate	aberrant	regulation	of	

innate	and	adaptive	immunity	genes	in	the	pathogenesis	of	systemic	lupus	

erythematosus.	Nat.	Genet.	47,	1457–1464	(2015).	

36.	 Cordell,	H.	J.	et	al.	International	genome-wide	meta-analysis	identifies	new	primary	

biliary	cirrhosis	risk	loci	and	targetable	pathogenic	pathways.	Nat.	Commun.	6,	8019	

(2015).	

37.	 Anttila,	V.	et	al.	Analysis	of	shared	heritability	in	common	disorders	of	the	brain.	

bioRxiv	048991	(2016).	

38.	 Lambert,	J.-C.	et	al.	Meta-analysis	of	74,046	individuals	identifies	11	new	

susceptibility	loci	for	Alzheimer’s	disease.	Nat.	Genet.	45,	1452–1458	(2013).	

39.	 Cross-Disorder	Group	of	the	Psychiatric	Genomics	Consortium.	Genetic	relationship	

between	five	psychiatric	disorders	estimated	from	genome-wide	SNPs.	Nat.	Genet.	45,	

984–994	(2013).	

40.	 International	League	Against	Epilepsy	Consortium	on	Complex	Epilepsies.	Genetic	

determinants	of	common	epilepsies:	a	meta-analysis	of	genome-wide	association	

studies.	Lancet	Neurol.	13,	893–903	(2014).	

41.	 Woo,	D.	et	al.	Meta-analysis	of	genome-wide	association	studies	identifies	1q22	as	a	

susceptibility	locus	for	intracerebral	hemorrhage.	Am.	J.	Hum.	Genet.	94,	511–521	

(2014).	

42.	 Traylor,	M.	et	al.	Genetic	risk	factors	for	ischaemic	stroke	and	its	subtypes	(the	

METASTROKE	collaboration):	a	meta-analysis	of	genome-wide	association	studies.	

Lancet	Neurol.	11,	951–962	(2012).	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 19	

43.	 Patsopoulos,	N.	A.	et	al.	Genome-wide	meta-analysis	identifies	novel	multiple	

sclerosis	susceptibility	loci.	Ann.	Neurol.	70,	897–912	(2011).	

44.	 Nalls,	M.	A.	et	al.	Large-scale	meta-analysis	of	genome-wide	association	data	

identifies	six	new	risk	loci	for	Parkinson’s	disease.	Nat.	Genet.	46,	989–993	(2014).	

45.	 Ripke,	S.	et	al.	Biological	insights	from	108	schizophrenia-associated	genetic	loci.	

Nature	511,	421–427	(2014).	

46.	 Wain,	L.	V.	et	al.	Genome-wide	association	analyses	for	lung	function	and	chronic	

obstructive	pulmonary	disease	identify	new	loci	and	potential	druggable	targets.	Nat.	

Genet.	49,	416–425	(2017).	

47.	 Warren,	H.	R.	et	al.	Genome-wide	association	analysis	identifies	novel	blood	

pressure	loci	and	offers	biological	insights	into	cardiovascular	risk.	Nat.	Genet.	49,	403–

415	(2017).	

48.	 Lu,	Q.	et	al.	Systematic	tissue-specific	functional	annotation	of	the	human	genome	

highlights	immune-related	DNA	elements	for	late-onset	Alzheimer’s	disease.	PLOS	Genet.	

13,	e1006933	(2017).	

49.	 Tfelt-Hansen,	P.	C.	&	Koehler,	P.	J.	One	hundred	years	of	migraine	research:	major	

clinical	and	scientific	observations	from	1910	to	2010.	Headache	51,	752–778	(2011).	

50.	 Backenroth,	D.	et	al.	Tissue-specific	functional	effect	prediction	of	genetic	variation	

and	applications	to	complex	trait	genetics.	bioRxiv	(2016).	

51.	 Wilens,	T.	E.,	Biederman,	J.	&	Spencer,	T.	J.	Attention	Deficit/Hyperactivity	Disorder	

Across	the	Lifespan.	Annu.	Rev.	Med.	53,	113–131	(2002).	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 20	

52.	 Davis,	L.	K.	et	al.	Partitioning	the	Heritability	of	Tourette	Syndrome	and	Obsessive	

Compulsive	Disorder	Reveals	Differences	in	Genetic	Architecture.	PLOS	Genet	9,	

e1003864	(2013).	

53.	 Hanford,	L.	C.,	Nazarov,	A.,	Hall,	G.	B.	&	Sassi,	R.	B.	Cortical	thickness	in	bipolar	

disorder:	a	systematic	review.	Bipolar	Disord.	18,	4–18	(2016).	

54.	 Callicott,	J.	H.	et	al.	Physiological	Dysfunction	of	the	Dorsolateral	Prefrontal	Cortex	in	

Schizophrenia	Revisited.	Cereb.	Cortex	10,	1078–1092	(2000).	

55.	 Medic,	N.	et	al.	Increased	body	mass	index	is	associated	with	specific	regional	

alterations	in	brain	structure.	Int.	J.	Obes.	40,	1177–1182	(2016).	

56.	 Maleki,	N.	et	al.	Migraine	attacks	the	Basal	Ganglia.	Mol.	Pain	7,	71	(2011).	

57.	 Herculano-Houzel,	S.	&	Lent,	R.	Isotropic	Fractionator:	A	Simple,	Rapid	Method	for	

the	Quantification	of	Total	Cell	and	Neuron	Numbers	in	the	Brain.	J.	Neurosci.	25,	2518–

2521	(2005).	

58.	 Sakai,	T.	et	al.	Changes	in	density	of	calcium-binding-protein-immunoreactive	

GABAergic	neurons	in	prefrontal	cortex	in	schizophrenia	and	bipolar	disorder.	

Neuropathology	28,	143–150	(2008).	

59.	 Benes,	F.	M.	&	Berretta,	S.	GABAergic	Interneurons:	Implications	for	Understanding	

Schizophrenia	and	Bipolar	Disorder.	Neuropsychopharmacology	25,	1–27	(2001).	

60.	 Gjoneska,	E.	et	al.	Conserved	epigenomic	signals	in	mice	and	humans	reveal	immune	

basis	of	Alzheimer’s	disease.	Nature	518,	365–369	(2015).	

61.	 Gagliano,	S.	A.	et	al.	Genomics	implicates	adaptive	and	innate	immunity	in	

Alzheimer’s	and	Parkinson’s.	bioRxiv	(2016).	doi:10.1101/059519	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 21	

62.	 Rege,	S.	&	Hodgkinson,	S.	J.	Immune	dysregulation	and	autoimmunity	in	bipolar	

disorder:	Synthesis	of	the	evidence	and	its	clinical	application.	Aust.	N.	Z.	J.	Psychiatry	47,	

1136–1151	(2013).	

63.	 Elamin,	I.,	Edwards,	M.	J.	&	Martino,	D.	Immune	dysfunction	in	Tourette	syndrome.	

Behav.	Neurol.	27,	23–32	(2013).	

64.	 Jin,	W.,	Millar,	J.	S.,	Broedl,	U.,	Glick,	J.	M.	&	Rader,	D.	J.	Inhibition	of	endothelial	lipase	

causes	increased	HDL	cholesterol	levels	in	vivo.	J.	Clin.	Invest.	111,	357–362	(2003).	

65.	 Broedl,	U.	C.	et	al.	Endothelial	lipase	promotes	the	catabolism	of	ApoB-containing	

lipoproteins.	Circ.	Res.	94,	1554–1561	(2004).	

66.	 Feingold,	K.	R.	&	Grunfeld,	C.	The	role	of	HDL	in	innate	immunity.	J.	Lipid	Res.	52,	1–3	

(2011).	

67.	 Lo,	J.	C.	et	al.	Lymphotoxin	beta	receptor-dependent	control	of	lipid	homeostasis.	

Science	316,	285–288	(2007).	

68.	 Harrison,	D.	G.	The	Immune	System	in	Hypertension.	Trans.	Am.	Clin.	Climatol.	Assoc.	

125,	130–140	(2014).	

69.	 Hotamisligil,	G.	S.	Inflammation	and	metabolic	disorders.	Nature	444,	860–867	

(2006).	

70.	 Zlotnikov-Klionsky,	Y.	et	al.	Perforin-Positive	Dendritic	Cells	Exhibit	an	Immuno-

regulatory	Role	in	Metabolic	Syndrome	and	Autoimmunity.	Immunity	43,	776–787	

(2015).	

71.	 Dhirapong,	A.	et	al.	B	cell	depletion	therapy	exacerbates	murine	primary	biliary	

cirrhosis.	Hepatol.	Baltim.	Md	53,	527–535	(2011).	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 22	

72.	 Zhang,	J.	et	al.	Ongoing	activation	of	autoantigen-specific	B	cells	in	primary	biliary	

cirrhosis.	Hepatol.	Baltim.	Md	60,	1708–1716	(2014).	

73.	 Raj,	T.	et	al.	Polarization	of	the	Effects	of	Autoimmune	and	Neurodegenerative	Risk	

Alleles	in	Leukocytes.	Science	344,	519–523	(2014).	

74.	 Huang,	K.	et	al.	A	common	haplotype	lowers	PU.1	expression	in	myeloid	cells	and	

delays	onset	of	Alzheimer’s	disease.	Nat.	Neurosci.	20,	1052–1061	(2017).	

75.	 Lloyd,	C.	M.	&	Hessel,	E.	M.	Functions	of	T	cells	in	asthma:	more	than	just	TH2	cells.	

Nat.	Rev.	Immunol.	10,	(2010).	

76.	 Müller-Ladner,	U.,	Pap,	T.,	Gay,	R.	E.,	Neidhart,	M.	&	Gay,	S.	Mechanisms	of	disease:	

the	molecular	and	cellular	basis	of	joint	destruction	in	rheumatoid	arthritis.	Nat.	Clin.	

Pract.	Rheumatol.	1,	102–110	(2005).	

77.	 Xavier,	R.	J.	&	Podolsky,	D.	K.	Unravelling	the	pathogenesis	of	inflammatory	bowel	

disease.	Nature	448,	427–434	(2007).	

78.	 Sospedra,	M.	&	Martin,	R.	Immunology	of	Multiple	Sclerosis.	Annu.	Rev.	Immunol.	23,	

683–747	(2005).	

79.	 Barbosa,	I.	G.,	Machado-Vieira,	R.,	Soares,	J.	C.	&	Teixeira,	A.	L.	The	immunology	of	

bipolar	disorder.	Neuroimmunomodulation	21,	117–122	(2014).	

80.	 Steiner,	J.	et	al.	Acute	schizophrenia	is	accompanied	by	reduced	T	cell	and	increased	

B	cell	immunity.	Eur.	Arch.	Psychiatry	Clin.	Neurosci.	260,	509–518	(2010).	

81.	 Sekar,	A.	et	al.	Schizophrenia	risk	from	complex	variation	of	complement	component	

4.	Nature	530,	177–183	(2016).	

82.	 Corces,	M.	R.	et	al.	Lineage-specific	and	single-cell	chromatin	accessibility	charts	

human	hematopoiesis	and	leukemia	evolution.	Nat.	Genet.	48,	1193–1203	(2016).	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 23	

83.	 Ip,	H.	et	al.	Stratified	Linkage	Disequilibrium	Score	Regression	reveals	enrichment	of	

eQTL	effects	on	complex	traits	is	not	tissue	specific.	bioRxiv	107482	(2017).	

doi:10.1101/107482	

84.	 Mancuso,	N.	et	al.	Integrating	Gene	Expression	with	Summary	Association	Statistics	

to	Identify	Genes	Associated	with	30	Complex	Traits.	Am.	J.	Hum.	Genet.	100,	473–487	

(2017).	

85.	 Gusev,	A.	et	al.	Integrative	approaches	for	large-scale	transcriptome-wide	

association	studies.	Nat.	Genet.	48,	245–252	(2016).	

86.	 Leeuw,	C.	A.	de,	Mooij,	J.	M.,	Heskes,	T.	&	Posthuma,	D.	MAGMA:	Generalized	Gene-

Set	Analysis	of	GWAS	Data.	PLOS	Comput	Biol	11,	e1004219	(2015).	

87.	 Gazal,	S.	et	al.	Linkage	disequilibrium	dependent	architecture	of	human	complex	

traits	reveals	action	of	negative	selection.	bioRxiv	082024	(2017).	doi:10.1101/082024;	

Nature	Genetics,	in	press	

88.	 Boyle,	E.	A.,	Li,	Y.	I.	&	Pritchard,	J.	K.	An	Expanded	View	of	Complex	Traits:	From	

Polygenic	to	Omnigenic.	Cell	169,	1177–1186	(2017).	

	
	 	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/103069doi: bioRxiv preprint 

https://doi.org/10.1101/103069
http://creativecommons.org/licenses/by-nd/4.0/


	 24	

Name	 Organism	 Tissues/cell	types	 Technology	
GTEx3	 Human	 53	tissues/cell	types	 RNA-seq	
Franke	lab16,18	 Human/mouse/rat	 152	tissues/cell	types	 Array	
Cahoy21	 Mouse	 3	brain	cell	types	 Array	
PsychENCODE22	 Human	 2	neuronal	cell	types	 RNA-seq	
ImmGen23	 Mouse	 292	immune	cell	types	 Array	
	
Table	 1:	 List	 of	 gene	 expression	 data	 sets	 used	 in	 this	 study.	 We	 analyzed	 five	 gene	
expression	 data	 sets:	 two	 (GTEx	 and	 Franke	 lab)	 containing	 a	wide	 range	 of	 tissues	 and	
three	(Cahoy,	PsychENCODE,	ImmGen)	with	more	detailed	information	about	a	particular	
tissue.	
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Figure	 1:	Overview	of	 the	approach.	For	each	 tissue	 in	our	gene	expression	data	set,	we	
compute	 t-statistics	 for	 differential	 expression	 for	 each	 gene.	We	 then	 rank	 genes	 by	 t-
statistic,	take	the	top	10%	of	genes,	and	add	a	100kb	window	to	get	a	genome	annotation.	
We	 use	 stratified	 LD	 score	 regression7	 to	 test	 whether	 this	 annotation	 is	 significantly	
enriched	 for	 per-SNP	 heritability,	 conditional	 on	 the	 baseline	 model7	 and	 the	 set	 of	 all	
genes.	
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Figure	 2:	Results	of	multiple-tissue	analysis	 for	selected	 traits.	Results	 for	 the	remaining	
traits	are	displayed	in	Figure	S1.	Each	point	represents	a	tissue/cell	type	from	either	the	
GTEx	 data	 set	 or	 the	 Franke	 lab	 data	 set.	 Large	 points	 pass	 the	 FDR<5%	 cutoff,	 –
log10(P)=2.75.	Numerical	results	are	reported	in	Table	S6.	
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Figure	 3:	 Validation	 of	 gene	 expression	 results	 with	 chromatin	 data.	 (A)	 Examples	 of	
validation	using	 chromatin	data	 (bottom)	of	 results	 from	gene	 expression	data	 (top),	 for	
selected	traits.	Results	using	chromatin	data	for	all	traits	are	displayed	in	Figure	S5,	with	
numerical	results	in	Table	S7.	For	the	chromatin	results,	each	point	represents	a	track	of	
peaks	 for	 H3K4me3,	 H3K4me1,	 H3K9ac,	 H3K27ac,	 H3K36me3,	 or	 DHS	 in	 a	 single	
tissue/cell	 type.	 (B)	Results	 using	 gene	 expression	 data	 (including	GTEx),	 Roadmap,	 and	
EN-TEx,	for	migraine	(all	subtypes)	and	migraine	without	aura.	For	both	subfigures,	large	
points	 pass	 the	 FDR<5%	 cutoff,	 –log10(P)=2.85	 (chromatin)	 or	 –log10(P)=2.75	 (gene	
expression).	
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Figure	 4:	Results	of	 the	brain	analysis	 for	selected	 traits,	 including	all	 significant	results.	
Numerical	 results	 for	 all	 traits	 are	 reported	 in	Table	 S8.	 (A)	 Results	 from	within-brain	
analysis	 of	 13	 brain	 regions	 in	 GTEx,	 classified	 into	 four	 groups,	 for	 seven	 of	 12	 brain-
related	traits.	Large	points	passed	the	FDR<5%	cutoff,	–log10(P)=2.34.	(B)	Results	from	the	
data	 of	 Cahoy	 et	 al.	 on	 three	 brain	 cell	 types	 for	 seven	 of	 12	 brain-related	 traits.	 Large	
points	passed	the	FDR<5%	cutoff,	–log10(P)=2.22.	(C)	Results	from	PyschENCODE	data	on	
two	 neuronal	 subtypes	 for	 three	 of	 five	 neuron-related	 traits.	 Large	 points	 passed	 the	
Bonferroni	significance	threshold	in	this	analysis,	–log10(P)=2.06.			
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Figure	5:	Results	of	the	analysis	of	ImmGen	gene	expression	data	(top)	and	hematopoiesis	
ATAC-seq	data	(bottom)	for	selected	traits.	Results	for	the	remaining	traits	are	displayed	in	
Figure	S9.	Large	points	passed	the	FDR<5%	cutoff,	–log10(P)=3.03	(Gene	expression)	or	–
log10(P)=2.32	(Chromatin).	Numerical	results	are	reported	in	Table	S10.	
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ONLINE	METHODS	
	
Computing	 t-statistics.	When	computing	the	t-statistic	of	each	gene	for	a	focal	tissue,	we	
excluded	all	samples	from	the	same	tissue	category	(see	“Tissue	categories	and	covariates”	
below).	For	example,	when	computing	the	t-statistic	of	specific	expression	for	each	gene	in	
cortex	 using	 GTEx	 data,	 we	 compared	 expression	 in	 cortex	 samples	 to	 expression	 in	 all	
other	 samples,	 excluding	 other	 brain	 regions.	 We	 chose	 to	 exclude	 other	 brain	 regions	
because	we	wanted	to	include	genes	that	are	more	highly	expressed	in	brain	tissues	than	in	
non-brain	 tissues,	even	 if	 they	are	not	specific	 to	cortex	within	 the	brain.	This	procedure	
results	 in	 a	 higher	 correlation	 among	 the	 t-statistics	 for	 the	 different	 brain	 regions;	 in	 a	
separate	analysis,	we	compute	within-brain	t-statistics	to	disentangle	this	signal.	

Thus,	 for	 a	 focal	 tissue	 (e.g.,	 cortex)	 in	 a	 larger	 tissue	 category	 (e.g.,	 brain),	 we	
computed	the	t-statistic	for	gene	g	as	follows.	We	first	constructed	a	design	matrix	X	where	
each	row	corresponds	to	a	sample	either	in	cortex	or	outside	of	the	brain.	The	first	column	
of	X	has	a	1	 for	every	cortex	sample	and	a	 -1	 for	every	non-brain	sample.	The	remaining	
columns	 are	 an	 intercept	 and	 covariates	 (see	 “Tissue	 categories	 and	 covariates”	 below).	
The	outcome	Y	in	our	model	is	expression.	We	fit	this	model	via	ordinary	least	squares,	and	
compute	a	t-statistic	for	the	first	explanatory	variable	in	the	standard	way:	

	

𝑡 =
𝑋!𝑋 !!𝑋!𝑌[0]

𝑀𝑆𝐸 ∙ 𝑋!𝑋 !![0,0]
	

	
where	MSE	is	the	mean	squared	error	of	the	fitted	model;	i.e.,	

𝑀𝑆𝐸 =  
1
𝑁 (𝑌 − 𝑋 𝑋!𝑋 !!𝑋!𝑌)^𝑇(𝑌 − 𝑋 𝑋!𝑋 !!𝑋!𝑌)	

where	N	 is	 the	number	of	rows	 in	X.	This	gives	us	a	 t-statistic	 for	each	gene	 for	 the	 focal	
tissue.	We	then	select	the	top	10%	of	genes,	add	a	100kb	window	around	their	transcribed	
regions,	 and	 apply	 stratified	LD	 score	 regression	 to	 the	 resulting	 genome	annotations	 as	
described	below.	
	
Modifications	 of	 our	 approach.	 For	 some	 analyses,	 we	 modified	 our	 approach	 to	
constructing	 sets	 of	 specifically	 expressed	 genes	 to	 better	 take	 advantage	 of	 the	 data	
available.		
• Franke	lab	data	set.	The	values	in	the	publicly	available	matrix	are	not	a	quantification	

of	expression	intensity,	but	rather	a	quantification	of	differential	expression	relative	to	
other	tissues	in	this	data	set16,18.	Thus,	it	was	not	appropriate	to	compute	t-statistics	in	
this	data	set.	We	used	the	original	values	in	place	of	our	t-statistics,	then	proceeded	as	
described	in	Figure	1.	

• Cahoy	data	set.	The	data	set	of	Cahoy	et	al.	had	available	sets	of	specifically	expressed	
genes	 for	 the	 three	cell	 types	 that	each	had	between	1,700	and	2,100	genes.	We	 took	
these	 to	 be	 the	 gene	 sets	 for	 the	 three	 cell	 types,	 then	 proceeded	 as	 in	 the	 standard	
approach,	adding	a	100kb	window	and	applying	stratified	LD	score	regression.	

• PsychENCODE	 data	 set.	 The	 PsychENCODE	 data	 set	 had	 available	 t-statistics	 for	
GABAergic	neurons	vs.	Glutamatergic	neurons.	We	used	 these	 t-statistics,	 rather	 than	
computing	our	own.	
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For	 the	 other	 data	 sets	 we	 analyzed	 (GTEx,	 GTEx	 brain	 regions,	 ImmGen),	 we	 used	 the	
approach	described	in	Figure	1.	We	view	it	as	an	advantage	of	our	method	that	it	can	be	
flexibly	adapted	to	many	different	types	of	data.	
	
Tissue	categories	and	covariates.		
• For	the	multiple-tissue	GTEx	analysis,	we	used	the	“SMTS”	variable	(“Tissue	Type,	area	

from	which	the	tissue	sample	was	taken”)	to	define	the	tissue	categories	(Table	S2).	We	
used	age	and	sex	as	covariates.	

• For	the	analysis	of	GTEx	brain	regions,	we	set	each	tissue	to	be	its	own	category,	and	we	
used	age	and	sex	as	covariates.	

• For	 the	 ImmGen	 analysis,	we	defined	 tissue	 categories	 using	 the	 classification	on	 the	
main	page	of	immgen.org	of	cell	types	into	categories:	B	cells,	gamma	delta	T	cells,	alpha	
beta	 T	 cells,	 innate	 lymphocytes,	 myeloid	 cells,	 stromal	 cells,	 and	 stem	 cells	 (Table	
S10).	 The	 classification	 at	 immgen.org	 also	 has	 a	 “T	 cell	 activation”	 category	 that	we	
collapsed	into	the	alpha	beta	T	cell	category	because	it	had	data	on	alpha	beta	T	cells	at	
different	stages	of	activation.	We	did	not	have	any	covariates.	

• For	 the	 Franke	 lab	 data	 set,	 Cahoy	 data	 set,	 and	 PsychENCODE	 data	 set,	 we	 did	 not	
compute	 t-statistics	 and	 so	 we	 did	 not	 have	 tissue	 categories	 or	 covariates	 (see	
“Modifications	of	our	approach”	above).	

	
Choice	 of	 parameters.	Our	 approach	 includes	 two	parameters:	 the	proportion	 of	 genes	
selected,	which	we	 set	 to	 10%,	 and	 the	window	 size	 around	 each	 gene,	which	we	 set	 to	
100kb.	To	choose	these	two	parameters,	we	ran	the	approach	with	six	different	parameter	
settings	 ({2%,	 5%,	 10%	 of	 genes}	 x	 {20kb,	 100kb	 windows})	 on	 two	 diseases—
schizophrenia	and	rheumatoid	arthritis—and	two	corresponding	GTEx	tissues—brain	(all	
brain	regions)	and	blood	(LCLs	and	whole	blood)—which	are	widely	known	to	be	disease-
relevant	tissues.	We	determined	that	of	the	parameter	settings	we	tested,	10%	of	genes	and	
100kb	 produced	 the	 most	 significant	 P-values	 for	 identifying	 brain	 enrichment	 for	
schizophrenia	and	blood	enrichment	for	rheumatoid	arthritis,	so	we	used	these	parameters	
for	the	remaining	analyses.	
	
Application	of	stratified	LD	score	regression.	Stratified	LD	score	regression7	is	a	method	
for	partitioning	heritability.	Given	(potentially	overlapping)	genomic	annotations	𝐶!,… ,𝐶! ,	
one	of	which	is	the	category	of	all	SNPs,	we	model	the	causal	effect	of	SNP	j	on	phenotype	Y	
as	drawn	from	a	distribution	with	mean	0	and	variance		

	 	 		𝑉𝑎𝑟 𝛽! =  𝜏!𝟏 𝑖 ∈ 𝐶!! .			 	 (1)	
	

(If	 the	 genomic	 annotations	 are	 real-valued	 rather	 than	 subsets	 of	 SNPs,	we	 can	 replace	
𝟏{𝑖 ∈ 𝐶!}	with	any	other	function	of	the	SNP	indices87.)	We	then	model	the	phenotype	Y	as	
depending	 linearly	 on	 genotype:	𝑌 = 𝑋 ⋅ 𝛽 + 𝜖,	 where	 X	 is	 a	 vector	 of	 SNP	 values	 for	 an	
individual,	and	each	SNP	has	been	standardized	to	mean	0	and	variance	1	in	the	population.	
Because	each	SNP	 is	standardized,	and	because	𝛽! 	has	mean	zero,	we	can	call	𝑉𝑎𝑟 𝛽! 	the	
per-SNP	 heritability	 of	 SNP	 i.	 (Note	 that	 here,	 because	 we	 model	𝛽 	as	 random,	 our	
definition	of	heritability	is	different	from	definitions	of	heritability	in	which	𝛽	is	fixed,	and	
so	we	are	estimating	a	fundamentally	different	quantity	than	some	other	methods89.)	
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Under	this	model,	the	expected	marginal	chi-square	association	statistic	for	SNP	 i	reflects	
the	causal	contributions	not	only	of	SNP	i	but	of	SNPs	in	LD	with	SNP	i.	Specifically,	

𝐸 𝜒!! =  1+ 𝑁𝑎 + 𝑁 𝜏!ℓ(𝑖, 𝑘)
!

,	

where	N	 is	 the	GWAS	 sample	 size,	a	 is	 a	 constant	 that	 reflects	 population	 structure	 and	
other	sources	of	confounding,90	and	ℓ(𝑖, 𝑘)	is	the	LD	score	of	SNP	i	to	category	𝐶! ,	defined	
as	ℓ 𝑖, 𝑘 =  𝑟! 𝑖, 𝑗 𝟏{𝑗 ∈ 𝐶!}! ,	 where	𝑟! 𝑖, 𝑗 	is	 the	 squared	 correlation	 between	 SNPs	 i	
and	j	in	the	population.	To	estimate	the	𝜏! ,	we	first	estimate	ℓ 𝑖, 𝑘 	from	a	reference	panel,	
and	we	then	perform	weighted	regression	𝜒!!	on	𝑁 ⋅ ℓ 𝑖, 𝑘 ,	using	a	jackknife	over	blocks	of	
SNPs	to	estimate	standard	errors.		
	
The	regression	coefficient	𝜏! 	quantifies	the	 importance	of	annotation	𝐶! ,	correcting	for	all	
other	annotations	 in	 the	model;	𝜏! 	will	equal	zero	 if	𝐶! 	is	not	enriched,	will	be	negative	 if	
belonging	 to	𝐶!  decreases	 per-SNP	 heritability	 accounting	 for	 all	 other	 annotations	
included,	and	will	be	positive	if	belonging	to	𝐶!  increases	per-SNP	heritability,	accounting	
for	 all	 other	 factors.	 Thus,	 as	 in	 our	 previous	 cell-type-specific	 anlaysis7,	we	 compute	 P-
values	that	test	whether	𝜏! 	is	positive.	When	reporting	quantitative	results,	we	normalize	
the	coefficient	𝜏! 	by	our	estimate	of	the	mean	per-SNP	heritability	 𝑉𝑎𝑟(𝛽!)! 𝑀	to	make	it	
comparable	 across	 phenotypes.	 The	 normalized	 coefficient	 can	 be	 interpreted	 as	 the	
proportion	by	which	the	per-SNP	heritability	of	an	average	SNP	would	increase	if	𝜏! 	were	
added	to	it.	In	addition,	it	is	possible	to	estimate	the	total	heritability,	defined	as	 𝑉𝑎𝑟(𝛽!)! ,	
as	well	as	the	heritability	in	category	𝐶! ,	defined	as	 𝑉𝑎𝑟(𝛽!)!∈!! ,	by	plugging	estimates	of	
𝜏! 	into	 Equation	 (1),	 and	 to	 compare	 the	 proportion	 of	 heritability,	

𝑉𝑎𝑟(𝛽!)!∈!! 𝑉𝑎𝑟(𝛽!)! ,	to	the	proportion	of	SNPs,	|𝐶!| 𝑀,	where	M	 is	the	total	number	
of	SNPs7.		
	
We	analyzed	autosomes	only	and	excluded	the	HLA	from	all	analyses.	In	each	analysis,	we	
jointly	fit	the	following	annotations:	

1. The	annotation	 created	 for	our	 focal	 tissue	by	adding	100kb	windows	around	 the	
top	10%	of	genes	ranked	by	t-statistic.	

2. An	 identical	 annotation	created	 for	all	 genes	 included	 in	 the	gene	expression	data	
set	being	analyzed.	

3. The	baseline	model	with	52	functional	categories,	described	previously7	and	listed	
in	Table	S1.	
	

Gene	expression	data:	quality	control	and	normalization.		
• GTEx	data	 set.	We	 downloaded	 the	 RNA-seq	 read	 counts	 from	 GTEx	 v6p	 (see	 URLs),	

removed	genes	for	which	fewer	than	4	samples	had	at	least	one	read	count	per	million,	
removed	 samples	 for	 which	 fewer	 than	 100	 genes	 had	 at	 least	 one	 read	 count	 per	
million,	and	applied	TPM	normalization91.	We	used	the	“SMTSD”	variable	(“Tissue	Type,	
more	specific	detail	of	tissue	type”)	to	define	our	tissues	(Table	S2).	

• Franke	lab	data	set.	We	downloaded	 the	publicly	available	gene	expression	data	 from	
the	DEPICT	website	(see	URLs).	We	determined	that	several	pairs	of	tissues	had	values	
that	were	correlated	at	r2>0.99,	including	several	that	had	r2=1.	We	pruned	our	data	so	
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that	 no	 two	 tissues	 had	 r2>0.99.	 Most	 of	 the	 closely	 correlated	 pairs	 were	 also	
biologically	closely	related	so	that	the	interpretation	did	not	depend	on	which	tissue	we	
chose	to	keep	(e.g.,	plasma	and	plasma	cells,	joint	and	joint	capsule).	For	pairs	of	tissues	
where	 one	 tissue	was	more	 specific	 than	 the	 second,	we	 kept	 the	more	 specific	 pair	
(e.g.,	 nose	 vs.	 nasal	mucosa,	 quadriceps	muscle	 vs.	 skeletal	muscle).	 There	were	 two	
clusters	of	highly	correlated	tissues	for	which	we	decided	to	remove	the	entire	cluster,	
not	keeping	any	of	the	tissues,	because	these	clusters	had	very	strong	but	biologically	
implausible	 correlations.	 The	 first	 such	 cluster	 was	 made	 up	 of	 eyelids,	 conjunctiva,	
anterior	eye	segment,	 tarsal	bones,	 foot	bones,	and	bones	of	 the	 lower	extremity.	The	
second	such	cluster	was	made	up	of	 connective	 tissue,	bone	and	bones,	 skeleton,	and	
bone	marrow.	After	pruning,	this	data	set	contained	152	tissues,	listed	in	Table	S3.		

• Cahoy	et	al.	data	set.	We	downloaded	sets	of	specifically	expressed	genes	for	each	of	the	
three	cell	types	(see	URLs).	To	obtain	a	list	of	all	genes,	we	also	downloaded	a	list	of	all	
genes	 that	 passed	 quality	 control	 in	 their	 analysis	 (Table	 S3b	 of	 Cahoy	 et	 al.).	 We	
mapped	from	mouse	to	human	genes	using	orthologs	from	ENSEMBL	(see	URLs).		

• PsychENCODE	 data	 set.	 We	 used	 the	 t-statistics	 released	 by	 the	 PsychENCODE	
consortium	for	differential	expression	in	GABAergic	vs.	Glutamatergic	neurons22.	These	
t-statistics	were	computed	using	limma92.	

• ImmGen	 data	 set.	We	 downloaded	 publicly	 available	 gene	 expression	 data	 from	 the	
ImmGen	 Consortium	 (see	 URLs).	 We	 used	 both	 Phase	 1	 (GSE15907)	 and	 Phase	 2	
(GSE37448)	data.	The	data	on	GEO	were	on	an	exponential	scale,	so	we	log	transformed	
the	data	and	mapped	to	human	genes	using	ENSEMBL	orthologs.	We	tested	each	of	the	
297	cell	types.	

We	modified	the	makegenes.sh	script93	(see	URLs)	for	some	of	our	data	processing.	
	
UK	 Biobank	 data.	We	 analyzed	data	 from	 the	 full	N=500K	UK	Biobank	 release25	 for	 13	
traits	 (P.R.	 Loh	 et	 al.,	 unpublished	 data).	 The	 summary	 statistics	 were	 generated	 using	
BOLT-LMM	v2.3,	an	unpublished	extension	of	BOLT-LMM94.	
	
Enrichment	 correlation.	 For	 a	 pair	 of	 phenotypes	 and	 a	 set	 of	 tissues/cell	 types,	 we	
defined	 the	 enrichment	 correlation	 to	 be	 the	 correlation	 between	 the	 regression	
coefficients	 corresponding	 to	 each	 tissue/cell	 type.	 We	 estimated	 the	 enrichment	
correlation	 by	 correlating	 the	 estimates	 of	 the	 regression	 coefficients,	 and	we	quantified	
uncertainty	via	block	jackknife	over	200	sets	of	consecutive	SNPs.	We	note	that	when	the	
number	of	tissues/cell	types	included	is	small,	the	true	underlying	enrichment	correlation	
may	be	large	even	though	there	is	no	relationship	between	the	two	phenotypes,	so	we	only	
estimate	enrichment	correlations	when	there	are	at	least	10	tissues	or	cell	types.		
	
Chromatin	 analysis.	 We	 downloaded	 narrow	 peaks	 from	 the	 Roadmap	 Epigenomics	
consortium	 for	 DNase	 hypersensitivity	 and	 five	 activating	 histone	 marks:	 H3K27ac,	
H3K4me3,	H3K4me1,	H3K9ac,	and	H3K36me3	(see	URLs).	Each	of	 these	six	 features	was	
present	in	a	subset	of	the	88	primary	cell	types/tissues,	for	a	total	of	397	cell-type-/tissue-
specific	annotations.	For	each	of	these	annotations,	we	tested	for	enrichment	by	adding	the	
annotation	 to	 the	 baseline	 model	 (see	 Table	 S1),	 together	 with	 the	 union	 of	 cell-type-
specific	 annotations	 within	 each	 mark	 and	 the	 average	 of	 cell-type-specific	 annotations	
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within	 each	 mark.	 A	 positive	 regression	 coefficient	 for	 a	 tissue-/cell-type-specific	
annotation	 represents	 a	 positive	 contribution	 of	 the	 annotation	 to	 per-SNP	 heritability,	
conditional	 on	 the	 other	 annotations.	We	 again	 computed	 a	 P-value	 to	 test	whether	 the	
regression	coefficient	was	positive.	
We	 also	 analyzed	 peaks	 called	 using	 Homer	 from	 EN-Tex,	 a	 subgroup	 of	 the	 ENCODE	
project,	 for	four	activating	histone	marks:	H3K27ac,	H3K4m3,	H3K4me1,	and	H3K36me3.	
Each	of	 these	 four	marks	was	present	 in	 a	 subset	of	 a	 set	 of	27	 tissues	matching	 tissues	
from	 the	 GTEx	 consortium.	 We	 repeated	 the	 same	 analysis	 as	 described	 above	 for	 the	
Roadmap	dataset,	computing	the	union	and	average	of	cell	type-specific	annotations	within	
each	mark,	adding	them	to	the	baseline	model,	and	then	testing	for	enrichment	by	adding	
one	annotation	at	a	time	to	the	regression.	
	
Classification	 of	 tissues/cell	 types	 for	 system-level	 validation	 of	 the	 results	 of	 the	
multiple-tissue	analysis	of	gene	expression.	We	classified	the	top	tissue	or	cell	type	for	
each	trait	with	a	significant	enrichment	into	one	of	the	eight	systems	(excluding	“Other”)	in	
the	 Figure	 2	 legend.	 There	 were	 three	 phenotypes	 whose	 top	 tissue	 fell	 in	 the	 “Other”	
category;	 two	 of	 these	 we	 classified	 into	 a	 new	 “Reproductive”	 category.	 The	 last	 one,	
serous	membrane,	did	not	have	any	comparable	tissues	 in	our	chromatin	data	and	so	we	
instead	attempted	to	replicate	the	second	most	significant	result	for	that	phenotype.	
	
Our	 analysis	 of	 chromatin	 in	 this	 work	 differs	 from	 our	 previous	 analysis	 of	 chromatin	
data7	in	three	ways.	First,	we	use	a	larger	range	of	marks	and	tissues/cell	types:	every	track	
available	 from	 the	 Roadmap	 Epigenomics	 website	 (see	 URLs)	 for	 any	 of	 six	 activating	
marks,	 H3K27ac,	 H3K4me1,	 H3K4me3,	 H3K9ac,	 H3K36me3,	 and	 DHS,	 in	 any	 of	 the	 88	
primary	 tissues	 and	 cell	 types	 available,	 for	 a	 total	 of	 397	 annotations.	 Second,	we	 used	
narrow	peaks	 from	Roadmap	for	all	of	 the	marks.	Previously,	we	analyzed	H3K27ac	data	
from	one	source6	and	H3K4me1,	H3K4me3,	and	H3K9ac	data	from	another	source5,12;	now	
that	 there	 is	 a	 single	 standard	 source	 with	 uniformly	 processed	 data	 for	 all	 marks	 of	
interest,	 we	 have	 switched	 to	 using	 this	 data.	 Finally,	 we	 controlled	 more	 strictly	 for	
confounders	by	including	the	average	across	cell	types	of	the	cell-type-specific	annotations	
for	a	given	mark	as	an	annotation	in	the	model,	so	that	annotations	that	tend	to	fall	in	areas	
that	are	more	active	overall	are	not	falsely	interpreted	as	cell-type-specific	signal.	
	
Number	 of	 gene	 expression	 samples	 needed.	 Because	 the	 GTEx	 consortium	 data	 set	
included	tens	of	samples	for	many	of	the	tissues,	we	were	able	to	assess	how	sensitive	our	
results	were	to	the	sample	size	of	the	gene	expression	data	set	used	to	construct	the	gene	
sets.	To	do	this,	we	repeatedly	sub-sampled	our	data	set	to	a	variety	of	sample	sizes,	each	
time	re-creating	gene	sets	using	the	smaller	sub-sampled	data	set.	We	chose	two	results	to	
re-analyze	in	this	way.	First,	we	re-analyzed	cortex	enrichment	for	schizophrenia,	in	which	
cortex	was	compared	to	all	non-brain	samples	and	was	highly	significant	(Figure	2).	This	
result	was	very	 robust:	 the	 enrichment	was	highly	 significant	 in	 all	 of	 our	downsampled	
data	 sets,	 even	 with	 only	 a	 single	 cortex	 sample	 (Figure	 S11a).	 We	 then	 assessed	
enrichment	for	schizophrenia	in	the	within-brain	analysis,	 in	which	cortex	was	compared	
to	 all	 other	 brain	 regions	 and	 was	 moderately	 significant	 (Figure	 4a).	 In	 this	 analysis,	
sample	 size	 was	 more	 important,	 and	 while	 there	 was	 high	 variance	 in	 z-score	 among	
random	samples	at	a	given	sample	size,	there	was	a	clear	trend	that	increasing	the	sample	
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size	increases	the	significance	of	the	enrichment	on	average	(Figure	S11b).	In	conclusion,	
these	analyses	provide	evidence	 that	sample	size	can	be	 important	when	 the	enrichment	
being	identified	is	near	the	border	of	significance,	but	that	our	method	is	well-powered	to	
detect	strong	signals	even	with	a	single	sample	in	the	tissue	of	interest.	
	
Comparison	to	existing	methods:	real	phenotypes.	To	our	knowledge,	SNPsea14,15	is	the	
only	existing	method	that	takes	as	input	GWAS	summary	statistics,	together	with	a	matrix	
of	gene	expression	values,	and	identifies	enriched	tissues	and	cell	types.	SNPsea	leverages	
only	 genome-wide	 significant	 SNPs,	 rather	 than	 all	 SNPs,	 a	 notable	 difference	 from	 our	
approach.	We	ran	SNPsea	on	the	summary	statistics	and	gene	expression	data	analyzed	in	
our	multiple-tissue	 analysis;	 results	 are	 displayed	 in	Figure	 S12.	We	 found	 that	 SNPsea	
identified	biological	plausible	enrichments	at	high	 levels	of	 significance	 for	 traits	 such	as	
LDL	 for	which	a	 large	proportion	of	 SNP-heritability	 lies	 in	genome-wide	 significant	 loci,	
but	 that	 it	 was	 not	 well-powered	 for	 more	 polygenic	 traits;	 for	 example,	 it	 found	 zero	
tissues	with	FDR	<	5%	for	bipolar	disorder,	while	our	approach	found	many	brain	regions	
to	be	enriched	at	P-values	 as	 low	as	2e-12	 (Figure	 S1).	The	 lack	of	power	of	 SNPsea	on	
more	 polygenic	 traits	 is	 unsurprising,	 as	 SNPsea	 leverages	 only	 genome-wide	 significant	
loci.	
	
The	DEPICT	software16	includes	a	method	for	identifying	disease-relevant	tissues	and	cell	
types	 from	 GWAS	 summary	 statistics	 and	 gene	 expression	 data.	 However,	 this	 method	
takes	as	input	only	the	GWAS	summary	statistics	and	not	gene	expression	data;	the	method	
is	designed	to	be	run	only	with	the	Franke	lab	data	set16,18,	which	is	built	into	the	software.	
Thus,	DEPICT	 could	 not	 be	 used	 to	 obtain	 the	 results	 in	 our	 brain-specific	 and	 immune-
specific	analyses,	 for	which	we	analyzed	data	sets	 that	allowed	us	 to	differentiate	among	
tissues	 and	 cell	 types	 within	 each	 of	 these	 systems.	 However,	 DEPICT	 does	 perform	 a	
multiple-tissue	analysis	analogous	 to	 the	Franke	 lab	data	set	 component	of	our	multiple-
tissue	analysis,	and	so	we	ran	DEPICT	on	the	set	of	summary	statistics	 that	we	analyzed.	
Like	SNPsea,	DEPICT	is	run	on	a	subset	of	SNPs,	but	unlike	SNPsea,	DEPICT	documentation	
recommends	that	it	be	run	twice,	once	on	SNPs	that	pass	genome-wide	significance	at	5e-8,	
and	 once	 on	 SNPs	 that	 pass	 a	 less	 stringent	 threshold	 of	 1e-5;	 we	 followed	 this	
recommendation,	and	our	 results	are	displayed	 in	Figures	 S13	 and	S14.	We	determined	
that	DEPICT	failed	to	identify	some	enrichments	identified	by	our	analysis	of	the	Franke	lab	
data	 set,	 such	 as	 brain	 enrichment	 for	 several	 brain-related	 traits	 (epilepsy,	 Tourette	
syndrome,	 neuroticism,	 and	 smoking	 status),	 but	 that	 it	 identified	 a	 large	 number	 of	
enrichments	 for	 other	 traits	 and	 tissues	 that	 our	 approach	 did	 not	 find.	 In	 simulations	
described	 below,	 we	 found	 that	 DEPICT	 sometimes	 reported	 significant	 results	 in	 the	
absence	of	true	enrichment.	
	
Our	approach,	described	in	Figure	1,	has	two	main	steps:	constructing	a	genome	annotation	
from	 gene	 expression	 data,	 and	 testing	 this	 annotation	 for	 enrichment	 with	 GWAS	
summary	statistics	using	stratified	LD	score	regression.	We	tested	whether	the	success	of	
our	 approach	 depended	 on	 using	 stratified	 LD	 score	 regression	 in	 the	 second	 step	 by	
instead	 analyzing	 the	 specifically	 expressed	 gene	 annotations	 from	 the	 first	 step	 using	
MAGMA86,	a	gene	set	enrichment	method	 that	allows	 inclusion	of	a	window	around	each	
gene	and	leverages	all	SNPs	in	the	gene	set	(Figure	S15).	MAGMA	and	LDSC-SEG	identified	
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many	of	the	same	enrichments,	but	MAGMA	identified	several	enrichments	that	LDSC-SEG	
did	not.	We	hypothesized	that	this	may	occur	because	in	this	analysis,	we	did	not	use	the	
option	in	MAGMA	to	incorporate	gene-level	covariates.	In	simulations	described	below,	we	
determined	 that	MAGMA	can	report	 significant	 results	 in	 the	absence	of	 true	enrichment	
due	 to	 uncorrected	 genomic	 confounding	 if	 no	 covariates	 are	 included	 to	 ameliorate	
potential	confounding.	We	leave	an	exploration	of	how	best	to	use	covariates	in	MAGMA	to	
account	for	potential	confounding	while	preserving	power	for	future	work.	
	
For	comparison	purposes,	we	report	LDSC-SEG	results	for	the	multiple	tissue	analysis	as	a	
heatmap	in	Figure	S2a,	in	addition	to	the	scatter	plots	in	Figure	2	and	Figure	S1.	
	
Comparison	 to	 existing	 methods:	 simulated	 phenotypes.	We	 performed	 simulations	
using	genotypes	 from	Genetic	Epidemiology	Research	on	Aging	(GERA)	data	set95–97	with	
47,360	individuals	and	6,507,309	SNPs	with	imputation	R2	>	0.5.	We	simulated	five	genetic	
architectures,	where	“null”	refers	to	a	heritable	trait	with	no	tissue-specific	enrichment	and	
“causal”	refers	to	a	heritable	trait	with	cortex	enrichment:		

1. (Polygenic	null)	All	SNPs	causal,	causal	SNP	effects	are	drawn	independently	from	a	
normal	distribution	with	mean	zero	and	constant	variance	across	the	genome,	with	
a	total	heritability	of	0.9.	

2. (Sparse	null)	Same	as	(1),	but	each	SNP	has	probability	0.001	of	being	causal.			
3. (Exon-enriched	null)	A	SNP	is	causal	if	and	only	if	it	is	in	an	exon,	causal	SNP	effects	

are	drawn	independently	from	a	normal	distribution	with	mean	zero	and	constant	
variance	for	all	exonic	SNPs,	with	a	total	heritability	of	0.9.	

4. (Polygenic	 causal)	We	use	 the	annotation	 corresponding	 to	 cortex	genes	 from	 the	
multiple-tissue	 analysis	 to	 simulate	 a	 true	 effect.	 All	 SNPs	 are	 causal,	 causal	 SNP	
effects	 are	 drawn	 independently	 from	 a	 normal	 distribution	 with	 a	 constant	
variance	within	 the	 cortex	 annotation	and	 constant	 variance	outside	of	 the	 cortex	
annotation	so	that	50%	of	the	total	heritability	is	assigned	to	the	cortex	annotation,	
50%	 of	 the	 total	 heritability	 is	 distributed	 uniformly	 across	 the	 genome,	 and	 the	
total	 heritability	 is	 0.2.	 We	 chose	 a	 smaller	 value	 of	 heritability	 in	 the	 causal	
simulations	 because	 we	wanted	 to	 test	 power	 to	 identify	 true	 enrichment	 rather	
than	control	of	type	I	error.	

5. (Sparse	causal)	Same	as	(4),	but	each	SNP	has	a	probability	of	0.001	to	be	causal.			
	

For	 each	 genetic	 architecture,	 we	 simulated	 phenotypes	 and	 summary	 statistics	 using	
PLINK98	 (see	 URLs)	 with	 100	 replicates	 for	 each	 genetic	 architecture.	 We	 then	 ran	 the	
multiple-tissue	analysis	as	described	above	for	every	method	on	each	of	the	simulated	data	
sets,	 and	 for	 each	 method	 and	 each	 simulated	 genetic	 architecture	 we	 performed	 FDR	
correction	within	the	set	of	100	simulated	phenotypes.	Results	are	displayed	in	Figure	S16.		
	
Of	 the	 five	 methods	 tested	 (LDSC-SEG,	 SNPsea,	 DEPICT	 (1e-5),	 DEPICT	 (5e-8),	 and	
MAGMA),	only	LDSC-SEG	and	SNPsea	correctly	reported	no	significant	enrichments	passing	
FDR<5%	for	all	3	null	simulations	(scenarios	1-3).	In	particular,	DEPICT	with	a	threshold	of	
1e-5	reported	significant	enrichments	at	FDR<5%	for	all	three	null	simulations	(scenarios	
1-3),	while	DEPICT	with	a	threshold	of	5e-8	reported	significant	enrichments	at	FDR	<	5%	
for	 the	 sparse	 null	 simulation	 (scenario	 2).	 MAGMA	 correctly	 reported	 no	 significant	
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enrichment	 for	 the	 null	 simulations	 with	 no	 enrichment	 (scenarios	 1-2)	 but	 reported	 a	
large	 number	 of	 significant	 enrichments	 at	 FDR<5%	 for	 the	 null	 simulation	 with	
enrichment	in	exons	(scenario	3);	we	note	that	we	ran	MAGMA	without	taking	advantage	of	
the	 option	 to	 incorporate	 gene-level	 covariates	 which	 would	 likely	 ameliorate	 the	 false	
positives.		
	
All	five	methods	reported	significant	cortex	enrichments	at	FDR<5%	for	the	sparse	causal	
simulation	 (scenario	 5),	 but	 only	 MAGMA	 and	 LDSC-SEG	 reported	 significant	 cortex	
enrichments	for	the	polygenic	causal	simulation	(scenario	4).	These	simulations,	together	
with	 the	 analysis	 of	 real	 phenotypes	described	 above,	 indicate	 that	when	MAGMA	 is	 run	
without	covariates,	only	LDSC-SEG	and	SNPsea	control	type	I	error,	and	that	of	these	two	
methods,	LDSC-SEG	is	better	powered	for	polygenic	traits.	
	
Data	availability.	We	have	also	released	all	genome	annotations	derived	from	the	publicly	
available	 gene	 expression	 data	 that	 we	 analyzed	 at	 http://data.broadinstitute.org/	
alkesgroup/LDSCORE/.		
	
Code	 availability.	 Open	 source	 software	 implementing	 our	 approach	 is	 available	 at	
http://www.github.com/bulik/ldsc.	
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