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Abstract  43 

Spatial heterogeneity in the environment induces variation in population demographic rates and 44 

dispersal patterns, which result in spatio-temporal variation in density and gene flow. Unfortunately, 45 

applying theory to learn about the role of spatial structure on populations has been hindered by the 46 

lack of mechanistic spatial models and inability to make precise observations of population structure. 47 

Spatial capture-recapture (SCR) represents an individual-based analytic framework for overcoming this 48 

fundamental obstacle that has limited the utility of ecological theory. SCR methods make explicit use of 49 

spatial encounter information on individuals in order to model density and other spatial aspects of 50 

animal population structure, and have been widely adopted in the last decade. We review the 51 

historical context and emerging developments in SCR models that enable the integration of explicit 52 

ecological hypotheses about landscape connectivity, movement, resource selection, and spatial 53 

variation in density, directly with individual encounter history data obtained by new technologies (e.g., 54 

camera trapping, non-invasive DNA sampling). We describe ways in which SCR methods stand to 55 

revolutionize the study of animal population ecology.  56 

 57 
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 78 

INTRODUCTION 79 

Understanding factors influencing natural variation in population size and structure, demographic 80 

rates, and movement has long been a central research focus for population ecologists. Despite well-81 

developed theories over the last half century demonstrating the importance of spatial structure in 82 

shaping spatio-temporal population dynamics (e.g., Huffaker 1958, Hanski 1999, Elner et al. 2001), the 83 

field of population ecology remains, by and large, unconcerned about within-population spatial 84 

processes and their effects on populations. Ecologists routinely study such processes as how 85 

individuals use space within their home range, how they perceive connectivity of the landscape, 86 

interact with other individuals of the same or other species and how survival or recruitment might be 87 

impacted by landscape heterogeneity. However, the population level implications of these processes 88 

are not widely studied. Instead the focus is at the individual level, often by studying only a few 89 

individuals, with no accounting for how those individuals are sampled from the population. Extending 90 

inferences from the individual to the population is not straightforward and in some cases not even 91 

possible without a formal statement of a population model linking the sample to the true state, and a 92 

description of the sampling process.    93 

Much of what drives the spatial ecological processes that give rise to spatio-temporal 94 

population dynamics is the structure and configuration of the landscape (Turner et al. 2001). In fact, 95 

linking landscape structure to ecological processes is the primary focus of landscape ecology. This focus 96 

on how spatial structure influences ecosystem composition, structure, and function (Turner et al. 2001) 97 

by definition, avoids any assumption about spatial homogeneity. When related to animal populations, 98 

the tendency in landscape ecology is to focus on movement processes, specifically landscape 99 

connectivity (Taylor et al. 1993) and resource selection functions (Chetkiewicz et al. 2009, McLoughlin 100 

et al. 2010) rather than demographic rates and population state variables that are of interest in 101 

population ecology. Population and landscape ecology offer alternative, yet equally important 102 

approaches for understanding spatio-temporal dynamics, yet a consistent theory or quantitative 103 

framework linking spatial landscape structure and population ecology does not yet exist.   104 

The ecological theory underpinning landscape and population ecology is well-developed 105 

(Tilman & Karieva 1997; Hanski & Ovaskainen 2000, Hanski 2001, Turner et al. 2001, Kot 2001, Williams 106 
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et al. 2002; Gets & Saltz 2008; Allen & Singh 2016), but testing theoretical models and predictions 107 

about spatial ecology in practice is both logistically and statistically challenging. One major impediment 108 

is the lack of general mechanistic spatial models that can be applied to empirical data; this precludes 109 

rigorous testing of theoretical predictions. Spatial point process models (Illian et al. 2008) provide a 110 

natural framework for characterizing the spatial structure of populations assumed to be static and that 111 

can be observed with a high degree of accuracy. However, point process models have not been widely 112 

adopted in practical field studies of population ecology where individuals cannot be enumerated easily.  113 

In practice, populations distributed widely in space must be studied by observing a sample of 114 

individuals, sometimes only a very small fraction, at only a few time points and at only a few locations. 115 

In some cases, individuals can be continuously monitored (e.g., by telemetry), but in general it is not 116 

possible to observe the status of animals perfectly – either their demographic status, their location, or 117 

even whether or not they are alive. This is one of the key considerations that has motivated the 118 

development and widespread adoption of capture-recapture methods which are now ubiquitous in 119 

ecology (Williams et al. 2002; Cooch & White 2006).    120 

For decades, capture-recapture methods have been the cornerstone of ecological statistics as 121 

applied to population biology (Nichols 1992, Williams et al. 2002).  At their core, capture-recapture 122 

models are the canonical class of models for “individual encounter history” data. These data are 123 

obtained by capturing or encountering individuals (e.g., using camera traps, acoustic sampling, non-124 

invasive genetic sampling, or direct physical capture), marking them, and observing them over time.  125 

Capture-recapture methods have had a profound influence on the study and understanding of 126 

demography in wild populations (Karanth et al. 2006, Pradel et al. 2010), in advancing ecological theory 127 

(Cooch et al. 2002), and informing modern conservation and wildlife management practices (Nichols 128 

and MacKenzie 2004).  While capture-recapture has become the standard sampling and analytical 129 

framework for the study of population processes (Williams, Nichols & Conroy 2002) it has advanced 130 

independent of and remained unconnected to the spatial structure of the population or the landscape 131 

within which populations exist. Furthermore, capture-recapture does not invoke any spatially explicit 132 

biological processes and thus is distinctly non-spatial, accounting neither for the inherent spatial 133 

nature of the sampling nor of the spatial distribution of individual encounters. This precludes the study 134 

of many important spatial processes and/or the emerging within-population spatial structure that is 135 
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arguably as important as demographic rates in population ecology. Recently developed spatial capture-136 

recapture (SCR) methods (Royle et al. 2014) couple a spatio-temporal point process with a spatially 137 

explicit observation model which resolves these important criticisms and offers a significant advance in 138 

our ability to quantify and study spatial processes using encounter history data. Spatial capture-139 

recapture represents an extension of classical capture-recapture and allows for both the spatial 140 

organization of sampling devices and the spatial information that is inherent in essentially all studies of 141 

animal populations, i.e., spatial encounter histories.  142 

Although a relatively recent advance in the field of statistical ecology (Efford 2004), the past 143 

decade has seen an explosive growth in SCR methodological development and applications (Box 1). 144 

Spatial capture-recapture provides a quantitative framework that links ecological processes at the 145 

individual and population levels. SCR promises the integration of models (hypotheses) of within-146 

population dynamics with "population level" parameters and dynamics.  Thus, SCR has proven to be 147 

more than simply an extension of a technique, but has emerged as a flexible framework that allows 148 

ecologists to test hypotheses about a wide range of ecological theories including landscape and 149 

network connectivity (Sutherland et al. 2015, Fuller et al. 2015), demography (Ergon & Gardner 2013, 150 

Whittington and Sawaya 2015, Munoz et al, 2016), resource selection (Royle et al. 2013b, Proffitt et al. 151 

2015), and movement and dispersal (Borchers et al. 2014, Lagrange et al. 2014, Schaub & Royle 2015, 152 

Royle et al. 2016).  While classical capture-recapture methods focus on population level quantities, SCR 153 

models allow for the “downscaling” of population structure from coarse summaries (spatial and/or 154 

demographic) into finer-scale components by the use of a spatially explicit individual-based point 155 

process model. By connecting population level attributes to individual level attributes that are spatially 156 

realistic, SCR unifies the fundamental concepts of population and landscape ecology, relating spatial 157 

encounters of individuals to explicit descriptions of spatial structure and of how space is sampled (Box 158 

2).    159 

In this review, we describe the basic elements of spatial capture-recapture and how SCR 160 

methods advance spatial population ecology by providing a unified framework that integrates 161 

important concepts and elements of population ecology and landscape ecology. As such, the 162 

framework allows for the study of density, movement, resource selection, landscape connectivity, and 163 

other spatial population processes using ordinary encounter history data.  Finally, we discuss new 164 
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directions in the study of animal populations that are made possible by the existence of spatially 165 

explicit capture-recapture methods.  166 

THE ELEMENTS OF SPATIAL CAPTURE-RECAPTURE 167 

Traditional capture-recapture (CR) models were largely motivated by a formal statistical sampling view 168 

of how individuals are encountered by sampling, with little or no direct consideration given to the 169 

fundamental spatial nature of the sampling. As a result, traditional CR models represent, in essence, 170 

“fish bowl" sampling – that is, a system that is devoid of any meaningful spatial context. This leads 171 

immediately to several important technical concerns that arise in the application of traditional CR to 172 

the study of animal populations which are necessarily spatially explicit. 173 

One important deficiency with classical closed population models is the inability to directly 174 

estimate animal density (D), arguably the state variable of interest in the vast majority of animal 175 

monitoring studies (Krebs 1985, Turchin 1998). This is because, in almost all practical field applications, 176 

it is not possible to precisely define the effective area sampled by a set of trapping devices due to 177 

movement of individuals into and out of the region within which sampling occurs (Dice 1938; Hayne 178 

1949; Wilson and Anderson 1985a,b). Secondly, the probability of encountering an individual is 179 

necessarily heterogeneous among those individuals exposed to sampling.  For example, individuals on 180 

the periphery of a trapping grid should have lower probability of capture than individuals with home 181 

ranges on the interior of the trapping grid (Figure 1).  This heterogeneity in encounter probability has 182 

long been known to induce negative bias in estimates of abundance ( ), and hence density (K. Ullas 183 

Karanth & Nichols, 1998; Otis, Burnham, White, & Anderson, 1978), and was one of the factors that 184 

motivated the development of SCR methods (Efford, 2004).  These (and other) technical limitations of 185 

the non-spatial CR framework arise directly as a result of a lack of spatial explicitness. On the other 186 

hand, SCR integrates models that describe the spatially explicit nature of sampling, how individuals are 187 

distributed, and how they use space.   188 

SCR models assume that a population of  individuals is sampled and that each individual has 189 

associated with it a spatial location which represents its activity centre which can be expressed by its 190 

 and  coordinates as . The collection of activity centres  can be thought of 191 

as the realization of a statistical point process (Illian et al. 2008), a class of probability models for 192 

N

N

X Y , ,[ , ]i i X i Ys ss
1, , Ns s
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characterizing the spatial pattern and distribution of points. This is perhaps the key innovation of 193 

spatial capture-recapture because it is this model that connects observations to much of the ecological 194 

theory that can be addressed by SCR. To formalize the point process model it is necessary to describe 195 

the probability distribution function of the point locations.  The simplest possible point process model 196 

is to assume that each of the  point locations are distributed uniformly in space (the “uniformity 197 

assumption”): 198 

 ~ Uniform( )i Ss  (1) 199 

where S is an explicit spatial region within which sampling of individuals occurs, and for which 200 

inferences about density will be made. Formally this is referred to as the state-space of the point 201 

process and is an essential component of a probabilistic characterization of potential activity centres, 202 

which are equivalent to individuals in the SCR framework.  One important distinction to be made 203 

between SCR and classical CR methods is that the state-space  is an explicit component of the SCR 204 

model.  The state-space induces an explicit model of heterogeneous detection probabilities which may 205 

affect inferences about density and, hence, population size. 206 

       The introduction of this statistical point process – that is, the association of a spatial coordinate 207 

with each individual in the population – leads naturally to two distinct conceptually important and 208 

powerful modifications of the classical capture-recapture framework which are at the core of the SCR 209 

method:  First, we can formulate a spatial model for the probability that an individual is captured in 210 

each sample location or trap 𝑥𝑗  for , conditional on its activity centre rather than simply 211 

whether an individual was captured at all in a sample occasion, as is the case in traditional CR. 212 

Acknowledging the spatial structure of the traps means observations can be spatially indexed (Box 2, 213 

top panel) so encounter histories describe who (i), when (k) and importantly where (j) individuals were 214 

encountered, i.e. .  Often, these observations are assumed to be Bernoulli outcomes: 215 

  (2) 216 

where  is the probability of encountering individual  in trap , and occasion . It is this model 217 

which links the observations (spatially indexed encounters) to the underlying latent point process 218 

describing biological pattern and process. At a minimum the encounter probability model depends on 219 

N

S

1,2, ,j J 

, ,i j ky

, , , ,~ Bernoulli( ),i j k i j ky p

, ,i j kp i j k
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the distance between the trap location ( ) and the individual’s activity centre ( ) such as the half-220 

normal encounter model (Box 2, middle panel): 221 

  (3) 222 

where  is the baseline encounter probability, the probability of encountering an individual at its' 223 

activity centre, the parameter  describes the rate at which detection probability declines as a 224 

function of distance, and  is the Euclidean distance between trap  and the activity centre of 225 

individual  (Box 2, middle panel).  In a spatial capture-recapture analysis, the parameters to be 226 

estimated are ,  and population size or density D. We note that the parameter  227 

accommodates individual heterogeneity in detectability but, unlike classical models of heterogeneity 228 

(Otis et al. 1978; Dorazio & Royle 2003) the parameter represents an explicit source of heterogeneity, 229 

due to the distance between individual activity or home range centres and traps.  230 

The uniformity assumption yields what is usually referred to as a homogenous point process 231 

model, although very general models of the point process are possible.  For example, when spatially 232 

referenced covariates, say , can be identified that result in spatially heterogeneous density 233 

surfaces (Box 2, lower panel), then a standard inhomogeneous point process model posits that 234 

 Pr( ) ( ( ))exp zs s , (4) 235 

where the parameter  corresponds to an explicit hypothesis: “does density depend on the covariate 236 

?”   237 

Integrating the point process model with the CR sampling framework leads naturally to a direct 238 

focus on inference about parameters of the underlying point process, instead of the abstract quantity 239 

N which is devoid of spatial context.  Under the SCR modelling framework, the goal is to estimate the 240 

number of individuals (or activity centres) within any region of the state-space S. For example, we may 241 

estimate density , the number of activity centres per unit area of ,  or produce predictions of the 242 

number of points in any formal subset of , or functions of the entire set of  points which might be 243 

used to test for spatial randomness, clustering mechanisms (Reich & Gardner, 2014) or other point 244 

process assumptions.  245 

jx
is

2 2(1/2 )d( , )

, , 0, , .j ix s

i j k j kp p e


 

0p



d( , )j ix s j

i

0p  N 

( )z s



z

D S

S N
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For purposes of statistical estimation and inference, the activity centres are regarded as latent 246 

variables (i.e., as in classical random effects or mixed models, Laird & Ware 1982). The point process 247 

model is then precisely equivalent to the random effects distribution or prior distribution. The resulting 248 

model is amenable to analyses by classical methods of statistical inference such as based on marginal 249 

likelihood (Borchers & Efford 2008), in which the latent variables are removed from the likelihood by 250 

integration, or Bayesian analysis by Markov chain Monte Carlo (MCMC; Royle & Young 2008), in which 251 

the activity centres are explicitly estimated along with other unknown parameters and random 252 

variables.  253 

SCR models are now routinely applied to many taxa, across a wide variety of systems using a 254 

range of sampling methodologies (Box 1). However, the utility of the model reaches far beyond simply 255 

estimating density and includes the investigation of important questions about population and 256 

landscape ecology which we describe next. Moreover, an enormous number of extensions to SCR 257 

models can be accommodated, both to the structure of the ecological processes and the types of 258 

observation method, including acoustic sampling (Dawson & Efford, 2009), sampling continuous space 259 

instead of using traps (Royle, Kéry, & Guélat, 2011; Royle & Young, 2008), sampling continuous time 260 

instead of having discrete sampling intervals (Borchers et al. 2014) and modeling population dynamics 261 

such as survival and recruitment using individual level or state-space formulations of classical Jolly-262 

Seber and Cormack-Jolly Seber models (Gimenez et al. 2007; Gardner et al. 2010).  We discuss some of 263 

these extensions below.  264 

 265 
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 266 

Figure 1. Left: Two home ranges of individuals (gray circles) juxtaposed with a spatial sampling grid 267 

(traps) illustrating the variable exposure to trapping based on home range location.   Right: the implied 268 

distribution of individual encounter probability for a population exposed to sampling by a regular grid 269 

(taken from Royle et al. 2014, ch. 5).  270 

 271 

SCR – A DECADE OF DEVELOPMENT AND APPLICATION 272 

As SCR methods were first appearing more than 10 years ago, the motivation for their development 273 

and use was exclusively as a technical device for resolving specific technical limitations of ordinary 274 

capture-recapture (Fig. 1).  More generally, SCR methods have proved to be a flexible framework for 275 

making ecological processes explicit in models of individual encounter history data, and for studying 276 

spatial processes such as individual movement, resource selection, space usage, landscape 277 

connectivity, population dynamics, spatial distribution, density and inter- and intra-specific 278 

interactions. Historically, researchers studied these questions independently, using ostensibly 279 

unrelated study designs and statistical procedures.   280 

 281 

SCR for resource selection 282 

SCR models provide a coherent framework for modeling both 2nd and 3rd order resource selection 283 

(Johnson 1980; Box 3). Second order resource selection is defined as the processes by which 284 
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individuals select the location of their home range within a particular landscape.  SCR models 285 

parameterize an explicit representation of this selection process in the specification of the latent point 286 

process model (individual activity centres ). While typical applications involve a relatively 287 

simple homogeneous point process model in which activity centers are distributed independently and 288 

uniformly over the state-space ,  the SCR framework accommodates inhomogeneous point process 289 

models in which the density of activity centers varies as a function of explicit covariates or flexible 290 

spatial response surface models (Borchers & Kidney 2014) that affect density.  Inhomogeneous point 291 

process models show great promise for testing explicit hypotheses about 2nd order selection, 292 

understanding mechanisms that influence species density distribution, and developing conservation 293 

and management strategies with explicit abundance- or density-based objectives (Kendall et al. 2015, 294 

Proffitt et al. 2015, Sun et al. 2015, Linden et al. 2016).  295 

Third order resource selection – that is, selection that occurs within an individual’s home range 296 

– can be modeled explicitly in SCR models by accommodating habitat structure in the vicinity of 297 

sampling (or trap locations) as a covariate that affects the probability of encounter (Royle et al. 2013b). 298 

Traditionally, resource selection was studied exclusively by telemetry, and more recently GPS, and 299 

because of the high cost are often based on a small sample of individuals observed many times. 300 

Conversely, SCR methods may produce a sample of many more individuals, and direct information 301 

about population level resource selection from spatial encounter data.  However, individuals in the 302 

population often do not need to be physically captured to obtain this information by SCR methods 303 

(e.g., by camera trapping).  Thus, SCR provides an alternative, efficient, and cost effective framework 304 

for studying the important population process of resource selection from individual encounter history 305 

data for species that classical telemetry may not be viable and that is based on a larger sample of the 306 

population.  307 

 308 

SCR for modeling movement and dispersal 309 

The direct linkage of the SCR encounter probability model to movement of an individual within its 310 

home range is one of the basic concepts of SCR (Royle & Young 2008; Borchers et al. 2014). However, 311 

one of the key assumptions of most SCR methods to date is that the latent point locations which 312 

represent the individual activity centers are static variables.  In a sense this is a manifestation of type of 313 

1, , Ns s

S
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population “closure”; individuals are allowed to move around in space, but their expected location is 314 

assumed not to change over the course of the study. Recent attention has been given to modifying the 315 

underlying state point process model to accommodate temporal dynamics such as dispersal or 316 

transience (Schaub & Royle 2014; Ergon & Gardner 2014). These models formally allow for the 317 

estimation of survival probability that is free of biasing effects of dispersal whereas, classically, only 318 

“apparent survival” has been estimated from standard capture recapture data (Schaub et al. 2004).   319 

Even in populations where mortality or recruitment are absent, including a dynamic spatial process to 320 

account for dispersal and transience is possible by coupling a latent movement model with a spatial 321 

model of the encounter process (Royle et al. 2016).  For example, to modify the point process model to 322 

allow for an individual’s activity center to shift from time 1t   to time t  we might accommodate this 323 

with a simple Markovian movement model where the difference between successive activity centers 324 

has variance 2 : 325 

 2

, , 1 , 1| ~ ( , )i t i t i tNormal  s s s I  326 

Thus, SCR has a characterization as a state-space (Patterson et al. 2008) or hidden Markov model 327 

(HMM; Langrock et al. 2012) with specific forms of observation model governed by spatial sampling 328 

and an underlying latent process model that describes movement of individuals on the landscape. As a 329 

result, SCR offers a general framework for the formal study of dispersal, transience, and other types of 330 

movement from individual encounter history data.  331 

 332 

Modeling landscape connectivity 333 

One of the core elements of SCR is the model for encounter probability which we described above as a 334 

function of Euclidean distance between activity centers and sample locations (Box 2). However, the 335 

Euclidean distance assumption implies a simplistic model of space usage – that individual home ranges 336 

are symmetric and stationary. In practice, we expect individual home ranges to be influenced by local 337 

landscape characteristics and structure. One approach for accommodating this landscape structure-338 

induced asymmetry in space use in SCR models is the relaxation of the Euclidean distance assumption.  339 

This is achieved using an alternative distance metric that is related to the landscape through 340 

which distance is being measured, thus allowing the degree of asymmetry to be estimated using a 341 
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model that relates the observed spatial pattern of observations explicitly to the measurable landscape 342 

characteristics. For example, Royle et al. (2013a) suggested using least-cost path distance with the 343 

exception that, rather than being defined a priori based on opinion as is customary (Zeller et al.  2012), 344 

the resistance parameters are estimated using standard likelihood methods based on spatial encounter 345 

histories (Box 4). This idea was extended by Sutherland et al. (2015) for highly structured dendritic 346 

networks, an extreme yet intuitive conceptual setting for investigating the utility of this asymmetric 347 

space use model. The major development is that the model of asymmetric space use can be used to 348 

jointly estimate density and resistance parameters which are typically defined a priori based on 349 

opinion (Zeller, McGarigal & Whitely 2012), yielding ecologically interesting and realistic individual 350 

home range geometries which can be scaled up to the landscape level based on direct estimates of the 351 

landscape structure-space use relationship (Box 4). What results is the important notion that ordinary 352 

encounter history data that is extensively collected in ecological studies with relative ease can now be 353 

used to formally characterize landscape connectivity within a framework of statistical inference. 354 

Sutherland et al. (2015) defined several intuitive measures of landscape connectivity based on such 355 

upscaling based on the SCR encounter probability model to the landscape scale. The asymmetric space 356 

use model described here and in Box 4 in general, can be extended to multiple landscape 357 

characteristics as would be done with any log-linear regression model, and requires only that the 358 

landscape covariates are defined at the pixel level. While current applications have focused on river 359 

networks (Fuller et al. 2016), the approach should be highly relevant for any species for which one or 360 

more landscape features act to impede or facilitate movement (Morin et al. in press) (e.g., extreme 361 

topographic variation, well-defined networks of roads and trails used by a species, Box 4). Moreover, 362 

SCR offers a formal model-based solution for investigating the strength of landscape interactions, 363 

avoiding the need to arbitrarily prescribe resistance values. The possibility exists to consider other non-364 

Euclidean distance metrics such as circuit distance (McRae et al. 2006) or flexible deformations of 365 

geographic space (Sampson & Guttorp 1992).  366 

 367 

FUTURE DIRECTIONS OF SPATIAL CAPTURE-RECAPTURE 368 

The relevance of SCR methods is expanding rapidly because these techniques allow ecologists to 369 

explicitly test hypotheses about the mechanisms that drive ecological phenomena as diverse as habitat 370 
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selection, persistence of rare species, community assembly, invasion, and genetic diversity. The 371 

developments described above represent significant contributions to applied population ecology 372 

despite their relative infancy, and we believe the potential for SCR in ecology has not yet been fully 373 

realized. We highlight specific and potentially fruitful development areas for SCR that have the 374 

potential to make further contributions with regard to wildlife population sampling, and/or developing 375 

and testing ecological hypotheses. 376 

 377 

Landscape management and corridor design 378 

It is possible to use SCR with individual encounter history data to inform landscape management 379 

decisions such as corridor and reserve design. Because SCR models provide spatially explicit within-380 

population information about density, they provide objective inferences about where the population is 381 

distributed in space and why.  Therefore, SCR can serve as an empirical framework for characterizing 382 

the utility of landscapes to populations. In particular, when combined with explicit models of 383 

connectivity (previous section), spatially explicit metrics which integrate information about both 384 

density and connectivity (Sutherland et al. 2015; Fuller et al. 2016; Morin et al. 2016) can be estimated, 385 

thus providing information about quality of the landscape for maintaining connectivity and also for 386 

maintaining source populations of important species.  387 

Corridors are increasingly used as conservation tools, designed to facilitate movement of 388 

individuals between habitat patches, or between two nodes or habitat blocks separated by some 389 

distance (e.g., two protected areas) with the ultimate goal of maintaining landscape connectivity. In 390 

the most general sense, corridor design involves defining a resistance value (i.e., resistance of the 391 

landscape to animal movement) of each pixel in the landscape as a function of pixel characteristics, 392 

and then subsequently selecting the lowest cost pixels, typically evaluated by estimating the 393 

cumulative cost of moving from one area to another. The resistance of a landscape is approximated by 394 

a ‘cost’ value, representing how difficult it is for an individual to move through a landscape. High 395 

quality habits are more permeable to movement and infer lower ecological costs (i.e., they provide 396 

increased survival and reproduction) relative to lower quality habitat. Resistance values are most often 397 

based on subjective expert opinion or data from previously published studies (Zeller et al. 2012). These 398 

user defined resistance models have been tested based on limited inference from few radiomarked 399 
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individuals (Driezen et al. 2007). However, examples exist of deriving resistance values from 400 

occurrence probability from occupancy models (Walpole et al. 2012) or using a variety of different 401 

threshold values based on the most traversable habitat from radio-marked individuals (Poor et al. 402 

2012). Of importance is that these applications fail to utilize the information from animal movements 403 

to directly estimate landscape resistance values.  404 

We are aware of only one application of using capture-recapture data for formal inference 405 

about landscape resistance for a species (Fuller et al. 2016), which was based on the Ecological 406 

distance SCR model (Royle et al. 2013a, Sutherland et al. 2015). Further, corridor conservation has 407 

been devoid of explicit consideration of local population density.  SCR models allow for the 408 

simultaneous estimation of the two processes that are most critical to the conservation of spatially-409 

structured populations, density and connectivity. Morin et al. (in press) derived a model-based 410 

estimator of landscape connectivity (i.e., density-weighted connectivity) that estimates both the spatial 411 

distribution and connectivity of individuals across a landscape. Spatial optimization approaches that 412 

maximize density-weighted connectivity would identify areas on the landscape that support the 413 

highest number of individuals and best landscape connectivity and would therefore have the greatest 414 

potential for application in corridor conservation and landscape management. 415 

 416 

Modeling spatial interactions 417 

The latent point process describing the spatial distribution of individuals is a central component of SCR 418 

methods. Parameterization of this point process allows encounter history data to be used to develop 419 

models that explicitly address theories related to competition, including territoriality (Reich & Gardner 420 

2014) and maintenance of coexisting species and species diversity.  Extending the point process model 421 

to account for dependencies among multiple species simultaneously occupying a landscape may 422 

provide an analytic framework for the empirical study of inter and intra-specific competition and 423 

landscape level spatial structure in species assemblages.  This should have enormous relevance in 424 

understanding host-pathogen and disease in natural systems where transmission depends on local 425 

interactions of individuals and local density. Where individuals live and who they interact with are 426 

fundamental elements contributing to the dynamics of disease and pathogen systems. 427 

Acoustic sampling 428 
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Acoustic sampling is emerging as a promising technology for sampling vocal species such as birds, 429 

anurans, marine mammals, and primates, and the application of these methods is increasing rapidly 430 

(Marques et al. 2009; Blumstein et al. 2011).  Information on signal strength and/or direction gives 431 

imperfect information about the source of the vocalization although statistically pinpointing the source 432 

has been recognized as being analogous to inference about the activity center in SCR methods, and 433 

therefore SCR has been adapted to accommodate data obtained by acoustic sampling methods 434 

(Dawson & Efford 2009; Efford et al. 2009; Borchers et al. 2015; Stevenson et al. 2015; Kidney et al. 435 

2016).   It seems probable that these technologies will become the de facto sampling method in bird 436 

population studies due to the increasing affordability of the technology.      437 

 438 

Uncertain identity 439 

Given the widespread adoption of non-invasive sampling technologies, which may only yield partial 440 

information on the identity of individual samples, it will become important to accommodate 441 

uncertainty in individual identity in to studies of animal populations that use individual encounter 442 

histories. There has been considerable attention paid to the problem of uncertain identity in capture-443 

recapture (Link et al. (2010), Bonner & Holmberg (2013), McClintock et al. (2013)). However, such 444 

methods have developed in the context of classical capture-recapture methods which ignore the 445 

spatial information inherent in most animal population sampling studies. On the other hand, for most 446 

populations we should expect that the spatial location of samples should be informative about the 447 

uncertain identity of those samples (Chandler & Royle 2013, Chandler & Clark 2014, Royle 2015, 448 

Augustine et al. 2016).   That is, all other things being equal, spatial samples that are in close spatial 449 

proximity to one another should more likely be of the same individual than samples that are far apart.  450 

Thus, dealing effectively with an uncertain identity of an individual is fundamentally a spatial problem 451 

for which SCR offers a solution.  452 

Methods of accommodating uncertain identity and partially marked populations are promising 453 

avenues for the formal integration of citizen science data collection with population ecology studies 454 

based on capture-recapture. SCR facilitates the use of citizen science in studies of population ecology 455 

because citizen science schemes naturally produce abundant information about individual location, 456 

potentially useful in spatial mark-resight and similar SCR models.   Thus, involving citizens in data 457 
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collection will produce large quantities of confirmations of species and their locations, but potentially 458 

no individual identity of the observations.  459 

CONCLUSIONS   460 

Two technological advances have influenced the present and future of animal population ecology in a 461 

way that we believe is more profound than any advance in quantitative ecology since the invention of 462 

computers.  First is the development of new technologies for obtaining spatial encounter information 463 

on individuals (Box 1). These technologies have revolutionized applied population ecology.  464 

Simultaneous to the development of these new field techniques has been the increasing spatialization 465 

of ecological process models seen in the advancing fields of landscape ecology and metapopulation 466 

ecology, along with the increasing utilization of statistical point process models throughout population 467 

ecology. SCR lies at the convergence of these two technological advances, combining a spatially explicit 468 

observation model that describes data collected using new technologies such as noninvasive genetics 469 

or camera trapping, with spatially explicit models describing how individuals are distributed across a 470 

landscape.  471 

Estimating abundance or population size is one of the most important problems in applied 472 

ecology permitting the evaluation of sophisticated questions in population dynamics (Krebs 1984, 473 

Williams et al. 2002, Sutherland et al. 2013) and providing necessary information for the conservation 474 

and management of important species (Karanth & Nichols, 2002). SCR has become the standard 475 

method for obtaining such information for many species, and is now routinely used to estimate 476 

abundance of populations of conservation concern including species such as tigers (Royle et al. 2009), 477 

grizzly bears (Efford & Mowat 2014; Kendall et al. 2015), wolverines (Magoun et al. 2011, see Box 1) 478 

and jaguars (Sollmann et al. 2011). These and many other species are extremely difficult to capture and 479 

so non-invasive sampling combined with SCR methods are perfectly suited to study these species. 480 

Moreover, many populations exist in such low densities that obtaining sufficient sample sizes of 481 

individuals can be challenging, and thus making the most efficient use of all data, and in particular, 482 

spatial recaptures which are discarded by ordinary capture-recapture, is critically important. 483 

While SCR methods were developed originally as a tool for inference about animal density from 484 

capture-recapture data (Efford, 2004)  motivated by the need to address specific technical limitations 485 

of ordinary capture recapture methods (Fig. 1), they have proven to be more than simply an extension 486 
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of technique. Spatial capture recapture has profoundly affected the manner in which capture-487 

recapture is used in studies of animal populations because they allow testing of explicit hypotheses of 488 

core elements of population and landscape ecology by formally integrating technical descriptions of 489 

these processes with encounter history data obtained by sampling animal populations. SCR models 490 

include an explicit model of density and thus relationships can be modeled between density and 491 

landscape features or other population attributes. For example, SCR models can be used to test 492 

hypotheses related to density dependence in animal populations, such as the relationship between 493 

density and home range size (Efford et al. 2015).  In addition, understanding movement of individuals 494 

over the landscape is a key objective throughout ecology, and SCR enables the formal integration of 495 

explicit movement, dispersal, and survival models with models of density and other population 496 

characteristics (Ergon & Gardner 2015; Schaub & Royle 2015).  Because SCR models are spatially 497 

explicit, we believe it is possible to consider explicit modeling of population dynamic rates as a function 498 

of local density.   Finally, landscape connectivity is a fundamental element of landscape ecology and 499 

explicit models of connectivity can be integrated directly with models of spatial encounter history data 500 

within the SCR framework to provide population-level estimates of connectivity parameters. 501 

Sutherland et al. (2015) and Fuller et al. (2016) develop SCR models in highly structured landscapes and 502 

demonstrate formal inference for an explicit model of landscape connectivity and resistance, 503 

estimated from individual encounter history data from a capture-recapture study of mink.   504 

SCR is not only revolutionizing how population and landscape ecology questions can be 505 

addressed but also in the way we observe populations.  For example, use of scat dogs to sample space 506 

using unstructured area searches is extremely practical for studying many species and this method has 507 

grown rapidly in recent years.  When data are obtained in this manner, it is imperative that the spatial 508 

structure of sampling be accounted for and SCR accommodates this by explicitly using GPS search lines 509 

in place of trap locations. Acoustic sampling (Dawson & Efford 2009) is a promising new technology for 510 

sampling birds and many other species. However, without a spatially explicit model that describes both 511 

the sampling and underlying process, it is not possible to connect observed acoustic encounter data to 512 

meaningful biological parameters such as population density.  Finally, SCR has potential as the 513 

framework for integrating individual encounter data with inexpensive, broad scale auxiliary data such 514 
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as from occupancy studies (Chandler & Clark 2014; Whittingham & Chandler in press) and potentially 515 

even citizen science programs.  516 

At the core of science is the notion of testing theories by confronting models with data.   At the 517 

level of the population this has been recognized as a promise of capture-recapture for several decades 518 

(Nichols 1992), but the use of capture-recapture has not been widely used to address questions related 519 

to within-population spatial structure and population dynamics.  However, SCR achieves this promise, 520 

by integrating a formal spatial model describing how individuals are distributed over a landscape, with 521 

a formal spatial model for how the population is sampled. SCR enables testing explicit spatial 522 

mechanisms and processes and improves understanding of spatial ecology from individual encounter 523 

history data. SCR incorporates elements of population structure and dynamics and explicit spatial and 524 

landscape structure to provide a quantitative framework that unifies population and landscape 525 

ecology. 526 

 527 
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Box 1 – New technologies for generating spatial encounter data 

The advent of new field-based methodologies for individual identification allows researchers to collect 

spatial encounter information on individual animals without the need for physically capturing and 

marking individuals. Additionally, many of the methods are amenable to citizen science approaches 

(Dickinson et al. 2010) whereby non-professional scientists are engaged in the collection of data (e.g., 

camera traps, hair snares), providing increased spatial extent of sampling. 

Camera Traps: With improvements in camera technology, there are many commercially available 

cameras (a) with superior digital technology that provide still photographs and videos to capture species 

that are elusive and otherwise difficult to capture. Individuals can be identified from photographs for 

species that possess distinctive natural marks (e.g., Andean bears (b), tigers (c), wolverines (d), bobcats, 

jaguars, snow leopards, and others). 

a  
b  c  d  

Non-Invasive Genetic Sampling (NGS): NGS allows for the identification of individuals without direct 

observations via the extraction of DNA from samples. Genetic data can be collected from scat, hair, 

feathers, shed skin, saliva, and urine. Two common methods of obtaining genetic samples are by using 

devices that snag hair (i.e., hair snares) (a) and scat detection dogs (b). These methods have been 

employed on marine and terrestrial mammals (e.g., right whales, black bear, fisher, American mink). 

a) Hair Sampling b) Scat sampling 

    

 

Bioacoustics: Spatially separated microphones or hydrophones can be 

used to detect species that produce sounds for biological purposes such 

as defending territories, social calling, and mate attracting. Recent 

advances in bioacoustics technologies and signal detection and 

recognition algorithms of spectrographs (left) permit the collection of 

sounds from species such as mammals, birds, and marine mammals.  
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a) b) 

a) 
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 834 

Box 2 – Core elements of spatial capture-recapture 

Spatial encounter history data: Classical capture-

recapture summarize spatial data and records only 

when each individual is encountered (a). In practice, 

data are reduced from a richer 3-d data structure - a 

record of when and where each individual was 

captured (b). Such spatial pattern data are informative 

about spatial population processes. 

 

 

Encounter probability model: SCR models 

describe encounter probability as a function 

of the distance between a sample location and 

s, the individual’s activity center (the half-

normal form is shown to the left). The spatial 

scale parameter accommodates individual 

heterogeneity in detection due to the 

juxtaposition of individuals with detectors. 

Spatially explicit point process model: Encounter 

histories are modelled conditional on a latent point 

process describing the spatial distribution of 

individuals. The null model of uniformity (a) is 

typically applied and robust to violations. More 

realistic models allow individuals to be distributed 

explicitly according to some covariate (b).   
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Box 3 – Modeling resource selection with SCR 

Resource selection is a multi-scale process (Johnson 1980), determining the range of a species (1st 

order selection), the distribution of individuals within their range (2nd order), and the use of habitat by 

an individual within its home range or territory (3rd order).  SCR methods allow for explicit modeling 

of both 2nd and 3rd order resource selection from encounter history data produced from standard 

capture-recapture methods such as camera trapping, scat and hair sampling for DNA and live trapping. 

2nd order resource selection is the process that governs the 

placement or location of individual activity centers. SCR models 

accommodate explicit models for the probability distribution of 

activity centers 𝑠𝑖 , referred to as inhomogeneous point process 

models, in which the intensity function depends on landscape or 

habitat structure: 

𝑙𝑜𝑔(𝐷(𝑠)) = 𝛽0   + ∑𝛽𝑘 𝑋𝑠𝑘 

 

At right, mapped tiger density (from Gopalaswamy et al. 2012).  

 

 

3rd order resource selection affects the SCR encounter 

probability model (Royle et al. 2013). For some spatially explicit 

covariate 𝑧(𝑥), the probability of encounter can be modeled as a 

function of both distance and measured covariate with parameter 

to be estimated: 

𝑝(𝑥|𝑠) ∝  exp( 𝛼 ∗ 𝑧(𝑥) −  𝑑𝑖𝑠𝑡(𝑥, 𝑠 )). 
This corresponds to the kernel of standard resource selection 

models, providing a framework for formal integration of capture-

recapture data with data from telemetry studies. At right, 

estimated encounter probability surface for a black bear 

population if a trap were placed at a pixel relative to the 

encounter probability at a pixel of average elevation (from 

Royle et al. 2013). 
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