
PGS: a dynamic and automated population-based
genome structure software

Nan Hua1#, Harianto Tjong1#, Hanjun Shin1#, Ke Gong1, Xianghong Jasmine
Zhou1, and Frank Alber1,*

1Molecular and Computational Biology, Department of Biological Sciences, University of Southern California,
1050 Childs Way, Los Angeles, CA 90089, USA

*Corresponding author
#Co-first author

ABSTRACT	

Hi-C technologies are widely used to investigate the spatial organization of genomes.

However, the structural variability of the genome is a great challenge to interpreting

ensemble-averaged Hi-C data, particularly for long-range/interchromosomal interactions.

We pioneered a probabilistic approach for generating a population of distinct diploid 3D

genome structures consistent with all the chromatin-chromatin interaction probabilities

from Hi-C experiments. Each structure in the population is a physical model of the

genome in 3D. Analysis of these models yields new insights into the causes and the

functional properties of the genome’s organization in space and time. We provide a user-

friendly software package, called PGS, that runs on local machines and high-

performance computing platforms. PGS takes a genome-wide Hi-C contact frequency

matrix and produces an ensemble of 3D genome structures entirely consistent with the

input. The software automatically generates an analysis report, and also provides tools

to extract and analyze the 3D coordinates of specific domains.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

INTRODUCTION	
 	

The question of how a genome is intricately packed inside the nucleus has sparked a

burgeoning field of study. Advanced Hi-C techniques are generating rich datasets of the

contact frequencies between chromosome regions, which are extremely valuable for

investigating the spatial organization of the genome. Reconstructing the genome in 3D is

an appealing approach to understanding the relationship between genome structure and

function. However, the 3D organization of the genome varies greatly between cells. This

variability poses a great challenge to interpreting ensemble Hi-C contact frequencies,

which are averaged across an ensemble of cells. Long-range and interchromosomal

interactions, which have low frequencies to begin with, are particularly difficult to

integrate into consistent 3D models1-8. To address this challenge, we recently introduced

the concept of population-based genome structure modeling. This probabilistic approach

deconvolves the ensemble Hi-C data and generates an ensemble of distinct diploid 3D

genome structures that is fully consistent with the input dataset of chromatin-chromatin

interactions. Hence, our method explicitly models the variability of 3D genome structures

across cells1,7. Moreover, because the generated population contains many different

structural states, it can accommodate all observed chromatin interactions, including low-

frequency, long-range interactions that would be mutually exclusive in a single structure.

Our method is sufficiently flexible to integrate additional experimental information and

model the genome at various levels of resolution.

In contrast with our approach, most other 3D genome modeling methods generate a

single, consensus structure from the complete Hi-C dataset9-17. However, a single 3D

model cannot simultaneously reproduce all the contacts present in the Hi-C experiment,

which calls into question the assumption that a single-structure approach can fairly

represent the complexity of genome structures.

We have described the details of our population-based method elsewhere1,7,8,18. Briefly,

we employ a structure-based deconvolution of Hi-C data and optimize a population of

distinct diploid 3D genome structures by maximizing the likelihood of observing the Hi-C

data. Because there is no closed form solution, we employ an iterative and step-wise

restraint optimization procedure. Each iteration involves two steps: constraint

assignment (termed the A-step) and optimizing the structure population with a

combination of the simulated annealing and conjugate gradient methods (termed the M-

step). We increase the optimization hardness in a step-wise manner by gradually adding

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

more contact constraints during the iterative optimization process (Fig. 1). Importantly,

by embedding an ensemble of genome structures in 3D space as part of the optimization

process, the method can detect which chromatin contacts are likely to co-occur in

individual cells. Hence, the population represents a deconvolution of the Hi-C data into

individual structures and domain contacts; it is the best approximation to the underlying

true population of genome structures in the Hi-C experiment, given the available data

and assumptions. The chromatin domain contacts of the structure population, as a

whole, are statistically highly consistent with the Hi-C data. Our approach incorporates

the stochastic nature of chromosome conformations and allows a detailed analysis of

alternative chromatin structural states.

Our Population-based Genome Structure (PGS) modeling package takes two inputs: an

experimental Hi-C contact frequency map, and a segmentation of the genome sequence

into chromatin domains (for example, Topological Associated Domains, henceforth

TADs) (Fig. 2). PGS generates a population of 3D genome structures where each

domain is represented as a sphere, and the distribution of physical contacts between

domain spheres across the population reproduces the Hi-C experiment. The software

automatically generates an analysis of the structure population, including a description of

the model quality based on its contact probability agreement with experiments and

various structural genome features, including the radial nuclear positions of individual

chromatin domains. The individual genome structures also contain a wealth of

information and can be used to detect higher-order structural patterns of chromatin

regions (as described in our previous [Ref.8]).

Software design and implementation

The PGS package generates a large number of genome structures, which constitute an

optimized structure population consistent with the input data. The complexity of this

computational problem originates also from the large scale of the input data (high-

resolution, genome-wide Hi-C contact frequencies), which must be processed to

generate constraints on the structure population. To meet this computational challenge,

PGS has been designed to run in a high-performance computing (HPC) environment,

such as Sun grid engine (SGE) or Torque. We have also designed PGS to work on a

single laptop or personal computer, but this application should only be used to generate

a small population of structures (around 100 for testing purposes). PGS is implemented

as a single Python software package for ease of installation and use. We wrapped the

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

source code in pyflow (https://github.com/Illumina/pyflow), a lightweight parallel task

engine developed by Illumina, which runs the whole complex simulation process through

a single command without any intermediate human intervention. Note that while the

original pyflow library only supports local computers and SGEs, we make it possible for

PGS to run in a HPC environment with PBS (Portable Batch System) script, which

expands the capability of pyflow to pyflow-alabmod. In addition to PGS, users must

install the independent modeling software IMP (version 2.4 or above), which can be

downloaded from https://integrativemodeling.org/. Users should also install all the

Python standard libraries (Python 2.7 or above, with numpy, matplotlib, pandas, h5py,

seaborn, and scipy).

To provide flexibility, we divided the whole workflow into three independent, consecutive

stages (Fig. 2):

1) Producing a domain-domain contact probability matrix from the input Hi-C data.

2) Generating the optimized structure population.

3) Summarizing the resulting population with basic analysis.

For example, users who have already their own domain-domain contact probability

matrix can skip component 1 via the graphical user interface (Fig. 3a). By default, PGS

takes a raw (Hi-C) contact matrix as the input for component 1 (Fig. 3b). In any case,

even if the user skips component 1, they must provide a text file containing the

chromosome segmentations (i.e., the domain or TAD definitions; Fig. 3c). The required

file formats are described in the Materials section.

PGS comes with a GUI to help new users generate the input configuration file (a json

file). For an experienced user, it is straightforward to directly modify the input

configuration file. This file contains the location of the raw Hi-C matrix file, the location of

the chromatin segmentation or TAD definition file, modeling parameters, and system

parameters. The first component normalizes the raw Hi-C contact map using KR-

normalization19 and generates a TAD-level contact probability matrix. The second

component generates an optimized population of a given number of genome structures

through the iterative A-step and M-step cycles. The third component produces a report

on the quality of the optimization, as well as basic structural analyses such as contact

frequency heat maps and the average nuclear radial position of each TAD (Fig. 4).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

MATERIALS	

Equipment

A. Download (or “git clone”) PGS from https://www.github.com/alberlab/PGS.

PGS flow is a Python package which runs on Linux and Mac OS X systems.

Python can be downloaded from http://www.python.org.

The dependencies are as follows:

- Numpy (http://www.numpy.org/)

- Scipy (http://www.scipy.org/)

- Matplotlib (http://matplotlib.org/)

- Pandas (http://pandas.pydata.org/)

- H5py (http://www.h5py.org/)

- Seaborn (http://seaborn.pydata.org/)

B. Download IMP (Integrative Modeling Package) version 2.4 or later from:

https://integrativemodeling.org/.

C. Prepare the experimental data. Depending on options chosen by the user during

configuration, PGS can take different kinds of input files.

Option 1 (raw + TAD definition). The user provides a raw contact frequency

matrix (uniformly binned) and TAD index information. PGS generates a TAD-TAD

contact probability matrix from the raw data and automatically proceeds to the

modeling component. This option requires two input files:

File 1: Genome-wide chromatin-chromatin interaction matrix, where each of

the N rows describes one bin of the Hi-C data. This text file can be gzip or

bzip compressed. It is formatted as follow (see Fig. 3b).

• No header

• Column 1: chromosome name (e.g. Chr1, Chr2, ..., ChrX)

• Column 2: start genomic position of the Hi-C bin (0-based)

• Column 3: end genomic position of the Hi-C bin (1-based)

• Columns 4 to N+3: contact vector of the bin with all other bins (i.e.

contact matrix) (integers)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

File 2: Chromosome segmentation file, where each row defines one

topological associated domain (Fig. 3c). This text file has the BED file format:

• No header

• Column 1: chromosome name (e.g. Chr1, Chr2, ..., ChrX)

• Column 2: start genomic positions of TAD (0-based)

• Column 3: end genomic positions of TAD (1-based)

• Column 4: flag for the kind of TAD (“domain”, “gap”, “CEN”)

Option 2 (TAD-TAD probabilities + TAD information). In this case, the user has

already prepared a TAD-TAD contact probability matrix and must also provide

the TAD definitions in a file. The two input files have the same formats as files 1

and 2 in Option 1. The bins in the first file represent TADs and the matrix

elements must be probability values between 0 and 1.

Option 3 (hdf5 prob). The user provides a TAD-TAD contact probability matrix

that was generated by PGS. This option is useful for producing independent

structure populations from a different random initialization of the structures, or for

testing different model parameters using the same input data.

Equipment setup

We recommend following the installation instructions from our online

documentation (http://pgs.readthedocs.io/en/latest/quickstart.html). The easiest

way to install PGS is to use a conda package manager. Both Anaconda

(https://www.continuum.io/downloads) and the minimal package Miniconda

(http://conda.pydata.org/miniconda.html) are suitable for managing all the

required packages, including IMP. Once the PGS package has been downloaded

along with all the dependencies mentioned above, set up the package using the

following command.

$ python setup.py install

The script “setup.py” is located in the PGS directory. To confirm that PGS is installed

properly, users can execute the following shell command.

$ cd test

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

$ sh runPgs_workflow_test.sh

This process should take less than two minutes on any current computing workstation.

PROCEDURES	

Step 1: Generate the configuration file and execution script.

A user can either modify the prepared configuration file and execution script, or use the

graphical user interface (GUI) called PGS-Helper (requires Java) to generate these files.

A. Using PGS-Helper (if Java is installed).

$ java –jar PGSHelper.jar
The command will display a GUI (Fig. 3a) prompting the user to enter the

needed information. Most of the fields are pre-populated, so the user can just

review and modify them if necessary. There are only 4 blank fields that the user

must complete (described in points i to iii below). In the following, we describe

the fields displayed in the GUI. When all of the settings are correct, the user

clicks the “Generate” button at the bottom of the GUI. They can then review the

usage in the bottom box, and click “Confirm” to generate the configuration file

(input_config.json) and executable file (runPGS.sh)

i. Working Directory

This is the directory where the output of the GUI (the executable script
runPGS.sh and the configuration file input_config.json), the
log files (pyflow.data directory), and the results of the 3D genome
modeling will be stored.

ii. PGS Source Directory

This is the PGS installation directory, which contains pgs.py.

iii. Input

• Select one of the three options to specify which types of input files
are to be used (see Equipment for details), and specify the file
locations.

• Genome. The current version of PGS supports recent human and
mouse genomes: hg19, hg38, mm9, and mm10. PGS
automatically generates the diploid autosome and X chromosome
representations.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

• Resolution: the bin resolution (integer number of base pairs) of
the raw Hi-C matrix.

iv. Modeling Parameters

• Num of structures: the number of structures in the population to
optimize (default = 1,000). We recommend increasing this value to
at least 10,000 for a final sampling).

• Violation cutoff: the maximum proportion of violated constraints.
A smaller value will generally result in better agreement with the
input data (default = 0.05).

• Theta list: a decreasing series of values in the range 1 ≤ theta < 0.
Each theta is a contact probability threshold, determining which
contacts are used in the optimization. PGS progresses through all
the values in this list, gradually including more and more Hi-C
contacts in the optimization (default = 1, 0.2, 0.1, 0.05, 0.02, 0.01).

• Max iteration: the maximum number of A/M cycles for each value
of theta (default = 10).

• Nucleus Radius: the radius of the nucleus in nanometers. A
typical human nucleus has a radius of 5000 nm (default = 5000).

• Genome occupancy: the ratio between the genome-wide
chromosomal volume and the total volume of the nucleus (default
= 0.2).

v. System Parameters

• Default core: the default number of computing cores to use for
each job. Light jobs, such as the modeling step (M-step), do not
require more than one CPU (default = 1).

• Default mem MB: the memory limit for each job in megabytes
(default = 1,500).

• Max core: the maximum number of computing cores to allocate
for a heavy job, such as building the matrix or calculating pairwise
distance distributions (default = 8).

• Max mem MB: the memory allocation limit for a heavy job (default
= 64,000 MB).

vi. Command Setup

• Run mode: the user’s computing platform. This can be local (e.g.
a personal workstation), SGE (Sun Grid Engine), or Torque.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

• Core limit: specify the maximum number of cores to allocate.
(This setting is valid for all three run modes. In local mode, set this
value to the cores of the computer.)

• Mem limit: specify the limit of total memory usage in MB.

• Optional argument list: additional unix-style command line
arguments (user specific) for all job submissions. The GUI
provides a template allowing the user to recognize and supply
missing values (e.g. in [‘-q’,’[qname]’,’-
l’,’walltime=hh:mm:ss’] replace qname with the user’s
HPC queue name, and hh:mm:ss with hours:minutes:seconds.).

vii. Click the “Generate” button at the bottom. The user then can review
the usage in the bottom box, and confirm to generate the
configuration (input_config.json) and executable files
(runPGS.sh).

B. Check and modify the configuration and executable files directly.

In case users do not have Java installed to run the PGS Helper program, the

package also provides examples of the configuration and executable files. Users

can open these text files under the pgs/test directory, and modify them as

needed.

i. input_config.json

{"source_dir"	
 :	
 "[Directory	
 name	
 where	
 pgs	
 socurce	
 is]",	

“input"	
 :	
 {	

	
 	
 	
 "contact_map_file_hdf5"	
 :	
 "[Contact	
 map	
 file]",	

	
 	
 	
 	
 	
 	
 "TAD_file"	
 :	
 "[
 TAD	
 file,	
 .bed	
 format]"	

	
 	
 	
 	
 	
 	
 “resolution”	
 :	
 “[Resolution	
 of	
 input	
 contact_map_file]	
 e,g.	
 100000”	

	
 	
 	
 	
 	
 	
 “genome”	
 :	
 “[Genome	
 version],	
 e.g.	
 hg19”	

	
 	
 	
 	
 },	

	
 	
 "output_dir"	
 :	
 "[Output	
 Directory	
 to	
 store	
 the	
 results],	
 e.g.	

$PROJECT_DIR/result",	

“modeling_parameters"	
 :	
 {	

	
 	
 	
 	
 "theta_list"	
 :	
 [Theta	
 list]	
 e.g,	
 ["1",	
 "0.2",	

"0.1","0.05","0.02","0.01"],	

	
 	
 	
 	
 	
 "num_of_structures"	
 :	
 [Number	
 of	
 structure	
 to	
 generate]	
 e.g.	
 10000,	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

	
 	
 	
 	
 	
 	
 	
 "max_iter_per_theta"	
 :	
 [Max	
 Iterations	
 per	
 job]	
 e.g.	
 10,	

	
 	
 	
 	
 	
 	
 	
 "violation_cutoff"	
 :	
 [Violation	
 Cutoff	
]	
 e.g.	
 0.005	

	
 	
 	
 	
 	
 	
 	
 "chr_occupancy"	
 :	
 [Chromosome	
 Occupancy	
]	
 e.g.	
 0.2	

	
 	
 	
 	
 	
 	
 	
 "nucleus_radius"	
 :	
 	
 [Nucleus	
 Radius	
]	
 e.g.	
 5000.0	

	
 	
 	
 	
 	
 },	

	
 	
 	
 	
 "system"	
 :	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 "max_core"	
 :	
 [Maximum	
 number	
 of	
 cores	
 in	
 a	
 single	
 node],	
 e.g.	
 8,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 "max_memMB"	
 :	
 [Maximum	
 size	
 of	
 mem(MB)	
 in	
 a	
 single	
 node]	
 e.g.	
 64000,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 "default_core"	
 :	
 [Default	
 number	
 of	
 cores],	
 e.g.	
 1,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 "default_memMB"	
 :	
 [Default	
 size	
 of	
 mem(MB)]	
 e.g.	
 1500	

	
 	
 	
 	
 	
 }	

}

ii. runPGS.sh

python	
 $PGS_DIRECTORY/pgs.py	
 	

-­‐-­‐input_config	
 $PROJECT_DIR/input_config.json	
 	

-­‐-­‐run_mode	
 [running	
 platform]	
 	

-­‐-­‐nCores	
 300	
 	

-­‐-­‐memMb	
 800000	
 	

-­‐-­‐pyflow_dir	
 $PROJECT_DIR	

-­‐-­‐schedulerArgList	
 	
 ["-­‐q","[qname]","-­‐l","walltime=100:00:00"]	

Step 2: Run PGS.

After the configuration file and execution script are generated by step 1, the user can

execute PGS with the following command.

$ sh runPgs.sh

TROUBLESHOOTING	

Troubleshooting advice can be found in Table 1.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

Table 1: Troubleshooting

Step Problem Possible reason Solution

1
Java is installed, but the GUI of

PGS Helper does not appear

X11 for graphical

display is not turned

on

Log in again to your

HPC with the “ssh –

X” option

2

The terminal where PGS was

executed closed, so the PGS

process was stopped

Accidentally closed,

system shut-down,

or broken node.

Rerun PGS, using

the same command

as before

3

PGS stops with [ERROR]

messages containing “… failed

sub-workflow classname:

‘BuildTADMapFlow’ …” and

“IndexError: … is out of bounds …”

The resolution is set

incorrectly, or the

input matrix format

is wrong.

Fix the resolution

parameter in
input-

config.json, and

check the input file

format.

4

PGS stops with [ERROR]

messages containing “… failed

sub-workflow classname:

‘BuildTADMapFlow’ …”, “… using

non-integer …”, and “originHist =

…”

The raw input matrix

contains a non-

integer

Check and fix the

matrix

5
PGS stops while running the A/M-

cycles

Computing cluster

problems

Try to request more

than 10 GB memory

for the main PGS

program

TIMING	

The configuration of PGS should take only about 1 minute.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

We have designed PGS to automatically and dynamically run a series of processes or

steps. If there are failures on a running job, for example because a node is down, the

network is busy, or there is a disk I/O failure, PGS tries to resubmit the failed job two

more times before aborting.

The total run time for PGS can vary widely depending on available computing resources,

data size, and modeling complexity. The first task is to build the input matrix, which takes

about 1 minute or less for input options 2 and 3. If the user selects input option 1, this

task takes from several minutes to several hours depending on the size of the matrix.

For instance, it takes about one minute to process a 2 Mb resolution Hi-C matrix, but 14

hours to build the ~2300x2300 contact probability matrix from a 100 kb resolution Hi-C

matrix (these times are on a single ~2.8 GHz CPU). The second task is to optimize the

structure population by running A/M cycles (iterations of the A-step and M-step). This

process starts immediately after the input matrix is generated, with PGS submitting

many simultaneous jobs on a computing cluster. The typical time required to finish one

M-step optimization for a single genome structure with ~2x2300 TAD domains is about

45~90 minutes (at ~1 Mb resolution). If the user asked for a population of 2,000

structures, and allocates 500 CPUs to the task, then PGS will run the first 500 jobs

simultaneously. The remaining 1500 jobs are queued and sent one by one to CPUs on

the cluster as they become available. PGS waits until the M-step is complete for all

structures before it submits the A-step jobs. In this example, the A-step calculation takes

about 5-30 minutes. Thus, a single A/M cycle for a population of 2000 structures at ~1

Mb resolution could take about 3 hours. The length of the theta list and number of

iterations per theta value will also affect the timing, as multipliers of the A/M cycle time.

The expected total time is about equal to the number of theta parameters plus 5 to 10

(based on our experience) times the A/M cycle time. Since PGS decides on the fly

(based on the violation cutoff parameter) whether to continue iterating the A/M cycle or

move to the next theta level, we cannot provide a more accurate prediction of the timing.

The run time also depends on the quality of the data set. Noisy or inconsistent data are

likely to produce artifacts that are hard to optimize and hence require more A/M cycles.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

ANTICIPATED	
 RESULTS	

The main output of PGS is a structure population. All results are stored under the

result directory. In this version, PGS writes to four subdirectories:

i. probMat: contains the input contact probability matrix (in hdf5 binary format) if

option 1 or 2 is selected.

ii. actDist: contains intermediate files generated by the A-step, which are used in

the subsequent M-step.

iii. structure: contains the genome structure information during optimization,

saved in hdf5 binary files (with .hms file extension). One file corresponds to one

structure, and contains a history of optimization snapshots for the different theta

parameters. The smallest theta, with the last iteration step (alphabetically

ordered, i.e. the last snapshot) is the final model. We refer to the whole set of

final models as the structure population (Fig 4a). Users then read TAD

coordinates from these structure files and perform further analysis that relates to

their research. We have provided a library of tools on the PGS public repository

to help users easily analyze the structure population (for further details, refer to

the PGS documentation page at http://pgs.readthedocs.io/en/latest/tools.html).

iv. report: contains some basic analysis: heat maps of contact probability

matrices, radial positions of TADs, and the quality of optimization (Figs. 4b-e).

PGS writes the average nuclear radial position for every TAD in the file

radialPlot_summary.txt. Users can also find a summary of the violation

portion that reflects the overall quality agreement between experiment data (input

of PGS) and the structure population (output of PGS).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

Figures	

Figure 1: Schematic of the PGS algorithm that deconvolves ensemble-averaged Hi-C data into a population
of distinct diploid 3D genome structures. (a) The iterative scheme involves constraint assignments (A-step)
and dynamic optimization of the structures (M-step). The new structures are used as feedback for the next
A-step. (b) Constraints are added to the model gradually by decreasing a contact probability threshold.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

Figure 2: PGS software workflows: building the input matrix, modeling and optimizing structure population
with A/M cycles, and basic analysis from the final structure population.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

Figure 3: PGS setup. (a) GUI to help users generate configuration files. (b) An example showing the format
of an acceptable contact frequency matrix file. (c) An example showing the format of an acceptable TAD file.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

Figure 4: Examples of PGS outputs. (a) Structure population. (b) Histogram of violated constraints. The
maximum number of violated restraints is defined in the “violation cutoff” configuration setting (see
Procedures, Step 1). (c) Heat map of contact probabilities from the final structure population. The color
scheme is from white (0) to red (1). (d) Density scatter plots comparing all pairwise domain contact
probabilities from the structure population and the input Hi-C data. The Pearson’s correlation coefficient
(PCC) of the comparison is indicated. Histograms of the contact probabilities are shown along the sides of
the plot. (e) The average radial position of domains along a chromosome. PGS generates this plots for every
chromosome.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

References	

1. Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. Genome architectures
revealed by tethered chromosome conformation capture and population-based
modeling. Nat. Biotechnol. 30, 90-8 (2012).

2. Junier, I., Dale, R.K., Hou, C., Kepes, F. & Dean, A. CTCF-mediated
transcriptional regulation through cell type-specific chromosome organization in
the beta-globin locus. Nucleic Acids Res 40, 7718-27 (2012).

3. Barbieri, M. et al. Complexity of chromatin folding is captured by the strings and
binders switch model. Proc. Natl. Acad. Sci. USA 109, 16173-8 (2012).

4. Meluzzi, D. & Arya, G. Recovering ensembles of chromatin conformations from
contact probabilities. Nucleic Acids Res 41, 63-75 (2013).

5. Giorgetti, L. et al. Predictive polymer modeling reveals coupled fluctuations in
chromosome conformation and transcription. Cell 157, 950-63 (2014).

6. Zhang, B. & Wolynes, P.G. Topology, structures, and energy landscapes of
human chromosomes. Proc. Natl. Acad. Sci. USA 112, 6062-7 (2015).

7. Tjong, H. et al. Population-based 3D genome structure analysis reveals driving
forces in spatial genome organization. Proc. Natl. Acad. Sci. USA 113, E1663-72
(2016).

8. Dai, C. et al. Mining 3D genome structure populations identifies major factors
governing the stability of regulatory communities. Nat Commun 7, 11549 (2016).

9. Bau, D. et al. The three-dimensional folding of the alpha-globin gene domain
reveals formation of chromatin globules. Nat. Struct. Mol. Biol. 18, 107-14 (2010).

10. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363-
7 (2010).

11. Bau, D. & Marti-Renom, M.A. Structure determination of genomic domains by
satisfaction of spatial restraints. Chromosome Res 19, 25-35 (2011).

12. Rousseau, M., Fraser, J., Ferraiuolo, M.A., Dostie, J. & Blanchette, M. Three-
dimensional modeling of chromatin structure from interaction frequency data
using Markov chain Monte Carlo sampling. BMC Bioinformatics 12, 414 (2011).

13. Fraser, J., Rousseau, M., Blanchette, M. & Dostie, J. Computing chromosome
conformation. Methods Mol Biol 674, 251-68 (2010).

14. Hu, M. et al. Bayesian inference of spatial organizations of chromosomes. PLoS
Comput. Biol. 9, e1002893 (2013).

15. Lesne, A., Riposo, J., Roger, P., Cournac, A. & Mozziconacci, J. 3D genome
reconstruction from chromosomal contacts. Nat. Methods 11, 1141-3 (2014).

16. Varoquaux, N., Ay, F., Noble, W.S. & Vert, J.P. A statistical approach for inferring
the 3D structure of the genome. Bioinformatics 30, i26-33 (2014).

17. Ay, F. et al. Three-dimensional modeling of the P. falciparum genome during the
erythrocytic cycle reveals a strong connection between genome architecture and
gene expression. Genome Res. 24, 974-88 (2014).

18. Li, Q. et al. The 3D genome organization of Drosophila melanogaster through
data integration. Genome Biol. (submitted).

19. Knight, P.A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J Numer Anal
33, 1029-1047 (2013).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

Supplementary Information

Technical details of PGS

Bin Level Probability Matrix

The released PGS package has been modified slightly from the version used
originally in our previous work1. One modification is to improve the speed and
model resolution. Migrating from older to a new version of IMP
(https://integrativemodeling.org/) has increased the speed at least by two fold.
Therefore, we are able to increase the resolution accordingly. In the example test
data, we provide TAD-level modeling starting from a 100 kb resolution Hi-C
matrix. One option of the software requires an input of a raw Hi-C contact
frequency matrix. With this option, PGS needs to process the raw matrix such as
removing outliers (described previously1) and performing normalization (with KR-
normalization2). We first convert the contact frequency to a contact probability
between domain pairs. By definition chromatin regions within TADs show higher
interaction frequencies than contacts between chromatin regions between TADs.
There are cases in TAD-resolution contact frequency matrix that very loose
interaction patterns between neighboring TADs can occur, which suggests a low
chance for those consecutive genomic regions to form close contact in 3D space.
In contrast to our previous approach1, consecutive TADs in our current model do
not necessarily form contacts between them in 100% of structures in the
population. Therefore we now adapt a different strategy for the parameter 𝑓!"#,
(i.e. the contact frequency value at which two domains have a 100% probability
to form a contact). It serves also as a simple normalization factor that transforms
a contact frequency matrix into a contact probability matrix, which then can be
used for input in our 3D modeling method. In our previous approach, the fmax
parameter was unique for each bin and determined by the direct neighbor
contacts. In the current method, fmax is a uniform scaling constant. A bin level
contact probability matrix, denoted as 𝑷 = (𝑝!")!×!, can be calculated through
the formula 𝑝!" = min (!!"

!!"# , 1) describing the probability of contact between
region i and j, where 𝑓!" and 𝑝!" represents their contact frequency and probability
values, respectively.

The choice of fmax will affect the scale of global contact frequencies, and it
depends on the data set. Although we think that choosing the right fmax will result
in consistent observed contact frequency observed between model and other
non-Hi-C-based experiments, the relative contact frequencies between different
TAD-TAD pairs will mostly not be affected by tuning the fmax. Our experience
show that at saturation (where no more contact restraints can be satisfied), a
TAD is surrounded by ~21-25 other TADs. The value of fmax is then chosen so
that the average contact probability sum of a TAD is about 23. From our
experience, such value of fmax will lead to low restraints violation in the structure
optimization down to 𝑎!" ~ 1% and the number of contact restraints has reach
saturation (non-tolerable violation score if more restraints are added).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

TAD Level Probability Matrix

As described in our previous work1,a contact between two domains is defined by
the contact frequencies of the (bin level) chromatin segments between both
domains. We define TAD level contact probability 𝑨 = (𝑎!")!×!, where 𝑎!" is the
contact probability between TAD i and j, and 𝑁 is the total number of TADs.

If we define mapping 𝑏(𝑖) is the set of all bins in matrix P that belong to TAD i, we
can calculate matrix A by

𝑎!" = 𝑚𝑒𝑎𝑛 𝑡𝑜𝑝10% 𝑝!"|𝛼 ∈ 𝑏 𝑖 ,𝛽 ∈ 𝑏(𝑗)

Here discarded bins such as centromeres are excluded from the calculation. In
addition, normalization will sometimes cause blowouts that some contacts are
extremely higher than surrounding contacts. These contacts are identified as
outliers by 𝑝 𝑝 > 𝜇 + 1.5𝐼𝑄𝑅 𝑜𝑟 𝑝 < 𝜇 + 1.5𝐼𝑄𝑅} , where 𝑝 ∈ 𝑝!"|𝛼 ∈ 𝑏 𝑖 ,𝛽 ∈
𝑏(𝑗) and 𝜇 = 𝑚𝑒𝑎𝑛 𝑝!"|𝛼 ∈ 𝑏 𝑖 ,𝛽 ∈ 𝑏(𝑗) , IQR is the interquartile range of
{𝑝!"}. Outliers will also be excluded from calculation.

Technical detail about the dynamics process

Modifications in the dynamic simulation technique of the M-step. PGS now uses
genome structure coordinates from a previous iteration step as starting
configurations to reduce the search space of local optima in the next M-step. To
make the optimization more efficient, at initial optimization steps the nuclear
volume is first expanded and then gradually shrunk to its normal value while
performing simulated annealing dynamics (e.g. setting a nuclear radius (Rnuc)
from 1.2 to 0.8 Rnuc with interval of 0.1 Rnuc). Our experience shows that this
strategy helps to reach an optimum conformation more quickly.

The lack of constraints at the very earliest A/M steps usually causes extended
conformations of chromosomes. To handle this problem, we introduced a
bounding spherical volume for every chromosome to mimic chromosome territory
applied only at the very first stage of the A/M optimization. The radius of the
bounding sphere is proportional to the chromosome length. This spherical
territory constraint is only applied at the very early stage of A/M optimization and
is not applied at later stages of the optimization. This strategy helps both
homologues copies to have similar distribution of contact constraints during the
optimization.

References

1. Tjong, H. et al. Population-based 3D genome structure analysis reveals
driving forces in spatial genome organization. Proc. Natl. Acad. Sci. USA
113, E1663-72 (2016).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

2. Knight, P.A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J Numer
Anal 33, 1029-1047 (2013).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103358doi: bioRxiv preprint

https://doi.org/10.1101/103358

	Hua_et_al_2017
	Supplementary Information

