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Abstract

Mendelian randomization, the use of genetic variants as instrumental variables (IV), can test
for and estimate the causal effect of an exposure on an outcome. Most IV methods assume
that the function relating the exposure to the expected value of the outcome (the exposure—
outcome relationship) is linear. However, in practice this assumption may not hold. Indeed,
often the primary question of interest is to assess the shape of this relationship. We present
two novel IV methods for investigating the shape of the exposure-outcome relationship: a
fractional polynomial method and a piecewise linear method. We divide the population into
strata using the exposure distribution, and estimate a causal effect, referred to as a local-
ized average causal effect (LACE), in each stratum of population. The fractional polynomial
method performs meta-regression on these LACE estimates. The piecewise linear method
estimates a continuous piecewise linear function, the gradient of which is the LACE estimate
in each stratum. Both methods were demonstrated in a simulation study to estimate the
true exposure—outcome relationship well, particularly when the relationship was a fractional
polynomial (for the fractional polynomial method) or was piecewise linear (for the piecewise
linear method). The methods were used to investigate the shape of relationship of body mass

index with systolic blood pressure and diastolic blood pressure.

Availability and implementation: https://github.com/jrs95/nlmr
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Introduction

Often the shape of association between an exposure and an outcome is non-linear. For
example, the observed association between body mass index (BMI) and all-cause mortality in
a Western context is J-shaped (or U-shaped), as risk of mortality is increased for individuals at
both ends of the BMI distribution [Flegal et al., 2013]. However, particularly for underweight
individuals, this could reflect either reverse causality or confounding, rather than a true
causal effect of low BMI increasing mortality risk. Instrumental variable (IV) methods can
be used to distinguish between correlation and causation. However, these methods typically
assume that the exposure—outcome relationship is linear when estimating a causal effect
[Hernan and Robins, 2006]. In many cases, investigating the shape of the exposure—outcome
relationship is the primary aim of a study. This can be used to define treatment thresholds
for pharmaceutical interventions or health guidelines.

A natural way of tackling the non-linearity problem in IV analysis is to perform a two-
stage analysis similar to the well-known two-stage least squares method, except fitting a
non-linear function in the second stage [Horowitz, 2011; Newey and Powell, 2003]. However,
this approach requires the instrument and any covariates included in the first-stage model to
explain a large proportion of variance in the exposure, as information for assessing the shape
of relationship between the exposure and outcome will only be available for the fitted values
of the exposure from the first-stage regression. If the proportion of variance in the exposure
explained by the IV is small then observing non-linearity for this limited range of values is
unlikely. In Mendelian randomization, the use of genetic variants as instrumental variables,
genetic variants typically only explain a small percentage of the variance in the exposure
(usually in the region of 1-4%) [Burgess and Thompson, 2015; Ebrahim and Smith, 2008].

Two approaches for addressing non-linearity in the context of Mendelian randomization
have recently been proposed [Burgess et al., 2014; Silverwood et al., 2014]. Burgess et al.
assessed the consequences of performing a linear IV analysis when the exposure-outcome

relationship truly was non-linear, as well as stratifying individuals using the exposure dis-
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tribution to obtain IV estimates, referred to as localized average causal effects (LACE), in
each stratum. Silverwood et al. performed meta-regression of LACE estimates across strata
to examine whether a quadratic rather than a linear model was a better fit for relationships
between alcohol consumption and a variety of cardiovascular markers.

In this paper, we present two novel semiparametric methods for investigating the shape
of the exposure—outcome relationship using instrumental variable analysis developed for use
in Mendelian randomization. The first is based on fractional polynomials [Royston and
Altman, 1994; Royston et al., 1999], whereas the second fits a piecewise linear function. We
also propose a test for non-linearity based on the fractional polynomial method, and assess
the impact of varying the number of strata of the exposure distribution used to test for non-
linearity and to estimate non-linear relationships. We illustrate the methods using data from
UK Biobank [Sudlow et al., 2015], a large UK-based cohort, to investigate the shape of the

relationship between BMI and blood pressure using Mendelian randomization.

Methods

Stratifying on the I'V-free exposure

We define the exposure-outcome relationship as the function relating the exposure to the
expected value of the outcome. We initially assume that this function is homogeneous for all
individuals in the population, and return to its interpretation in case of heterogeneity in the
discussion.

To assess the shape of association between exposure X and outcome Y using a single
instrument G, we first stratify the population using the exposure distribution. If we were to
stratify on the exposure directly, then an association between the IV and outcome might be
induced even if it were not present in the original data, thus invalidating the IV assumptions
[Didelez and Sheehan, 2007]. This problem can be avoided by instead stratifying on the

residual variation in the exposure after conditioning on the IV, assuming that the effect of
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the IV on the exposure is linear and constant for all individuals across the entire of the
exposure distribution [Burgess et al., 2014]. In econometrics, this residual is known as a
control function [Arellano, 2003]. We calculate this residual by performing linear regression
of the exposure on the IV, and then setting the value of the IV to 0. We refer to this as
the IV-free exposure. It is the expected value of the exposure that would be observed if the
individual had an IV value of 0, and can be interpreted as the non-genetic component of the
exposure.

In each stratum of the IV-free exposure, we estimate the LACE as a ratio of coefficients:
the IV association with the outcome divided by the IV association with the exposure. The
assumption that the effect of the IV on the exposure is constant is a stronger version of
the monotonicity assumption [Angrist et al., 1996], and hence the LACE are local average
treatment effects (also called complier-averaged causal effects [Yau and Little, 2001]) for each
stratum [Imbens and Angrist, 1994]. We then proceed to estimate the exposure-outcome
relationship from these LACE estimates using two approaches: the first based on fractional

polynomials, and the second a piecewise linear function.

Fractional polynomial method

The fractional polynomial method consists of meta-regression of the LACE estimates against
the mean of the exposure in each stratum in a flexible semiparametric framework [Bagnardi
et al., 2004; Thompson and Sharp, 1999]. Fractional polynomials are a family of functions
that can be used to fit complex relationships for a single covariate [Royston and Altman,
1994]. The standard powers used when modelling using fractional polynomials are P =
{-2,-1,-0.5,0,0.5,1, 2,3}, where the power of 0 refers to the (natural) log function. These

powers are used throughout this paper. Fractional polynomials of degree 1 are defined as:

f(@) = Bo + Pra” (1)
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where p € P. Similarly, fractional polynomials of degree 2 are defined as:

Bo + raPt + [oxP? if p1 # po
f(x) = (2)
Bo + Bra? + BaaPlog(x) ifpr=p=p

0 is interpreted as log(z). As fractional polynomials of

where py,po € P. In both cases, x
degree larger than 2 are rarely required in practice, these were not considered in this paper
[Royston and Altman, 1994]. Since a causal effect is an estimate of the derivative of the
exposure—outcome relationship [Small, 2014], we fit the LACE estimates using the derivative
of the fractional polynomial function (from either (1) or (2)).

The method proceeds as follows. First, we calculate the IV-free exposure, and stratify the

population based on quantiles of its distribution. Secondly, the LACE estimate is calculated

By|a.k
x|G

in each stratum as a ratio of coefficients (the LACE estimate for stratum k is , wWhere

By|G7k is the estimated association of the IV with the outcome in stratum k and BXK; is the
estimated association of the IV with the exposure in the whole population), and the standard
error of the LACE estimate is computed as 86(5)1;—:216) (the first term of the delta method
approximation [Thomas et al., 2007]). Third, these LACE estimates are meta-regressed
against the mean of the exposure in each stratum using the derivative of the fractional
polynomial function as the model relating the LACE estimates to the exposure values. The
original fractional polynomial function then represents the exposure—outcome relationship.
As this function is constructed from the LACE estimates, the intercept of the exposure—
outcome curve cannot be estimated and must be set arbitrarily. If it is set to zero at a
reference value (for instance, the mean of the exposure distribution), then the value of the
function represents the expected difference in the outcome compared with this reference value
when the exposure is set to different values.

Confidence intervals for the exposure—outcome curve can be computed arithmetically un-

der a normal assumption either using the estimated standard errors from the meta-regression

or by bootstrapping the second and third steps from above (we maintain the strata and the
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estimate of the IV on the exposure as in the original data, and estimate the associations of
the IV with the outcome in bootstrapped samples for each stratum).

To explore a range of possible parametric forms, we fit all possible fractional polynomial
models of degrees 1 and 2, and select the best-fitting one based on the likelihood. A fractional
polynomial of degree 2 is preferred over one of degree 1 if the twice the difference in the log-
likelihood is greater than the 95th percentile point of a x3 distribution for the best-fitting

fractional polynomial in each class [Royston and Altman, 1994].

Piecewise linear method

Another way of estimating the exposure-outcome relationship is to use a piecewise linear
approach. The exposure—outcome relationship is estimated as piecewise linear function with
each stratum contributing a line segment whose gradient is the LACE estimate for that
stratum. The function is constrained to be continuous, so that each line segment begins
where the previous segment finished. As in the fractional polynomial method, while the
intercept for each line segment is fixed by the previous line segment, the overall intercept of
the exposure—outcome curve cannot be estimated and must be set arbitrarily.

Confidence intervals are estimated by bootstrapping the IV associations with the outcome
as in the fractional polynomial approach. For a 95% confidence interval, the piecewise linear
method is performed for each bootstrapped dataset, and then the 2.5th and 97.5th percentiles
of the function are taken at selected points across the exposure distribution; we chose the

mean exposure values in each of the strata.

Tests of non-linearity

There are already two proposed methods in this framework for testing whether a non-linear
exposure—outcome model fits the data better than a linear model. The first is a heterogeneity
test using Cochran’s Q) statistic to assess whether the LACE estimates differ more than

would be expected by chance. The second is a trend test where the LACE estimates are
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meta-regressed against the mean value of the exposure in each strata; this is equivalent to
fitting a quadratic exposure—outcome model. A more flexible version of this method is to
test the best-fitting fractional polynomial of degree 1 against the linear model. This can be
achieved by comparing twice the difference in the log-likelihood between the linear model
and the best-fitting fractional polynomial of degree 1 with a 3 distribution.

These methods are available in the nlmr R package (https://github.com/jrs95/nlmr).

Simulation study

To assess the performance of these methods in realistic scenarios for Mendelian randomiza-
tion, we performed a simulation study. We simulated data for 10,000 individuals for an IV
(G, a continuous exposure X that takes only positive values, a continuous outcome Y, and a

confounder U (assumed to be unmeasured). The data generating model for individual 7 is:

where g; ~ Bin(2, 0.3), ex; ~ Exp(1), u; ~ Unif(0,1), ey; ~ N(0,1), and h(z;) is the function
relating the exposure to the outcome (the exposure—outcome relationship). Exposure values
were taken to be positive and away from zero so that the outcome takes sensible values for

log and negative power functions.

Choice of exposure—outcome model

For the fractional polynomial method, all possible fractional polynomials of degrees 1 and 2
were considered as the functional form of the exposure-outcome relationship. Combinations
of effect sizes for the [ parameters were chosen ranging from 0 to 2. For fractional poly-

nomials of degree 2, we also considered effects in opposing directions for #; and (,; these
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simulations yielded similar results to those discussed here (results not shown). Fixed-effects
meta-regression was used in the simulations, however, random-effects meta-regression yielded
similar results (results not shown).

For the piecewise linear method and for comparisons between methods, linear, quadratic,
square root, and logarithm functions were considered as the functional form of the exposure—

outcome relationship, as well as a threshold model:

0 if x; <3.65

Evaluating the performance of the methods

To evaluate the fractional polynomial method, we first fitted the correct fractional polynomial
model (that is, with the correct degree and powers) and assessed the bias and coverage of
the effect parameter estimates. Subsequently, we fitted all fractional polynomials of the
same degree and selected the best-fitting polynomial based on the likelihood. We assessed
the proportion of simulations where the best-fitting fractional polynomial was the correct
fractional polynomial. If the correct fractional polynomial was not the best-fitting fractional
polynomial, we tested whether it was in the group of fractional polynomials that fit the data
almost as well as the best-fitting polynomial; defined as those fractional polynomials where
twice the difference in the log-likelihood (compared with the best-fitting polynomial) was less
than the 90th percentile point of a x2, distribution, where m = 1 for comparing fractional
polynomials of degree 1 and m = 2 for comparing polynomials of degree 2.

To evaluate the piecewise linear method, we first compared the outcome estimates at the
mean exposure value in each quantile to the values of the true model at the same points. The
coverages of the bootstrapped 95% confidence intervals were also evaluated at these points.

For comparing the fit of the fractional polynomial and piecewise linear models, we used
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the following heuristic function:
K

k=1

U — k| (3)

where summation is across the K quantile groups, and ;. is the expected value of the outcome

evaluated at the mean value of the exposure in each quantile group.

Varying the number of strata

In the initial simulations, the population was split based on the IV-free exposure into decile
groups. Further simulations were performed varying the number of strata using 5, 10, 50
and 100 quantile groups. Tests of non-linearity were performed to assess the impact of the
number of strata on the empirical power of each test. The empirical power of each test was
reported as the proportion of simulation replicates with p-value less than 0.05. The heuristic
function (3) was calculated based on 10 deciles for each number of strata.

For each simulation and set of parameters, 500 replications were performed. Bootstrap
95% confidence intervals were generated using 500 bootstrap samples. All analyses were

performed using R version 3.0.2.

Additional simulations to assess impact of violations of assumptions

We performed additional simulations in which the underlying assumptions that the effect
of the IV on the exposure and the effect of the exposure on the outcome are fixed and
independent were relaxed. In these simulations, we assessed both modelling assumptions
by allowing the effect of the IV on the exposure to vary (by drawing the effect parameter
from a normal distribution N(0.25,0.12) for each individual in the population), and allowing
the exposure—outcome relationship to vary (by drawing the causal parameter from a normal
distribution N(3,0.2%) for each individual in the population). We assessed the impact of
allowing each of these parameters to vary separately and both to vary together. In addition,

we also allowed variation in both parameters to be correlated by drawing the parameters from

10
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a bivariate normal distribution with correlation 0.2. For fractional polynomials of degree 2,

only the causal parameter for the second polynomial was allowed to vary across individuals.

Results

Fractional polynomial method

Comparisons of fractional polynomials for all powers are provided in Supplementary Table
S1 (degree 1) and Supplementary Table S2 (degree 2); a summary of results for the most
commonly encountered powers is given in Table 1.

For fractional polynomials of degree 1, when fitting the correct fractional polynomial
model, the causal estimate was generally unbiased (Table 1). Coverage estimates were close
to the nominal 95% rate, except for fractional polynomials of power 2 (and power 3, Supple-
mentary Table S1), where causal estimates were slightly biased, and this small bias led to
undercoverage. However, under the null, causal estimates were unbiased and correct coverage
rates were maintained. For fractional polynomials of degree 2, a similar pattern was observed
except that small biases and resulting undercoverage was more common, although correct
coverage rate under the null was always maintained.

When fitting all the fractional polynomial models, the correct fractional polynomial model
was fitted more often for a fractional polynomial of degree 1, and when the power of the frac-
tional polynomial differed substantially from 0. However, in all cases, the correct fractional
polynomial was in the set of best-fitting fractional polynomials in at least 89% of simulations.
Under the null, the probability of fitting the ‘correct’ fractional polynomial was not estimated

as all fractional polynomials with zero coefficients would describe the data equally well.

Piecewise linear method

The piecewise linear method performed well when the true model was piecewise linear (such

as a linear or a threshold relationship), with the predicted mean values of the outcome

11
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similar to their true values at the mean value of the exposure within each decile of the IV-
free exposure (Table 2). The bootstrapped confidence intervals also had approximately 95%
coverage at these points, except for the quantiles at or either side of the point of inflection of
the threshold model. However, when the true model was not piecewise linear (in particular,
for a quadratic relationship), estimates were biased and coverage was below nominal levels.
Using the heuristic function (3) to compare between the estimates for the best-fitting
fractional polynomial and the piecewise linear model, the models performed similarly under
a linear model. For a quadratic model, the fractional polynomial method out-performed the
piecewise linear method, whereas the opposite was true for a threshold model. This is un-
surprising, as the fractional polynomial method performed best when the true model was a

polynomial and likewise for the piecewise linear method when the model was piecewise linear.

Varying the number of strata

The best-fitting fractional polynomial method had a similar or slightly better model fit
(judged by the heuristic function) when a greater number of strata were used (Table 3).
However, the piecewise linear method fitted the data better when fewer strata were used.
Whereas the fractional polynomial method ensures that the estimate of the exposure—outcome
relationship is a smooth function regardless of the number of strata, the estimate from the
piecewise linear method becomes increasingly jagged as the number of strata increases.

The coverage under the null (i.e. a linear model) was not overly inflated for any of the
tests. In general, the fractional polynomial and quadratic tests were more powerful than the
Cochran Q test across the simulations. The power of the Cochran Q test also decreased as
the number of strata increased, whereas the power of the other tests either remained the
same or increased. The quadratic test slightly outperformed the fractional polynomial test
when the true model was a quadratic or a threshold model; the fractional polynomial test

was slightly superior when the true model was a logarithm or a square root model.
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Additional simulations to assess impact of violations of assumptions

In the simulations where we relaxed the assumptions that the IV-exposure and the exposure—
outcome effects are the same for all individuals, we found that the fractional polynomial
models of degree 1 and the piecewise linear method both performed well in terms of bias and
coverage (Supplementary Tables S3 and S4). The only concern was that tests of non-linearity
had slightly inflated Type I error rates when the IV—exposure and exposure-outcome effects
were varied in a correlated way; Type I error rate inflation was not observed when the effects

were varied either separately or independently.

Application of methods to the relationship between body
mass index and blood pressure in UK Biobank

We illustrate the methods proposed in this paper in an applied example considering the shape
of relationship between BMI and blood pressure in the UK Biobank study. UK Biobank is a
prospective cohort study of 502,682 participants recruited at 22 assessment centres across the
UK between 2006 and 2010 [Sudlow et al., 2015]. Participants were aged between 40 and 69
at baseline. Extensive health, lifestyle, biological and genetic measurements were taken on
all participants. At the time of writing this paper, genetic information was only available for
133,687 individuals of European ancestry. For individuals on anti-hypertensive medication,
15/10mmHg were added to their SBP/DBP measurement, respectively. A sensitivity analysis
was performed in individuals who had no history of hypertension.

To create an allele score (also called a genetic risk score) of variants related to BMI to
be used as an instrumental variable, we extracted the 97 variants previously associated with
BMI at a genome-wide level of significance by the GIANT consortium [Locke et al., 2015].
A proxy variant (rs751414; r? = 0.99) was used instead of rs2033529, as this variant was not
available in UK Biobank; the linkage disequilibrium information was calculated using the

European samples from 1000 Genomes [1000 Genomes Project Consortium et al., 2012]. All
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of the variants were either directly genotyped or well-imputed (INFO>0.9). The allele score
for each individual was computed by multiplying the number of BMI-increasing alleles for
cach variant by the effect of the variant on BMI (as estimated in the GIANT consortium) and
summing across the 97 variants [Burgess and Thompson, 2013]. Overall this score explained
1.75% of the variance in BMI. We performed both the fractional polynomial and piecewise
linear methods for estimating the relationships of BMI with systolic blood pressure (SBP) and
diastolic blood pressure (DBP). The fractional polynomial method was implemented using
100 strata, whereas the piecewise linear method was implemented using 10 strata to avoid
the exposure—outcome curve being overly jagged. The reference point was set at 25kg/m?.

To account for the multiple centres, we standardized the measure of BMI by stratifying
individuals based on their residual value of BMI (the IV-free exposure) after regression of
BMI on the allele score, age, sex, and centre. Adjustment for age, sex and centre was also
made in the regressions to obtain the LACE estimates in each quantile group.

To assess the assumption that the effect of the IV on BMI is constant over the entire
distribution of BMI, we also considered BMI as the outcome and calculated the associations
of the IV with BMI in each of the strata. We then conducted tests (trend and Cochran Q

tests) to investigate heterogeneity in the IV associations with BMI in different strata.

Results of applied example

The exposure-outcome relationships for BMI with SBP and DBP estimated using the frac-
tional polynomial and piecewise linear methods are presented in Figure 1. There were strong
causal effects of BMI on both SBP and DBP (p-value < 1 x 107 for the causal estimates
differing from zero in the fractional polynomial methods). There was strong evidence that
the association between BMI and SBP was non-linear, with the quadratic test yielding p-
value = 0.0026 (p-value = 0.0164 for the fractional polynomial test, p-value = 0.0346 for
the Cochran Q test). The best-fitting fractional polynomial of degree 1 for the relation-

ship between BMI and SBP had power -0.5, and there was no evidence to suggest that a
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fractional polynomial of degree 2 fitted the data better (p-value = 0.135). The estimate of
the exposure—outcome relationship from the piecewise linear method visually suggested a
threshold—type relationship, with a steep slope up to a BMI value of about 28kg/m?, and a
slightly negative slope from 28kg/m? onwards. The relationship between BMI and SBP was
similar in individuals with no history of hypertension (Supplementary Figure S1).

The association between BMI and DBP was also non-linear (quadratic test p-value =
0.0005, fractional polynomial test p-value = 0.0114, Cochran Q test p-value = 0.0049), and
there was strong evidence that the best-fitting fractional polynomial of degree 2 (with p; and
po = 3) fitted the data better than the best-fitting fractional polynomial of degree 1 (p-value
= 0.0062). There was no evidence of a different relationship between BMI and DBP for
underweight individuals, with the exposure—outcome curve increasing almost linearly up to a
BMI of around 40kg/m?. But for hyper-obese individuals (BMI > 40kg/m?), DBP seemed to
decrease sharply. This was particularly evident in the fractional polynomial method, which
used a greater number of strata and hence had more resolution to consider the shape of the
exposure—outcome relationship at the extremes of the BMI distribution. One potential reason
for this finding is that hyper-obese individuals with high DBP are less likely to be enrolled
in UK Biobank, perhaps due to differential survival probability. Another reason could be
the difficulties in estimating blood pressure in hyper-obese individuals [Leblanc et al., 2013].
However, there was no evidence that the relationship between BMI and DBP was non-linear
in individuals with no history of hypertension (p-value > 0.05 for all tests; Supplementary
Figure S1).

There was no evidence that the associations of the IV with BMI varied between the

different strata (trend test p-value = 0.135, Cochran Q test p-value = 0.901).
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Discussion

In this paper, we have proposed and tested two novel methods for examining the relationship
between an exposure and an outcome using instrumental variable analysis in the context of
Mendelian randomization. Both methods rely on stratifying the population based on the
IV-free exposure; the exposure minus the effect of the IV. A causal effect, referred to as a
LACE, is estimated in each stratum of population. The first method performs meta-regression
on these LACE estimates using fractional polynomials. The second method estimates a
continuous piecewise linear function, the gradient of which in each stratum is the LACE
estimate for that stratum. Both methods were demonstrated in a simulation study to estimate
the true exposure-outcome relationship well when its functional form corresponded to the
form of the estimate from each method (that is, when the exposure-outcome relationship
was a fractional polynomial for the fractional polynomial method, and when the relationship
was piecewise linear for the piecewise linear method), with causal estimates being close to
unbiased and coverage rates generally maintaining nominal levels (in particular, coverage
rates were always correct under the null). Additionally, tests of non-linearity were provided
and their performance was assessed. The quadratic and fractional polynomial tests had the
best performance in terms of Type I error rate and power.

The recommendation as to which method to use depends on the aim of the investigation.
The fractional polynomial method will always provide a smooth estimate of the exposure—
outcome relationship, and as such has more consistent performance when a large number of
strata are chosen (i.e. when the shape of the relationship is considered over a wider and more
detailed range of the exposure distribution). Fractional polynomials of degree 1 had better
performance than those of degree 2 in terms of bias and coverage of effect estimates. However,
fractional polynomials of degree 1 are less flexible and would not be able to model complex
exposure—outcome relationships. Additionally, they tend to smooth over discrepancies in the
data. For example, if the LACE estimate for individuals in the lowest quantile group for

BMI was substantially different to the other LACE estimates, then both this difference and
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any uncertainty in the LACE estimate would be smoothed over somewhat in the fractional
polynomial estimate. Preference between the methods therefore comes down to a question of
prior belief: if one truly believes the true exposure—outcome relationship to be smooth, and
that estimates in the surrounding quantiles should be used to model the LACE in the target
quantile, then the fractional polynomial method should be preferred. However, if one does
not want to smooth over estimates, then the piecewise linear method should be preferred;

however, the estimate of the exposure—outcome relationship will be more jagged and variable.

Interpretation of the exposure—outcome relationship

If the function relating the exposure to the average value of the outcome is homogeneous
across the population, then the methods provided in this paper estimate this function (the
exposure—outcome relationship) even if there is unmeasured confounding. If the function is
heterogeneous, then the situation is more complicated [Small, 2014]. For example, taking
BMI as the exposure, if the subject-specific effect curve (as defined by Small) is linear for
all individuals in the population, but the magnitude of effect is greater for overweight indi-
viduals, then the exposure—outcome relationship will be quadratic (or at least convex and
positive) rather than linear. The exposure-outcome curve at low values of the exposure is
only estimated using underweight individuals, and at high values of the exposure only us-
ing overweight individuals. However, this is perhaps the most relevant way to express the
exposure-outcome relationship, as the causal effect of reducing one’s BMI from 20kg/m? to
18kg/m? is not so relevant for someone with a BMI of 40kg/m?. Hence, we do not claim any
global interpretation of the exposure-outcome relationship as estimated in this paper apart
from in the unlikely case that the functional relationship is homogeneous in the population.
It is better interpreted as a series of local estimates, which are graphically connected in order
to compare and contrast trends in these local estimates at different values of the exposure,
and to compare the relative benefit of intervening on the exposure for individuals with dif-

ferent values of the exposure, but which does not necessarily reflect the effect of intervening
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on the exposure to take any value in its distribution for any single individual.

Measurement error in the exposure

As has been noted in other contexts, estimates of non-linear relationships are sensitive to
measurement error in the exposure [Keogh et al., 2012]. The standard ‘triple whammy’ of
measurement error is likely to apply here: measurement error biases parameter estimates,
reduces power, and obscures important features in the shape of relationships [Carroll et al.,
2006]. For example, with a threshold relationship, measurement error in the exposure would
mean that the point of inflexion in the exposure-outcome relationship would be less sharply
evident. In the case of BMI, measurement error is not such an issue, as height and weight
can be measured precisely, and neither variable experiences substantial diurnal or seasonal

variation. However, for other exposures, measurement error may affect results more severely.

Requirement of concomitant and individual-level data

Many recent advances in Mendelian randomization have enabled investigations to be per-
formed using summarized data on the genetic associations with the exposure and with the
outcome only, and/or in a two-sample setting in which genetic associations with the exposure
and with the outcome are estimated on separate groups of individuals [Burgess et al., 2013,
2015]. However, estimation of the exposure—outcome relationship requires both individual-
level data and a one-sample setting (otherwise neither stratification of the population nor the
estimation of genetic associations with the outcome in the strata are possible). Although,
large cohorts with concomitant data on genetic variants, exposures, and outcomes are be-
coming more widely available, particularly in the form of biobanks such as UK Biobank.

In conclusion, these two novel methods are useful in investigating non-linear exposure—
outcome relationships. The methods allow for easy graphical assessment of the shape of
the relationship, and allied with tests of non-linearity, provide an effective tool for assessing

non-linear exposure—-outcome relationships using IV analysis for Mendelian randomization.

18


https://doi.org/10.1101/103986
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/103986; this version posted January 29, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Acknowledgements

This research has been conducted using the UK Biobank Resource (Application 7439).
This work was supported by the UK Medical Research Council [G66840, G0800270], Pfizer
[G73632], British Heart Foundation [SP/09/002], UK National Institute for Health Research
Cambridge Biomedical Research Centre, European Research Council [268834], and Euro-
pean Commission Framework Programme 7 [HEALTH-F2-2012-279233]. Stephen Burgess is

supported by the Wellcome Trust [100114].

References

1000 Genomes Project Consortium, et al. 2012. An integrated map of genetic variation from

1,092 human genomes. Nature 491(7422):56-65.

Angrist J, Imbens G, Rubin D. 1996. Identification of causal effects using instrumental

variables. J Am Stat Assoc 91(434):444-455.

Arellano M 2003. Advances in Economics and Econometrics, Theory and Applications, FEight
World Congress. Volume II, pages 358-364. Cambridge University Press, Cambridge UK.

Bagnardi V, Zambon A, Quatto P, Corrao G. 2004. Flexible meta-regression functions for
modeling aggregate dose-response data, with an application to alcohol and mortality. Am

J Epidemiol 159(11):1077-1086.

Burgess S, Butterworth A, Thompson SG. 2013. Mendelian randomization analysis with

multiple genetic variants using summarized data. Genet Epidemiol 37(7):658-665.

Burgess S, Davies NM, Thompson SG. 2014. Instrumental variable analysis with a nonlinear

exposure—outcome relationship. Epidemiol 25(6):877.

Burgess S, Scott RA, Timpson NJ, et al. 2015. Using published data in mendelian ran-

19


https://doi.org/10.1101/103986
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/103986; this version posted January 29, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

domization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol

30(7):543-552.

Burgess S, Thompson SG. 2013. Use of allele scores as instrumental variables for mendelian

randomization. Int J Epidemiol 42(4):1134-1144.

Burgess S, Thompson SG. 2015. Mendelian Randomization: Methods for using Genetic

Variants in Causal Estimation. CRC Press.

Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. 2006. Measurement error in nonlinear

models: a modern perspective. CRC press.

Didelez V, Sheehan N. 2007. Mendelian randomization as an instrumental variable approach

to causal inference. Stat Methods Med Res 16(4):309-330.

Ebrahim S, Smith GD. 2008. Mendelian randomization: can genetic epidemiology help

redress the failures of observational epidemiology? Human Genetics 123(1):15-33.

Flegal KM, Kit BK, Orpana H, Graubard BI. 2013. Association of all-cause mortality with
overweight and obesity using standard body mass index categories: a systematic review

and meta-analysis. JAMA 309(1):71-82.

Hernan MA, Robins JM. 2006. Instruments for causal inference: an epidemiologist’s dream?

Epidemiology 17(4):360-372.

Horowitz JL 2011. Applied nonparametric instrumental variables estimation. Econometrica

79(2):347-394.

Imbens GW, Angrist JD. 1994. Identification and estimation of local average treatment

effects. Econometrica 62(2):467-475.

Keogh RH, Strawbridge A, White IR. 2012. Effects of classical exposure measurement error

on the shape of exposure—disease associations. Epidemiol Methods 1(1):13-32.

20


https://doi.org/10.1101/103986
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/103986; this version posted January 29, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Leblanc ME, Croteau S, Ferland A, et al. 2013. Blood pressure assessment in severe obesity:

validation of a forearm approach. Obesity 21(12):E533-E541.

Locke AE, Kahali B, Berndt SI, et al. 2015. Genetic studies of body mass index yield new

insights for obesity biology. Nature 518(7538):197-206.

Newey WK, Powell JL. 2003. Instrumental variable estimation of nonparametric models.

Econometrica 71(5):1565-1578.

Royston P, Altman DG. 1994. Regression using fractional polynomials of continuous covari-

ates: parsimonious parametric modelling. Appl Statist 43(3):429-467.

Royston P, Ambler G, Sauerbrei W. 1999. The use of fractional polynomials to model

continuous risk variables in epidemiology. Int J Epidemiol 28(5):964-974.

Silverwood RJ, Holmes MV, Dale CE, et al. 2014. Testing for non-linear causal effects
using a binary genotype in a mendelian randomization study: application to alcohol and

cardiovascular traits. Int J Epidemiol 43(6):1781-1790.

Small DS 2014. Commentary: Interpretation and sensitivity analysis for the localized average

causal effect curve. Epidemiology 25(6):886-888.

Sudlow C, Gallacher J, Allen N, et al. 2015. Uk biobank: an open access resource for
identifying the causes of a wide range of complex diseases of middle and old age. PLoS

Med 12(3):e1001779.

Thomas D, Lawlor D, Thompson J. 2007. Re: Estimation of bias in nongenetic observational

studies using “Mendelian triangulation” by Bautista et al. Ann Epidemiol 17(7):511-513.

Thompson SG, Sharp SJ. 1999. Explaining heterogeneity in meta-analysis: a comparison of
methods. Stat Med 18(20):2693-2708.

21


https://doi.org/10.1101/103986
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/103986; this version posted January 29, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Yau LH, Little RJ. 2001. Inference for the complier-average causal effect from longitudi-
nal data subject to noncompliance and missing data, with application to a job training

assessment for the unemployed. J Am Stat Assoc 96(456):1232-1244.

22


https://doi.org/10.1101/103986
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/103986; this version posted January 29, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Table 1: Simulation results for the fractional polynomial method.

(a) Degree 1

Fitting correct FP Fitting all FPs
B D Mean (SD) [Mean SE] Coverage Powers
B1 p1 B o) Correct Set
0 0 -0.01 (0.22) [0.21] 0.934 - -
1 0 0.98 (0.22) [0.21] 0.944 0.172 0.918
2 0 1.98 (0.21) [0.21] 0.954 0.386 0.910
0 0.5 0.00 (0.25) [0.23] 0.930 - -
1 0.5 1.00 (0.25) [0.23] 0.936 0.194 0.892
2 0.5 1.99 (0.24) [0.24] 0.932 0.340 0.904
0 1 0.00 (0.06) [0.06] 0.938 - -
1 1 1.00 (0.07) [0.07] 0.944 0.748  0.938
2 1 2.00 (0.07) [0.07] 0.938 0.912 0.958
0 2 0.00 (0.01) [0.01] 0.942 - -
1 2 1.02 (0.01) [0.01] 0.756 1.000 1.000
2 2 2.03 (0.02) [0.02] 0.436 1.000 1.000
(b) Degree 2
Fitting correct FP Fitting all FPs
B D Mean (SD) [Mean SE] Coverage Powers
51 B p1 D2 B1 BQ 51 BQ Correct Set

-0.04 (1.98) [1.95]  0.06
1.00 (2.11) [2.03]  1.98
1.95 (1.99) [2.02]  1.02
-0.01 (0.95) [0.94]  0.00
1.00 (1.15) [1.17]  2.00
2.03 (1.09) [1.08]  0.98
-0.01 (0.48) [0.45]  0.00 (0.02) [0.02]  0.940  0.936 - -

1.30 (1.25) [1.09] ~ 2.02 (0.06) [0.06]  0.898  0.902  0.026  0.954

(2.20) [2.17]

(2.35) [2.20]

(2.23) [2.24]

(0.28) [0.28]

(0.35) [0.36]

(0.33) [0.33]

< o b
2.12 (0.84) [0.81] 1.01 (0.04) [0.04] 0.938 0.926 0.040 0.964

(0.55) [0.53]

(0.72) [0.71]

(0.62) [0.60]

(0.02) [0.02]

(0.08) [0.07]

(0.05) [0.05]

(0.03) [0.03]

(0.12) [0.11]

(0.09) [0.08]

2.35
2.23
0.28
0.35
0.33

2.17
2.26
2.24
0.28
0.36
0.33

0.958  0.960 - -
0.938  0.934 0.004 0.964
0.952  0.956 0.002 0.968
0.950  0.956 - -
0.940  0.940 0.012 0.948
0.938  0.938 0.016 0.956

OO OO ODODOOO O

-0.05 (2.06) [1.96] 0.01 (0.55) [0.53 0.938  0.944 - -
0.940  0.938 0.010 0.954

o OO
NN DN NN N DN N

NHRFONFRFONFONFONRFONRO
HFNOFNOHFNOFNOFNORFNO
[en]
(@3

05 1.03 (2.60) [2.56]  2.00 (0.72) [0.71

05 1.86 (2.27) [2.34]  1.03 (0.62) [0.60]  0.950 0.950  0.006  0.960
0.5 -0.06 (0.65) [0.63]  0.00 (0.02) [0.02]  0.928  0.946 - -
05 1.48 (1.78) [1.63]  2.01 (0.08) [0.07]  0.936  0.934  0.024  0.970
05 2.18 (1.25) [1.19]  1.01 (0.05) [0.05]  0.924 0.936  0.036  0.948
1 0.01 (0.24) [0.24]  0.00 (0.03) [0.03]  0.952  0.954 - -
1 1.23 (0.78) [0.70]  2.00 (0.12) [0.11]  0.912  0.908  0.030  0.960
1 2.08 (0.57) [0.54]  1.00 (0.09) [0.08]  0.942  0.926  0.108  0.962

Results for all the fractional polynomials of degree 1 (all effect sizes) and degree 2 (81=1 and B2=2) are
presented in Supplementary Tables S1 and S2; this table is a summary of results for the most commonly
encountered powers. [ are the effect parameters, and p are the powers. Coverage refers to the number
of replications where the true value of 8 was contained within the corresponding 95% confidence interval.
The power(s) was correctly chosen (Correct) if the best-fitting fractional polynomial was also the correct
fractional polynomial, whilst the correct model was within the set of powers that fit the data equally as
well as the best-fitting fractional polynomial (Set) if the difference between twice the log-likelihood for the
correct model and the best-fitting model was less than the 90th percentile of the relevant x? distribution.
SD, standard deviation; SE, standard error; FP, fractional polynomial.
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Table 2: Simulation results for the piecewise linear method.

Decile of the IV-free exposure distribution Heuristic

Model B 1 2 3 4 5 6 7 8 9 10 FP PL

Linear 0.5 Correct 0.201 0.357 0.460 0.550 0.641 0.743 0.870 1.040 1.302 1.995
Mean 0.197 0.352 0.454 0.543 0.633 0.736 0.862 1.032 1.296 1.961 1.12 1.20
Coverage 0.958 0.964 0.962 0.962 0.958 0.952 0.940 0.944 0.950 0.952 (0.74) (0.68)
Quadratic 0.5 Correct 0.891 1.697 2.281 2.826 3.409 4.107 5.027 6.360 8.644 16.002
Mean 1.011 1.831 2.426 2.982 3.572 4.281 5.214 6.568 8.891 16.617 1.07 2.94
Coverage 0.680 0.784 0.786 0.786 0.772 0.758 0.764 0.762 0.750 0.922 (0.77) (1.43)
Threshold 0.5 Correct 0.000 0.000 0.000 0.000 0.000 0.000 0.054 0.224 0.486 1.179
Mean 0.001 0.000 0.001 0.003 0.005 0.020 0.088 0.239 0.499 1.171 135 1.25
Coverage 0.960 0.964 0.952 0.950 0.942 0.930 0.934 0.930 0.940 0.946 (0.46) (0.73)
Threshold 1  Correct 0.000 0.000 0.000 0.000 0.000 0.000 0.108 0.448 0.971 2.359
Mean 0.008 0.012 0.013 0.012 0.014 0.041 0.181 0.493 1.017 2.393 231 1.33
Coverage 0.946 0.940 0.936 0.922 0.916 0.904 0.904 0.916 0.916 0.958 (0.42) (0.79)

B is the effect parameter. Mean is the mean value of the outcome at the mean value of the exposure in the
deciles of the IV-free distribution. Coverage refers to the number of replications where the correct value of the
outcome at the mean value of the exposure in the decile of the IV-free distribution was contained within the
corresponding 95% prediction interval. The heuristic statistic (mean (SD) across simulations) is the sum of
the absolute values of the predicted value of the outcome minus the correct value of the outcome at the mean
value of the exposure in deciles of the IV-free distribution. FP, fractional polynomial; PL, piecewise linear.

Table 3: Varying the number of strata and tests of non-linearity.

Heuristic Power of test
Model I3 Number of strata FP PL Quad Q FP
Linear 1 5 1.18 (0.88) 1.24 (0.70) 0.076 0.054  0.050
10 1.11 (0.86) 1.30 (0.76) 0.074 0.040  0.046
50 1.06 (0.84)  1.48 (0.93)  0.064  0.064  0.040
100 1.08 (0.85) 1.55 (0.97) 0.062 0.062  0.036
Logarithm 2 5 1.34 (0.79) 1.35 (0.76) 0.486 0.342  0.502
10 1.31 (0.79) 1.37 (0.78) 0.488 0.264  0.518
50 1.30 (0.80) 1.56 (0.91) 0.504 0.164  0.544
100 1.31 (0.80)  1.62 (0.96) 0504  0.124  0.530
Square root 2 5 1.21 (0.80)  1.23 (0.73)  0.166 ~ 0.102  0.170
10 1.22 (0.80) 1.33 (0.78) 0.156 0.084  0.166
50 1.21 (0.78) 1.56 (0.91) 0.164 0.072 0.176
100 1.20 (0.77) 1.63 (0.96) 0.164 0.104  0.178
Quadratic 0.1 5 1.10 (0.77) 1.37 (0.74) 0.618 0.422  0.608
10 1.03 (0.76) 1.42 (0.77) 0.710 0.392  0.674
50 0.90 (0.74) 1.52 (0.82) 0.830 0.226  0.774
100 0.87 (0.72)  1.59 (0.88)  0.874  0.186  0.818
Threshold 0.5 5 1.37 (0.47) 1.20 (0.71) 0.868 0.816  0.804
10 1.35 (0.44) 1.28 (0.76) 0.862 0.698  0.778
50 1.36 (0.46) 1.48 (0.89) 0.864 0.364  0.758
100 1.38 (0.50) 1.58 (0.97) 0.862 0.284  0.742

B is the effect parameter. The heuristic statistic (mean (SD) across simulations) is the sum of the
absolute values of the predicted value of the outcome minus the correct value of the outcome at
the mean value of the exposure in deciles of the IV-free distribution. The heuristic measure for
the fractional polynomial model was from the best-fitting fractional polynomial for the threshold
model. SD, standard deviation; SE, standard error; Quad, quadratic test for assessing non-linearity;
Q, Cochran-Q test; FP; fractional polynomial; PL, piecewise linear.
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Figure 1 Figure 1: Causal effects of body mass index (BMI) on blood pressure (systolic blood
pressure, SBP; diastolic blood pressure, DBP) using the fractional polynomial and piecewise
linear methods on data from UK Biobank. The red point represents the reference point of
BMI of 25 kg/m?. Grey lines represent 95% CIs. The fractional polynomial method used
100 strata.
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