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Abstract 

 

Balancing exploration and exploitation is a fundamental problem in reinforcement 

learning. Previous neuroimaging studies of the exploration-exploitation dilemma 

could not completely disentangle these two processes, making it difficult to 

unambiguously identify their neural signatures. We overcome this problem using a 

task in which subjects can either observe (pure exploration) or bet (pure 

exploitation). Insula and dorsal anterior cingulate cortex showed significantly greater 

activity on observe trials compared to bet trials, suggesting that these regions play a 

role in driving exploration. A model-based analysis of task performance suggested 

that subjects chose to observe until a critical evidence threshold was reached. We 

observed a neural signature of this evidence accumulation process in ventromedial 

prefrontal cortex. These findings support theories positing an important role for 

anterior cingulate cortex in exploration, while also providing a new perspective on 

the roles of insula and ventromedial prefrontal cortex. 
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Significance Statement 

 

Sitting down at a familiar restaurant, you may choose to order an old favorite or 

sample a new dish. In reinforcement learning theory, this is known as the 

exploration-exploitation dilemma. The optimal solution is known to be intractable; 

therefore, humans must use heuristic strategies. Behavioral studies have revealed 

several candidate strategies, but identifying the neural mechanisms underlying these 

strategies is complicated due to the fact that exploration and exploitation are not 

perfectly dissociable in standard tasks. Using an “observe or bet” task, we identify for 

the first time pure neural correlates of exploration and exploitation in the human 

brain. 
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Introduction 

 

Many decision problems pose a fundamental dilemma between exploration and 

exploitation: an agent can exploit the option that has yielded the greatest reward in 

the past, or explore other options that may yield greater reward, at the risk of 

foregoing some reward during exploration. The optimal solution to the 

exploration-exploitation dilemma is generally intractable, and hence 

resource-bounded agents must apply heuristic strategies (Cohen, McClure & Yu, 

2007). The specific strategy used by humans is an open question. 

 

Some evidence suggests that humans adopt exploration strategies that sample 

options with probability proportional to their estimated expected values (Daw et al., 

2006) or their posterior probability of having the maximum value (Speekenbrink & 

Constantinidis, 2015). Other studies suggest that humans employ an 

uncertainty-driven exploration strategy based on an explicit exploration bonus (Frank 

et al., 2009; Badre et al., 2012). Humans also sometimes employ more sophisticated 

exploration strategies using model-based reasoning (Knox et al., 2012; Otto et al., 

2014; Wilson et al., 2014; Gershman & Niv, 2015). 

 

Neural data can potentially constrain the theories of exploration by identifying 

dissociable correlates of different strategies. For example, Daw et al. (2006) 

identified a region of frontopolar cortex that was significantly more active for putative 

exploratory choices compared to putative exploitative choices during a multi-armed 

bandit task (see also Boorman et al., 2009). Suppression of activity in this region, 
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using transcranial direct current stimulation, reduces exploration, whereas amplifying 

activity increases exploration (Beharelle et al., 2015). These findings suggest that 

there may exist a dedicated neural mechanism for driving exploratory choice, 

analogous to regions in other species that have been found to inject stochasticity into 

songbird learning (Olveczky et al., 2005; Woolley et al., 2014) and rodent motor 

control (Santos et al., 2015). 

 

The main challenge in interpreting these studies is that exploratory and exploitative 

choices cannot be identified unambiguously in standard reinforcement learning tasks 

such as multi-armed bandits. When participants fail to choose the value-maximizing 

option, it is impossible to know whether this choice is due to exploration or to random 

error. The same ambiguity muddies the interpretation of individual differences in 

parameters governing exploration strategies (e.g., the temperature parameter in the 

softmax policy). Furthermore, exploitative choices yield information, while exploratory 

choices yield reward, obscuring the conceptual difference between these trial types. 

Finally, identifying deviations from value-maximization depend on inferences about 

subjective value estimates, which in turn depend on assumptions about the 

exploration strategy. Thus, there is no theory-neutral way to contrast neural activity 

underlying exploration and exploitation in most reinforcement learning tasks. 

 

We resolve this problem by using an “observe or bet” task that unambiguously 

separates exploratory and exploitative choice (Tversky & Edwards, 1966; Navarro, 

Newell & Schulze, 2016). On each trial, the subject chooses either to observe the 

reward outcome of each option (without receiving any of the gains or losses) or to 
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bet on one option, in which case she receives the gain or loss associated with the 

option at the end of the task. By comparing neural activity on observe and bet trials, 

we obtain pure correlates of exploration and exploitation, respectively. This also 

allows us to look at neural responses to the receipt of information without it being 

confounded with the receipt of reward. To gain further insight into the underlying 

mechanisms, we use the computational model recently developed by Navarro et al. 

(2016) to generate model-based regressors. In particular, we identify regions 

tracking the subject’s change in belief about the hidden state of the world, which in 

turn governs the subject’s exploration strategy. 

 

Materials and Methods 

 

Subjects 

  

We recruited 18 members of the Harvard community through the Harvard 

Psychology Study Pool to participate in the study. 11 of the 18 subjects were female. 

Ages ranged from 21 to 36, with a median age of 26. All subjects were right-handed, 

native English speakers, and had no history of neurological or psychiatric disease. 

  

Task procedure 

  

Subjects performed the task in two sessions. In the first session, subjects were 

familiarized with the task and performed five blocks outside of the fMRI scanner. In 

the second session, subjects performed two blocks of the task out of the scanner, 
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and an additional four to five in the scanner. Subjects were paid $10 for the first 

session and $35 for the second, in addition to a bonus in the form of an Amazon gift 

card based on task performance. 

  

Subjects performed a dynamic version of the “observe or bet” task (Tversky & 

Edwards, 1966; Navarro, Newell, & Schulze, 2016). In this task, subjects were asked 

to predict which of two lights (red or blue) will light up on a machine. On each trial, a 

single light is activated. The machine always has a bias – on a particular block, it 

either will tend to light up the blue or red light. On each trial, subjects could take one 

of three actions: bet blue, bet red, or observe. If the subjects bet blue or red, they 

gained a point if they correctly predicted which light would light up, but lost one if 

they were incorrect. Importantly, they were not told if they gained or lost a point, and 

they also did not see what light actually lit up. Instead, subjects could only see which 

light was activated by taking the observe action. Observing did not cost any points, 

but subjects relinquished their opportunity to place a bet on that trial. Thus, subjects 

were compelled to choose between gaining information about the current bias (by 

observing), or using the information they had gathered up to that point to obtain 

points (by betting). 

 

Each block consisted of 50 trials. On each block, the machine was randomly set to 

have a blue or a red bias. The biased color caused the corresponding light to active 

on 80% of the trials. There was also a 5% chance that the bias would change during 

the block. This change was not signaled to the subject in any way, and could only be 

detected through taking ‘observe’ actions. 
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Computational model 

 

To understand performance in our task mechanistically, we fit a computational model 

to the choice behavior, created to qualitatively match the features of the optimal 

decision strategy and shown to best fit subject behavior out of four candidate 

process models (Navarro et al., 2016). Central to the model is an evidence tally that 

starts with a value of zero. Positive evidence reflects evidence that the bias is blue, 

negative reflects evidence that the bias is red. Thus, low absolute numbers reflect a 

state of uncertainty about the bias. Each time an observation is made, the evidence 

value changes by +1 if blue is observed, and -1 if red is observed. 

 

The relevance of old observations diminishes over time, modeled using an evidence 

decay parameter, α. The evidence decay parameter dictates what proportion of 

evidentiary value is lost on each trial. Thus, the evidence tally value is calculated as 

follows: 

 

1 )eet = xt + ( − α t−1  

 

Where e is the evidence tally, t is the current trial, x​t ​is the observation on the current 

trial (zero if a bet action is taken), and α is the evidence decay parameter. 

 

The other main component of the model is a decision threshold. The threshold is a 

value at which the learner will switch from observing to betting. In the model used 
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here (the best-fitting model reported in Navarro, Newell, & Schulze, 2016), the 

decision threshold follows a piecewise linear structure across trials: it remains 

constant until a specific trial, at which point it changes at a constant rate until the 

final trial. The initial threshold, the trial at which the threshold begins changing (the 

changepoint), and the terminal value of the threshold are all parameters fit to the 

data. 

 

Finally, because decision-makers are noisy, we also include a response stochasticity 

parameter, σ. Assuming a normally distributed noise term for each trial, n​t​, with a 

zero mean and a standard deviation of σ, the probability of betting blue is then: 

 

(bet blue) P (e )p =  t + nt ≥ dt    

      ( )= Φ σ
e +dt t  

 

Where e ​t​, n​t​, and d ​t​ are the evidence tally, decision noise, and the decision boundary 

on trial t, respectively, and is the cumulative distribution function for a standardΦ  

normal distribution. 

 

Following Navarro et al., (2016), we used hierarchical Bayesian methods to estimate 

individual model parameters from the blocks performed outside the scanner. For the 

i-th subject, we set the priors on our model’s parameters as follows (these are the 

same priors used by Navarro et al., 2016). For the response stochasticity parameter: 

 xp(λ)σi ~ E  

 amma(1, )λ ~ G 1  
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For the evidence decay parameter: 

eta(a , )αi ~ B 1 + 1 a2 + 1  

amma(1, )aj ~ G 1  

  

For the initial value of the decision threshold, d​0i ​: 

amma(g , )d0i ~ G 01 g02  

xp(1)g0j ~ E  

 

For the terminal value of the decision threshold, d​1i ​: 

amma(g , )d1i ~ G 11 g12  

xp(1)g1j ~ E  

 

For the threshold changepoint, c​i ​: 

eta(b , )ci ~ B 1 + 1 b2 + 1  

amma(1, )bj ~ G 1  

 

We implemented the model in Stan (Stan Development Team, 2016) and used 

Markov chain Monte Carlo sampling to approximate the posterior distribution over 

parameters. 

 

fMRI Acquisition 
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Neuroimaging data were collected using a 3 Tesla Siemens Magnetom Prisma MRI 

scanner (Siemens Healthcare, Erlangen, Germany) with the vendor’s 32-channel 

head coil. Anatomical images were collected with a T1-weighted 

magnetization-prepared rapid gradient multi-echo sequence (MEMPRAGE, 176 

sagittal slices, TR = 2530ms, TEs = 1.64, 3.50, 5.36, and 7.22ms, flip angle = 7°, 

1mm3 voxels, FOV = 256mm). All blood-oxygen-level-dependent (BOLD) data were 

collected via a T2*-weighted echo-planar imaging (EPI) pulse sequence that 

employed multiband RF pulses and Simultaneous Multi-Slice (SMS) acquisition 

(Moeller et al., 2010; Feinberg et al., 2010; Xu et al., 2013).  For the six task runs, 

the EPI parameters were: 69 interleaved axial-oblique slices (25 degrees toward 

coronal from ACPC alignment), TR = 2000ms, TE = 35ms, flip angle = 80°, 2.2mm3 

voxels, FOV = 207mm, SMS = 3). The SMS-EPI acquisitions used the CMRR-MB 

pulse sequence from the University of Minnesota. 

 

fMRI preprocessing and analysis 

 

Data preprocessing and statistical analyses were performed using SPM12 

(Wellcome Department of Imaging Neuroscience, London, UK). Functional (EPI) 

image volumes were realigned to correct for small movements occurring between 

scans. This process generated an aligned set of images and a mean image per 

subject. Each participant’s T1-weighted structural MRI was then coregistered to the 

mean of the re-aligned images and segmented to separate out the gray matter, 

which was normalized to the gray matter in a template image based on the Montreal 

Neurological Institute (MNI) reference brain. Using the parameters from this 
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normalization process, the functional images were normalized to the MNI template 

(resampled voxel size 2 mm isotropic) and smoothed with an 8 mm full-width at 

half-maximum Gaussian kernel. A high-pass filter of 1/128 Hz was used to remove 

low-frequency noise, and an AR(1) (autoregressive 1) model was used to correct for 

temporal autocorrelations. 

 

We designed a general linear model model to analyze BOLD responses. This model 

included an event for the onset of the trial, with a parametric modulator for observe 

(1 if the subject observed, 0 otherwise), and another for bet. We also included an 

event for the onset of feedback (either the observation of which light turned on, or 

just a visual of the machine with the bet that was made). For the onset of feedback, 

we included another parametric modulator which was the change in the absolute 

value of the evidence tally resulting from the observed outcome. Thus, this value 

would be negative and due entirely to evidence decay on a bet trial, and could be 

positive or negative on an observation trial depending on whether the observation 

provided more evidence in favor of betting or observing. 

 

Regions of interest 

  

Regions of interest (ROIs) were constructed by combining structural ROIs with 

previously defined functional ROIs. Specifically, to define anatomically constrained 

value-based ROIs, we found the overlap between the structural ROIs from 

Tzourio-Mazoyer (2002) and the value-sensitive functional ROIs from Bartra, 

McGuire & Kable (2013). We also took the specific vmPFC and striatum ROIs from 
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Bartra, McGuire & Kable (2013). For frontopolar cortex, we constructed a spherical 

ROI with a radius of 10, centered at the peak of activation reported by Daw et al. 

(2006). Similarly, for rostrolateral prefrontal cortex, the spherical ROI was 

constructed using the coordinates given in Badre et al. (2012). 

  

Results 

 

Behavioral results 

 

Eighteen subjects performed a dynamic version of the “observe or bet” task (Figure 

1; see Materials and Methods for details). On each trial, subjects chose to either 

observe an outcome (without gaining or losing points) or bet on the outcome (without 

observing the outcome but redeeming points at the end of the experiment). The 

outcome probability had a small probability of changing during the course of each 

block of 50 trials. 
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Figure 1. A) Diagram of the ‘observe or bet’ task.​ Subjects first made a choice 

between betting blue, betting red, or observing. They then waited through a 

variable-length interstimulus interval (during which nothing was on the screen). 

Then for 1.5 seconds subjects were shown the outcome of their action – if they 

bet, they were simply told which color they bet, if they observed they were told 

which color lit up. This was followed by a variable length intertrial interval. ​B) End 

of block score screen. ​ At the end of each block of the task, subjects were shown 

what had happened on each trial. They saw one row of colored circles indicating 

what lit up on each trial, and a second row showing what their action had been on 

that trial (red or blue for betting, black for observing). They were also told their 

score for that block. For more details on the task, see Methods. 
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Normative behavior on this task predicts several distinctive behavioral patterns 

(Navarro et al., 2016). On the first trial that subjects bet following a series of observe 

actions, they should bet on the color seen last. The intuition is that observing a color 

should either make your belief about the outcome probability stronger or weaker, and 

subjects should always bet on the outcome with the higher probability. If the subject 

observed on the previous trial, they were not certain enough to place a bet based on 

their current belief. Observing a surprising outcome (i.e., the outcome that is less 

strongly predicted by the subject’s current belief) should push the belief towards the 

opposite decision threshold and therefore make the subject more likely to either 

observe or bet on the last-observed outcome. Indeed, subjects did strongly tend to 

bet on the last observed outcome on the first trial following an observe action, on 

average doing this 95.1% of the time (Figure 2A). 

 

Subjects should also gradually reduce the probability of observing over the course of 

a block. This is because they start with no information about the outcome probability 

and thus must start by accumulating some information, but this tendency to explore 

will eventually yield to betting (exploitation) when the evidence becomes sufficiently 

strong. Again, subjects follow this pattern, observing 85.3% of the time on the first 

trial in a block and betting 98.4% on the final trial (Figure 2B). 

 

Next, we implemented a previously developed computational model and fit it to 

subjects’ choice data (Navarro et al., 2016). This model consists of an ‘evidence 

tally’ that tracks how much evidence the learner currently has about the outcome 
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probability, and a decision threshold that captures when the subject switches 

between observe and bet behaviors (Figure 2C). We fit this model to each subjects’ 

behavior from the pre-scanning blocks, and used the fitted model to construct 

regressors for our fMRI analysis (see Methods). 

 

 

Figure 2. Behavior on the ‘observe or bet’ task.​ ​A) ​ Histogram showing the 

proportion of time each subject bet on the same color they observed on the 

previous trial. Vertical dashed line indicates random choice. ​B) ​ Proportion of trials 

subjects observed by trial number on each block (averaged across all subjects). 

Shaded region indicated the 95% confidence interval. ​C) ​ A visual representation of 

the model for one block. Circles indicate the action that was taken on that trial 

(black for bet, red for observed red, blue for observed blue). Grey line indicates the 

evidence tally on each trial. Black lines indicate the betting threshold. See 

Materials and Methods for model details. 

 

 

fMRI results 
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In a follow-up session, our 18 subjects returned and performed the “observe or bet” 

task in an fMRI scanner. Our model contained regressors for the appearance of 

stimuli, when a subject observed, when a subject bet, and the change in the absolute 

value of the evidence tally (see Materials and Methods). 

 

We first attempted to identify regions associated with the decision to explore vs 

exploit (i.e. observe vs bet). We chose to specifically investigate brain regions 

previously associated with value-based decision-making or exploration. Specifically, 

we examined the frontal pole and rostrolateral prefrontal cortex, which have both 

previously been implicated in balancing exploration and exploitation (Daw et al., 

2006; Boorman et al., 2009; Badre et al., 2011; Donoso et al., 2014). We also 

investigated the striatum, ventromedial prefrontal cortex (vmPFC), insula, and dorsal 

anterior cingulate cortex (dACC), all of which play a role in value-based 

decision-making (Bartra, McGuire, & Kable, 2013). We analyzed the signal in each of 

these ROIs, averaged across voxels (see Materials and Methods for details of ROI 

construction). 

 

In each of our pre-defined ROIs, we calculated an ‘observe - bet’ contrast, finding a 

significant positive effect (observe > bet) in insula and dACC (t=4.20, p<0.001 and 

t=2.80, p=0.006, respectively; Table 1; Figure 3a). The peaks of these effects were 

at 32, 22, -8 for the right insula, -30, 16, -8 for left insula, and 8, 16, 46 for dACC. 

The effects in all other ROIs did not pass the error-corrected threshold of p<0.00833 

(Bonferroni correction with 6 comparisons and α = 0.05). We then performed a 
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whole-brain analysis with cluster family-wise error correction. We found a bilateral 

effect in thalamus that passed the error-corrected threshold (Figure 3b; peak at 8, 

-14, 2). 

 

Brain Region t-value p-value 

Frontal Pole -0.81 0.214 

Rostrolateral prefrontal 

cortex 

1.41 0.088 

Striatum 1.50 0.075 

vmPFC -2.18 0.022 

Insula 4.20 <0.001 

Dorsal Anterior 

Cingulate 

2.80 0.006 

Table 1: Table of values for the ROI analyses for the ‘observe - bet’ contrast. 

Bonferroni correction with​ ​α = 0.05 is 0.00833. Significant effects (highlighted in bold) 

were found in insula and dorsal anterior cingulate. 
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Figure 3. Observe – bet contrast. ​A) Whole-brain analysis, with threshold set at 

p < 0.001, uncorrected. The ROI for insula is circled in green, the ROI for ACC is 

circled in magenta. B) Whole-brain analysis with cluster family-wise error shows an 

effect in thalamus, peak activity at 8, -14, 2. 

 

Next, we investigated whether the BOLD signal in any regions covaried with changes 

in the absolute value of the evidence tally (a variable we termed the ‘update’ 

regressor). In other words, we wanted to know which areas might be involved in 

using outcome information to update the decision policy. 

 

We again investigated the same six ROIs (Table 2), finding a significant negative 

relationship between the ‘update’ regressor and the BOLD signal in vmPFC (t = 
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-2.82, p = 0.006; peak of cluster at -4, 36, -16). No effects in any of our other ROIs 

passed Bonferroni correction. After examining these specific areas, we performed a 

whole-brain analysis (Figure 4). No additional areas reached significance when 

performing whole-brain correction. 

 

Brain Region t-value p-value 

Frontal Pole 2.15 0.023 

Rostrolateral prefrontal 

cortex 

2.32 0.017 

Striatum 0.82 0.212 

vmPFC -2.82 0.006 

Insula 2.10 0.025 

Dorsal Anterior Cingulate 1.43 0.085 

Table 2: Table of values for the ROI analyses for the ‘update’ contrast. 

Bonferroni correction with​ ​α = 0.05 is 0.00833, a threshold that only the effect in 

vmPFC (highlighted in bold) passes. 
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Figure 4. Update contrast. ​Green circle shows the ROI for vmPFC. Threshold set 

at p < 0.001, uncorrected. 

 

 

Discussion 

 

Using a reinforcement learning task that cleanly decouples exploration and 

exploitation, our study provides the first pure neural correlates of these processes. 

Insula and dorsal anterior cingulate cortex showed greater activation for ‘observe’ 

(exploration) trials compared to ‘bet’ (exploitation) trials. Ventromedial prefrontal 

cortex showed greater activation for ‘bet’ compared to ‘observe’ trials, although this 

result did not survive correction for multiple comparisons across the regions of 

interest that we examined. We also found behavioral evidence favoring a heuristic 

approximation of the Bayes-optimal exploration strategy (Navarro et al., 2016): the 

probability of exploration changed dynamically as evidence was accumulated. These 

dynamics were accompanied by a neural correlate in the ventromedial prefrontal 

cortex that negatively correlated with the size of the belief update, suggesting that 

this region may encode the degree to which outcomes match prior expectations. 
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The anterior cingulate cortex has figured prominently in past research on the 

exploration-exploitation dilemma, though its computational role is still unclear. 

Consistent with our findings, the anterior cingulate shows increased activity during 

exploration in multi-armed bandit (Daw et al., 2006; Quilodran et al., 2008; Amiez et 

al., 2012; Karlsson et al., 2012), foraging (Hayden et al., 2011; Kolling et al., 2012) 

and sequential problem-solving tasks (Procyk et al., 2000). Some evidence suggests 

that the anterior cingulate reports the value of alternative options (Hayden et al., 

2011; Kolling et al., 2012; Boorman et al., 2013; Blanchard & Hayden, 2014); when 

this value exceeds the value of the current option, the optimal policy is to explore. 

Shenhav et al. (2013) have argued that exploration is a control-demanding behavior, 

requiring an override of the currently dominant behavior in order to pursue long-term 

greater long-term rewards. In this framework, anterior cingulate reports the expected 

long-term value of invoking cognitive control. 

 

The insula has also been implicated in several studies of the exploration-exploitation 

dilemma. Li et al. (2006) found insula activation in response to changes in reward 

structure during a dynamic economic game. These changes were accompanied by 

rapid alterations in the behavioral strategy. In a study of adolescents, Kayser et al. 

(2016) found that resting-state connectivity between rostrolateral prefrontal cortex 

and insula distinguished “explorers” from “non-explorers” on a temporal decision 

making task. Finally, using positron emission tomography while subjects performed a 

bandit task, Ohira et al. (2013) reported that insula activity was correlated both with 

peripheral catecholamine concentration and response stochasticity. These results 
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are consistent with our finding that insula was positively associated with exploration, 

though they do not provide insight into the region’s specific contribution. 

 

Surprisingly, we did not find a statistically significant effects of exploration in either 

frontopolar cortex or rostrolateral prefrontal cortex. Several influential studies have 

identified these regions as playing an important role in regulating exploration and 

exploitation (Daw et al., 2006; Boorman et al., 2009; Badre et al., 2012; Beharelle et 

al., 2015). It is not clear why we did not find effects in these regions; it is possible 

that our ROI selection procedure failed to identify the relevant voxels, or that these 

regions are primarily involved on other kinds of tasks (e.g., standard bandit or 

temporal decision making tasks). One approach to this issue would be to define 

subject-specific functional ROIs using these other tasks and then interrogate regional 

responses using the observe or bet task. 

 

Our model-based analysis posits that an important computation governing 

exploration is the updating of the belief state. We found a ​negative ​ effect of updating 

in the ventromedial prefrontal cortex. One way to interpret this finding is that the 

ventromedial prefrontal cortex signals a match between outcomes and 

expectations---i.e., an inverse unsigned prediction error. An analogous match signal 

has been observed in a visual same/different judgment task (Summerfield & 

Koechlin, 2008). 

 

In the context of reinforcement learning and decision making tasks, the ventromedial 

prefrontal cortex has more commonly been associated with reward expectation 
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(Bartra et al., 2013), rather than outcome-expectation comparisons. Nonetheless, a 

number of studies have reported evidence accumulation correlates in this region or 

nearby regions (d’Acremont et al., 2013; Chan et al., 2016). More research is 

needed to pinpoint the relationship between these findings and exploration during 

reinforcement learning. 

 

The main contribution of our study is the isolation of neural correlates specific to 

exploration. The major open question is computational: what exactly do the insula 

and anterior cingulate contribute to exploration? As discussed in the preceding 

paragraphs, the literature is well-supplied with hypotheses, but our study was not 

designed to discriminate between them. Thus, an important task for future research 

will be to use tasks like “observe or bet” in combination with experimental 

manipulations (e.g., volatility or the distribution of rewards) that are diagnostic of 

underlying mechanisms. 
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