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ABSTRACT	
  

Hi-C technologies are widely used to investigate the spatial organization of genomes. 

However, the structural variability of the genome is a great challenge to interpreting 

ensemble-averaged Hi-C data, particularly for long-range/interchromosomal interactions. 

We pioneered a probabilistic approach for generating a population of distinct diploid 3D 

genome structures consistent with all the chromatin-chromatin interaction probabilities 

from Hi-C experiments. Each structure in the population is a physical model of the 

genome in 3D. Analysis of these models yields new insights into the causes and the 

functional properties of the genome’s organization in space and time. We provide a user-

friendly software package, called PGS, that runs on local machines and high-

performance computing platforms. PGS takes a genome-wide Hi-C contact frequency 

matrix and produces an ensemble of 3D genome structures entirely consistent with the 

input. The software automatically generates an analysis report, and also provides tools 

to extract and analyze the 3D coordinates of specific domains. 
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INTRODUCTION	
  	
  

The question of how a genome is intricately packed inside the nucleus has sparked a 

burgeoning field of study. Advanced Hi-C techniques are generating rich datasets of the 

contact frequencies between chromosome regions, which are extremely valuable for 

investigating the spatial organization of the genome. Reconstructing the genome in 3D is 

an appealing approach to understanding the relationship between genome structure and 

function. However, the 3D organization of the genome varies greatly between cells. This 

variability poses a great challenge to interpreting ensemble Hi-C contact frequencies, 

which are averaged across an ensemble of cells. Long-range and interchromosomal 

interactions, which have low frequencies to begin with, are particularly difficult to 

integrate into consistent 3D models1-8. To address this challenge, we recently introduced 

the concept of population-based genome structure modeling. This probabilistic approach 

deconvolves the ensemble Hi-C data and generates an ensemble of distinct diploid 3D 

genome structures that is fully consistent with the input dataset of chromatin-chromatin 

interactions. Hence, our method explicitly models the variability of 3D genome structures 

across cells1,7. Moreover, because the generated population contains many different 

structural states, it can accommodate all observed chromatin interactions, including low-

frequency, long-range interactions that would be mutually exclusive in a single structure. 

Our method is sufficiently flexible to integrate additional experimental information and 

model the genome at various levels of resolution. 

In contrast with our approach, most other 3D genome modeling methods generate a 

single, consensus structure from the complete Hi-C dataset9-17. However, a single 3D 

model cannot simultaneously reproduce all the contacts present in the Hi-C experiment, 

which calls into question the assumption that a single-structure approach can fairly 

represent the complexity of genome structures. 

We have described the details of our population-based method elsewhere1,7,8,18.  Briefly, 

we employ a structure-based deconvolution of Hi-C data and optimize a population of 

distinct diploid 3D genome structures by maximizing the likelihood of observing the Hi-C 

data.  Because there is no closed form solution, we employ an iterative and step-wise 

restraint optimization procedure. Each iteration involves two steps: constraint 

assignment (termed the A-step) and optimizing the structure population with a 

combination of the simulated annealing and conjugate gradient methods (termed the M-

step). We increase the optimization hardness in a step-wise manner by gradually adding 
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more contact constraints during the iterative optimization process (Fig. 1). Importantly, 

by embedding an ensemble of genome structures in 3D space as part of the optimization 

process, the method can detect which chromatin contacts are likely to co-occur in 

individual cells. Hence, the population represents a deconvolution of the Hi-C data into 

individual structures and domain contacts; it is the best approximation to the underlying 

true population of genome structures in the Hi-C experiment, given the available data 

and assumptions. The chromatin domain contacts of the structure population, as a 

whole, are statistically highly consistent with the Hi-C data. Our approach incorporates 

the stochastic nature of chromosome conformations and allows a detailed analysis of 

alternative chromatin structural states. 

Our Population-based Genome Structure (PGS) modeling package takes two inputs: an 

experimental Hi-C contact frequency map, and a segmentation of the genome sequence 

into chromatin domains (for example, Topological Associated Domains, henceforth 

TADs) (Fig. 2). PGS generates a population of 3D genome structures where each 

domain is represented as a sphere, and the distribution of physical contacts between 

domain spheres across the population reproduces the Hi-C experiment. The software 

automatically generates an analysis of the structure population, including a description of 

the model quality based on its contact probability agreement with experiments and 

various structural genome features, including the radial nuclear positions of individual 

chromatin domains. The individual genome structures also contain a wealth of 

information and can be used to detect higher-order structural patterns of chromatin 

regions (as described in our previous [Ref.8]). 

Software design and implementation 

The PGS package generates a large number of genome structures, which constitute an 

optimized structure population consistent with the input data. The complexity of this 

computational problem originates also from the large scale of the input data (high-

resolution, genome-wide Hi-C contact frequencies), which must be processed to 

generate constraints on the structure population. To meet this computational challenge, 

PGS has been designed to run in a high-performance computing (HPC) environment, 

such as Sun grid engine (SGE) or Torque. We have also designed PGS to work on a 

single laptop or personal computer, but this application should only be used to generate 

a small population of structures (around 100 for testing purposes). PGS is implemented 

as a single Python software package for ease of installation and use. We wrapped the 
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source code in pyflow (https://github.com/Illumina/pyflow), a lightweight parallel task 

engine developed by Illumina, which runs the whole complex simulation process through 

a single command without any intermediate human intervention. Note that while the 

original pyflow library only supports local computers and SGEs, we make it possible for 

PGS to run in a HPC environment with PBS (Portable Batch System) script, which 

expands the capability of pyflow to pyflow-alabmod. In addition to PGS, users must 

install the independent modeling software IMP (version 2.4 or above), which can be 

downloaded from https://integrativemodeling.org/. Users should also install all the 

Python standard libraries (Python 2.7 or above, with numpy, matplotlib, pandas, h5py, 

seaborn, and scipy).  

To provide flexibility, we divided the whole workflow into three independent, consecutive 

stages (Fig. 2): 

1) Producing a domain-domain contact probability matrix from the input Hi-C data. 

2) Generating the optimized structure population. 

3) Summarizing the resulting population with basic analysis. 

For example, users who have already their own domain-domain contact probability 

matrix can skip component 1 via the graphical user interface (Fig. 3a). By default, PGS 

takes a raw (Hi-C) contact matrix as the input for component 1 (Fig. 3b). In any case, 

even if the user skips component 1, they must provide a text file containing the 

chromosome segmentations (i.e., the domain or TAD definitions; Fig. 3c). The required 

file formats are described in the Materials section. 

PGS comes with a GUI to help new users generate the input configuration file (a json 

file). For an experienced user, it is straightforward to directly modify the input 

configuration file. This file contains the location of the raw Hi-C matrix file, the location of 

the chromatin segmentation or TAD definition file, modeling parameters, and system 

parameters. The first component normalizes the raw Hi-C contact map using KR-

normalization19 and generates a TAD-level contact probability matrix. The second 

component generates an optimized population of a given number of genome structures 

through the iterative A-step and M-step cycles. The third component produces a report 

on the quality of the optimization, as well as basic structural analyses such as contact 

frequency heat maps and the average nuclear radial position of each TAD (Fig. 4). 
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MATERIALS	
  

Equipment 

A. Download (or “git clone”) PGS from https://www.github.com/alberlab/PGS. 

PGS flow is a Python package which runs on Linux and Mac OS X systems.  

Python can be downloaded from http://www.python.org.  

The dependencies are as follows:  

- Numpy (http://www.numpy.org/) 

- Scipy (http://www.scipy.org/) 

- Matplotlib (http://matplotlib.org/)  

- Pandas (http://pandas.pydata.org/) 

- H5py  (http://www.h5py.org/) 

- Seaborn (http://seaborn.pydata.org/) 

B. Download IMP (Integrative Modeling Package) version 2.4 or later from: 

https://integrativemodeling.org/. 

 

C. Prepare the experimental data. Depending on options chosen by the user during 

configuration, PGS can take different kinds of input files. 

Option 1 (raw + TAD definition). The user provides a raw contact frequency 

matrix (uniformly binned) and TAD index information. PGS generates a TAD-TAD 

contact probability matrix from the raw data and automatically proceeds to the 

modeling component. This option requires two input files: 

File 1: Genome-wide chromatin-chromatin interaction matrix, where each of 

the N rows describes one bin of the Hi-C data. This text file can be gzip or 

bzip compressed. It is formatted as follow (see Fig. 3b). 

• No header 

• Column 1: chromosome name (e.g. Chr1, Chr2, ..., ChrX) 

• Column 2: start genomic position of the Hi-C bin (0-based) 

• Column 3: end genomic position of the Hi-C bin (1-based) 

• Columns 4 to N+3: contact vector of the bin with all other bins (i.e. 

contact matrix) (integers) 
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File 2: Chromosome segmentation file, where each row defines one 

topological associated domain (Fig. 3c). This text file has the BED file format: 

• No header 

• Column 1: chromosome name (e.g. Chr1, Chr2, ..., ChrX) 

• Column 2: start genomic positions of TAD (0-based) 

• Column 3: end genomic positions of TAD (1-based) 

• Column 4: flag for the kind of TAD (“domain”, “gap”, “CEN”) 

Option 2 (TAD-TAD probabilities + TAD information). In this case, the user has 

already prepared a TAD-TAD contact probability matrix and must also provide 

the TAD definitions in a file. The two input files have the same formats as files 1 

and 2 in Option 1. The bins in the first file represent TADs and the matrix 

elements must be probability values between 0 and 1. 

Option 3 (hdf5 prob). The user provides a TAD-TAD contact probability matrix 

that was generated by PGS. This option is useful for producing independent 

structure populations from a different random initialization of the structures, or for 

testing different model parameters using the same input data. 

 

Equipment setup 

We recommend following the installation instructions from our online 

documentation (http://pgs.readthedocs.io/en/latest/quickstart.html). The easiest 

way to install PGS is to use a conda package manager. Both Anaconda 

(https://www.continuum.io/downloads) and the minimal package Miniconda 

(http://conda.pydata.org/miniconda.html) are suitable for managing all the 

required packages, including IMP. Once the PGS package has been downloaded 

along with all the dependencies mentioned above, set up the package using the 

following command. 

$ python setup.py install  

 

The script “setup.py” is located in the PGS directory. To confirm that PGS is installed 

properly, users can execute the following shell command.  

$ cd test 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint 

https://doi.org/10.1101/103358


$ sh runPgs_workflow_test.sh 

 

This process should take less than two minutes on any current computing workstation. 

PROCEDURES	
  

Step 1: Generate the configuration file and execution script. 

A user can either modify the prepared configuration file and execution script, or use the 

graphical user interface (GUI) called PGS-Helper (requires Java) to generate these files. 

A. Using PGS-Helper (if Java is installed).  

$ java –jar PGSHelper.jar  
The command will display a GUI (Fig. 3a) prompting the user to enter the 

needed information. Most of the fields are pre-populated, so the user can just 

review and modify them if necessary. There are only 4 blank fields that the user 

must complete (described in points i to iii below). In the following, we describe 

the fields displayed in the GUI. When all of the settings are correct, the user 

clicks the “Generate” button at the bottom of the GUI. They can then review the 

usage in the bottom box, and click “Confirm” to generate the configuration file 

(input_config.json) and executable file (runPGS.sh) 

i. Working Directory 

This is the directory where the output of the GUI (the executable script 
runPGS.sh and the configuration file  input_config.json), the 
log files (pyflow.data directory), and the results of the 3D genome 
modeling will be stored. 

ii. PGS Source Directory 

This is the PGS installation directory, which contains pgs.py. 

iii. Input  

• Select one of the three options to specify which types of input files 
are to be used (see Equipment for details), and specify the file 
locations. 

• Genome. The current version of PGS supports recent human and 
mouse genomes: hg19, hg38, mm9, and mm10. PGS 
automatically generates the diploid autosome and X chromosome 
representations.   
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• Resolution: the bin resolution (integer number of base pairs) of 
the raw Hi-C matrix. 

iv. Modeling Parameters 

• Num of structures: the number of structures in the population to 
optimize (default = 1,000). We recommend increasing this value to 
at least 10,000 for a final sampling). 

• Violation cutoff: the maximum proportion of violated constraints. 
A smaller value will generally result in better agreement with the 
input data (default = 0.05). 

• Theta list: a decreasing series of values in the range 1 ≤ theta < 0. 
Each theta is a contact probability threshold, determining which 
contacts are used in the optimization. PGS progresses through all 
the values in this list, gradually including more and more Hi-C 
contacts in the optimization (default = 1, 0.2, 0.1, 0.05, 0.02, 0.01).  

• Max iteration: the maximum number of A/M cycles for each value 
of theta (default = 10). 

• Nucleus Radius: the radius of the nucleus in nanometers. A 
typical human nucleus has a radius of 5000 nm (default = 5000). 

• Genome occupancy: the ratio between the genome-wide 
chromosomal volume and the total volume of the nucleus (default 
= 0.2).  

 

v. System Parameters 

• Default core: the default number of computing cores to use for 
each job. Light jobs, such as the modeling step (M-step), do not 
require more than one CPU (default = 1). 

• Default mem MB: the memory limit for each job in megabytes 
(default = 1,500). 

• Max core: the maximum number of computing cores to allocate 
for a heavy job, such as building the matrix or calculating pairwise 
distance distributions (default = 8). 

• Max mem MB: the memory allocation limit for a heavy job (default 
= 64,000 MB). 

vi. Command Setup 

• Run mode: the user’s computing platform. This can be local (e.g. 
a personal workstation), SGE (Sun Grid Engine), or Torque.  
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• Core limit: specify the maximum number of cores to allocate. 
(This setting is valid for all three run modes. In local mode, set this 
value to the cores of the computer.) 

• Mem limit: specify the limit of total memory usage in MB. 

• Optional argument list: additional unix-style command line 
arguments (user specific) for all job submissions. The GUI 
provides a template allowing the user to recognize and supply 
missing values (e.g. in [‘-q’,’[qname]’,’-
l’,’walltime=hh:mm:ss’] replace qname with the user’s 
HPC queue name, and hh:mm:ss with hours:minutes:seconds.). 

vii. Click the “Generate” button at the bottom. The user then can review 
the usage in the bottom box, and confirm to generate the 
configuration (input_config.json) and executable files 
(runPGS.sh). 

 

 

B. Check and modify the configuration and executable files directly.  

In case users do not have Java installed to run the PGS Helper program, the 

package also provides examples of the configuration and executable files. Users 

can open these text files under the pgs/test directory, and modify them as 

needed.  

i. input_config.json 

{"source_dir"	
  :	
  "[Directory	
  name	
  where	
  pgs	
  socurce	
  is]",	
  

“input"	
  :	
  {	
  

	
  	
  	
  "contact_map_file_hdf5"	
  :	
  "[Contact	
  map	
  file]",	
  

	
  	
  	
  	
  	
  	
  "TAD_file"	
  :	
  "[	
  TAD	
  file,	
  .bed	
  format]"	
  

	
  	
  	
  	
  	
  	
  “resolution”	
  :	
  “[Resolution	
  of	
  input	
  contact_map_file]	
  e,g.	
  100000”	
  

	
  	
  	
  	
  	
  	
  “genome”	
  :	
  “[Genome	
  version],	
  e.g.	
  hg19”	
  

	
  	
  	
  	
  },	
  

	
  	
  "output_dir"	
   :	
   "[Output	
   Directory	
   to	
   store	
   the	
   results],	
   e.g.	
  
$PROJECT_DIR/result",	
  

“modeling_parameters"	
  :	
  {	
  

	
  	
  	
  	
  "theta_list"	
   :	
   [Theta	
   list]	
   e.g,	
   ["1",	
   "0.2",	
  
"0.1","0.05","0.02","0.01"],	
  

	
  	
  	
  	
  	
  "num_of_structures"	
  :	
  [Number	
  of	
  structure	
  to	
  generate]	
  e.g.	
  10000,	
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  "max_iter_per_theta"	
  :	
  [Max	
  Iterations	
  per	
  job]	
  e.g.	
  10,	
  

	
  	
  	
  	
  	
  	
  	
  "violation_cutoff"	
  :	
  [Violation	
  Cutoff	
  ]	
  e.g.	
  0.005	
  

	
  	
  	
  	
  	
  	
  	
  "chr_occupancy"	
  :	
  [Chromosome	
  Occupancy	
  ]	
  e.g.	
  0.2	
  

	
  	
  	
  	
  	
  	
  	
  "nucleus_radius"	
  :	
  	
  [Nucleus	
  Radius	
  ]	
  e.g.	
  5000.0	
  

	
  	
  	
  	
  	
  },	
  

	
  	
  	
  	
  "system"	
  :	
  {	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  "max_core"	
  :	
  [Maximum	
  number	
  of	
  cores	
  in	
  a	
  single	
  node],	
  e.g.	
  8,	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  "max_memMB"	
  :	
  [Maximum	
  size	
  of	
  mem(MB)	
  in	
  a	
  single	
  node]	
  e.g.	
  64000,	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  "default_core"	
  :	
  [Default	
  number	
  of	
  cores],	
  e.g.	
  1,	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  "default_memMB"	
  :	
  [Default	
  size	
  of	
  mem(MB)]	
  e.g.	
  1500	
  

	
  	
  	
  	
  	
  }	
  

} 
 

ii. runPGS.sh 

python	
  $PGS_DIRECTORY/pgs.py	
  	
  

-­‐-­‐input_config	
  $PROJECT_DIR/input_config.json	
  	
  

-­‐-­‐run_mode	
  [running	
  platform]	
  	
  

-­‐-­‐nCores	
  300	
  	
  

-­‐-­‐memMb	
  800000	
  	
  

-­‐-­‐pyflow_dir	
  $PROJECT_DIR	
  

-­‐-­‐schedulerArgList	
  	
  ["-­‐q","[qname]","-­‐l","walltime=100:00:00"]	
  

 

Step 2: Run PGS.  

After the configuration file and execution script are generated by step 1, the user can 

execute PGS with the following command. 

$ sh runPgs.sh 

 

TROUBLESHOOTING	
  

Troubleshooting advice can be found in Table 1. 
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Table 1: Troubleshooting 

Step Problem Possible reason Solution 

1 
Java is installed, but the GUI of 

PGS Helper does not appear 

X11 for graphical 

display is not turned 

on 

Log in again to your 

HPC with the “ssh –

X” option 

2 

The terminal where PGS was 

executed closed, so the PGS 

process was stopped 

Accidentally closed, 

system shut-down, 

or broken node. 

Rerun PGS, using 

the same command 

as before 

3 

PGS stops with [ERROR] 

messages containing “… failed 

sub-workflow classname: 

‘BuildTADMapFlow’ …” and 

“IndexError: … is out of bounds …” 

The resolution is set 

incorrectly, or the 

input matrix format 

is wrong. 

Fix the resolution 

parameter in 
input-

config.json, and 

check the input file 

format. 

4 

PGS stops with [ERROR] 

messages containing “… failed 

sub-workflow classname: 

‘BuildTADMapFlow’ …”, “… using 

non-integer …”, and “originHist = 

…” 

The raw input matrix 

contains a non-

integer 

Check and fix the 

matrix 

5 
PGS stops while running the A/M-

cycles 

Computing cluster 

problems 

Try to request more 

than 10 GB memory 

for the main  PGS 

program 

 

 

TIMING	
  

The configuration of PGS should take only about 1 minute. 
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We have designed PGS to automatically and dynamically run a series of processes or 

steps. If there are failures on a running job, for example because a node is down, the 

network is busy, or there is a disk I/O failure, PGS tries to resubmit the failed job two 

more times before aborting.  

The total run time for PGS can vary widely depending on available computing resources, 

data size, and modeling complexity. The first task is to build the input matrix, which takes 

about 1 minute or less for input options 2 and 3. If the user selects input option 1, this 

task takes from several minutes to several hours depending on the size of the matrix. 

For instance, it takes about one minute to process a 2 Mb resolution Hi-C matrix, but 14 

hours to build the ~2300x2300 contact probability matrix from a 100 kb resolution Hi-C 

matrix (these times are on a single ~2.8 GHz CPU). The second task is to optimize the 

structure population by running A/M cycles (iterations of the A-step and M-step). This 

process starts immediately after the input matrix is generated, with PGS submitting 

many simultaneous jobs on a computing cluster. The typical time required to finish one 

M-step optimization for a single genome structure with ~2x2300 TAD domains is about 

45~90 minutes (at ~1 Mb resolution). If the user asked for a population of 2,000 

structures, and allocates 500 CPUs to the task, then PGS will run the first 500 jobs 

simultaneously. The remaining 1500 jobs are queued and sent one by one to CPUs on 

the cluster as they become available. PGS waits until the M-step is complete for all 

structures before it submits the A-step jobs. In this example, the A-step calculation takes 

about 5-30 minutes. Thus, a single A/M cycle for a population of 2000 structures at  ~1 

Mb resolution could take about 3 hours. The length of the theta list and number of 

iterations per theta value will also affect the timing, as multipliers of the A/M cycle time. 

The expected total time is about equal to the number of theta parameters plus 5 to 10 

(based on our experience) times the A/M cycle time. Since PGS decides on the fly 

(based on the violation cutoff parameter) whether to continue iterating the A/M cycle or 

move to the next theta level, we cannot provide a more accurate prediction of the timing. 

The run time also depends on the quality of the data set. Noisy or inconsistent data are 

likely to produce artifacts that are hard to optimize and hence require more A/M cycles. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint 

https://doi.org/10.1101/103358


ANTICIPATED	
  RESULTS	
  

The main output of PGS is a structure population. All results are stored under the 

result directory. In this version, PGS writes to four subdirectories: 

i. probMat: contains the input contact probability matrix (in hdf5 binary format) if 

option 1 or 2 is selected. 

ii. actDist: contains intermediate files generated by the A-step, which are used in 

the subsequent M-step. 

iii. structure: contains the genome structure information during optimization, 

saved in hdf5 binary files (with .hms file extension). One file corresponds to one 

structure, and contains a history of optimization snapshots for the different theta 

parameters. The smallest theta, with the last iteration step (alphabetically 

ordered, i.e. the last snapshot) is the final model. We refer to the whole set of 

final models as the structure population (Fig 4a). Users then read TAD 

coordinates from these structure files and perform further analysis that relates to 

their research. We have provided a library of tools on the PGS public repository 

to help users easily analyze the structure population (for further details, refer to 

the PGS documentation page at http://pgs.readthedocs.io/en/latest/tools.html). 

iv. report: contains some basic analysis: heat maps of contact probability 

matrices, radial positions of TADs, and the quality of optimization (Figs. 4b-e). 

PGS writes the average nuclear radial position for every TAD in the file 

radialPlot_summary.txt. Users can also find a summary of the violation 

portion that reflects the overall quality agreement between experiment data (input 

of PGS) and the structure population (output of PGS). 
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Figures	
  

 

Figure 1: Schematic of the PGS algorithm that deconvolves ensemble-averaged Hi-C data into a population 
of distinct diploid 3D genome structures. (a) The iterative scheme involves constraint assignments (A-step) 
and dynamic optimization of the structures (M-step).  The new structures are used as feedback for the next 
A-step. (b) Constraints are added to the model gradually by decreasing a contact probability threshold. 
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Figure 2: PGS software workflows: building the input matrix, modeling and optimizing structure population 
with A/M cycles, and basic analysis from the final structure population. 
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Figure 3: PGS setup. (a) GUI to help users generate configuration files. (b) An example showing the format 
of an acceptable contact frequency matrix file. (c) An example showing the format of an acceptable TAD file. 
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Figure 4: Examples of PGS outputs. (a) Structure population. (b) Histogram of violated constraints. The 
maximum number of violated restraints is defined in the “violation cutoff” configuration setting (see 
Procedures, Step 1). (c) Heat map of contact probabilities from the final structure population. The color 
scheme is from white (0) to red (1). (d) Density scatter plots comparing all pairwise domain contact 
probabilities from the structure population and the input Hi-C data. The Pearson’s correlation coefficient 
(PCC) of the comparison is indicated. Histograms of the contact probabilities are shown along the sides of 
the plot. (e) The average radial position of domains along a chromosome. PGS generates this plots for every 
chromosome. 
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Supplementary Information 

Technical details of PGS 

Bin Level Probability Matrix 

The released PGS package has been modified slightly from the version used 
originally in our previous work1. One modification is to improve the speed and 
model resolution. Migrating from older to a new version of IMP 
(https://integrativemodeling.org/) has increased the speed at least by two fold. 
Therefore, we are able to increase the resolution accordingly. In the example test 
data, we provide TAD-level modeling starting from a 100 kb resolution Hi-C 
matrix. One option of the software requires an input of a raw Hi-C contact 
frequency matrix. With this option, PGS needs to process the raw matrix such as 
removing outliers (described previously1) and performing normalization (with KR-
normalization2). We first convert the contact frequency to a contact probability 
between domain pairs. By definition chromatin regions within TADs show higher 
interaction frequencies than contacts between chromatin regions between TADs. 
There are cases in TAD-resolution contact frequency matrix that very loose 
interaction patterns between neighboring TADs can occur, which suggests a low 
chance for those consecutive genomic regions to form close contact in 3D space. 
In contrast to our previous approach1, consecutive TADs in our current model do 
not necessarily form contacts between them in 100% of structures in the 
population. Therefore we now adapt a different strategy for the parameter 𝑓!"#, 
(i.e. the contact frequency value at which two domains have a 100% probability 
to form a contact). It serves also as a simple normalization factor that transforms 
a contact frequency matrix into a contact probability matrix, which then can be 
used for input in our 3D modeling method. In our previous approach, the fmax 
parameter was unique for each bin and determined by the direct neighbor 
contacts. In the current method, fmax is a uniform scaling constant. A bin level 
contact probability matrix, denoted as 𝑷 = (𝑝!")!×!, can be calculated through 
the formula 𝑝!" = min  ( !!"

!!"# , 1)  describing the probability of contact between 
region i and j, where 𝑓!" and 𝑝!" represents their contact frequency and probability 
values, respectively.  

The choice of fmax will affect the scale of global contact frequencies, and it 
depends on the data set. Although we think that choosing the right fmax will result 
in consistent observed contact frequency observed between model and other 
non-Hi-C-based experiments, the relative contact frequencies between different 
TAD-TAD pairs will mostly not be affected by tuning the fmax. Our experience 
show that at saturation (where no more contact restraints can be satisfied), a 
TAD is surrounded by ~21-25 other TADs. The value of fmax is then chosen so 
that the average contact probability sum of a TAD is about 23. From our 
experience, such value of fmax will lead to low restraints violation in the structure 
optimization down to 𝑎!" ~ 1% and the number of contact restraints has reach 
saturation (non-tolerable violation score if more restraints are added).  
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TAD Level Probability Matrix 

As described in our previous work1,a contact between two domains is defined by 
the contact frequencies of the (bin level) chromatin segments between both 
domains. We define TAD level contact probability 𝑨 = (𝑎!")!×!, where 𝑎!" is the 
contact probability between TAD i and j, and 𝑁 is the total number of TADs.  

If we define mapping 𝑏(𝑖) is the set of all bins in matrix P that belong to TAD i, we 
can calculate matrix A by 

 
𝑎!" = 𝑚𝑒𝑎𝑛 𝑡𝑜𝑝10% 𝑝!"|𝛼 ∈ 𝑏 𝑖 ,𝛽 ∈ 𝑏(𝑗)  

Here discarded bins such as centromeres are excluded from the calculation. In 
addition, normalization will sometimes cause blowouts that some contacts are 
extremely higher than surrounding contacts. These contacts are identified as 
outliers by 𝑝     𝑝 > 𝜇 + 1.5𝐼𝑄𝑅  𝑜𝑟  𝑝 < 𝜇 + 1.5𝐼𝑄𝑅} , where 𝑝 ∈ 𝑝!"|𝛼 ∈ 𝑏 𝑖 ,𝛽 ∈
𝑏(𝑗)  and 𝜇 = 𝑚𝑒𝑎𝑛 𝑝!"|𝛼 ∈ 𝑏 𝑖 ,𝛽 ∈ 𝑏(𝑗) , IQR is the interquartile range of 
{𝑝!"}. Outliers will also be excluded from calculation. 

Technical detail about the dynamics process 

Modifications in the dynamic simulation technique of the M-step. PGS now uses 
genome structure coordinates from a previous iteration step as starting 
configurations to reduce the search space of local optima in the next M-step. To 
make the optimization more efficient, at initial optimization steps the nuclear 
volume is first expanded and then gradually shrunk to its normal value while 
performing simulated annealing dynamics (e.g. setting a nuclear radius (Rnuc) 
from 1.2 to 0.8 Rnuc with interval of 0.1 Rnuc). Our experience shows that this 
strategy helps to reach an optimum conformation more quickly.  

The lack of constraints at the very earliest A/M steps usually causes extended 
conformations of chromosomes. To handle this problem, we introduced a 
bounding spherical volume for every chromosome to mimic chromosome territory 
applied only at the very first stage of the A/M optimization. The radius of the 
bounding sphere is proportional to the chromosome length. This spherical 
territory constraint is only applied at the very early stage of A/M optimization and 
is not applied at later stages of the optimization. This strategy helps both 
homologues copies to have similar distribution of contact constraints during the 
optimization. 
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