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Metagenomic datasets contain billions of protein
sequences that could greatly enhance large-scale
prediction of protein functions and structures. Lin-
clust can cluster sequences down to 50% pairwise
sequence similarity and its runtime scales linearly5

with the input set size, not nearly quadratically as
in conventional algorithms. We cluster 1.7 billion
sequences from ∼2200 metagenomic and metatran-
scriptomic datasets in 30 hours on 28 cores. Free
software and data available at https://mmseqs.com/.10

In metagenomics, DNA is sequenced directly from the
environment, allowing us to study the vast majority of
microbial diversity that cannot be cultivated [1]. During
the last decade, costs and throughput of next-generation
sequencing have dropped two-fold each year, twice faster15

than computational costs. This enormous progress has re-
sulted in hundreds of thousands of metagenomes and tens
of billions of putative gene and protein sequences [2, 3].
Thus computing and storage costs are now dominating
metagenomics [4, 5, 6]. Clustering protein sequences pre-20

dicted from sequencing reads or pre-assembled contigs can
significantly reduce the redundancy of sequence sets and
costs of downstream analysis and storage.

CD-HIT and UCLUST [7, 8] are by far the most widely
used protein clustering tools. In their greedy clustering25

approach each of the N input sequences is compared with
the Nclus representative sequences of already established
clusters. Runtime therefore scales as O(N ×Nclus), al-
most quadratically with the number of input sequences.
Available main memory further constrains the size of se-30

quence sets: UCLUST requires NL × 10 B and CD-HIT
NL× 1.5 B, where L is the average sequence length. Lin-
clust overcomes these limitations with a linear run time
and a memory footprint of only N×320 B.

Linclust proceeds in five consecutive stages (Fig. 1)35

(Online Methods): (1) It finds exact k-mer matches (de-
fault: k = 10) between sequences. To increase sensitivity
we use a reduced alphabet of size 14 at this stage. For
each sequence, Linclust selects the m (default: 20) k-mers
obtaining the lowest hash values. It thereby tends to se-40

lect the same subset of k-mers in every sequence. Linclust
sorts all selected k-mers lexicographically, which identifies
groups of sequences sharing the same k-mer. A centre se-
quence is picked for each group, and (2) for every sequence
in the group the Hamming distance to the centre sequence45

is computed for the gapless extension of the k-mer match to
the sequence ends. Sequences that already now fulfill the
coverage and sequence identity criteria (”safe matches”)

FIG. 1. The five stages of Linclust. Coloured boxes represent
k-mers selected as potential seeds for alignment extension in
stages 2-4.

are assigned to their centre sequences. (3) For all others
the maximum score for the ungapped alignment around the50

k-mer match is computed using the Blosum62 amino acid
similarity matrix. Sequences with a sub-threshold score
are filtered out. All others are aligned to their centre se-
quence using a vectorized implementation of local, gapped
sequence alignment. Sequence pairs that satisfy the cover-55

age and sequence identity criteria are linked. (5) Finally,
the sequences are clustered using the greedy set-cover al-
gorithm.

We measured runtimes for clustering seven protein sets.
The first six were created by subsampling 1/32, 1/16, 1/8,60

1/4, half and all of the 61 522 444 sequences of the UniProt
database (release 2016 03). The seventh set contains the
UniProt plus all sequences in reverse.

Each tool clustered these sets using a minimum pairwise
sequence identity of 90%, 70% and 50%. The sequence65

identity in UCLUST and CD-HIT is defined as fraction
of identical residues relative to the length of the shorter
sequence. In Linclust, we use a highly correlated measure
(Fig. S2 in [9]) that is better suited to distinguish homolo-
gous from non-homologous sequences: the local alignment70

score divided by the maximum length of the two aligned
sequence segments. To ensure comparable acceptance cri-
teria, we demanded in addition a minimum coverage of
90 % of the shorter by the longer sequence. We measured
runtimes with the Linux time command. Benchmarks were75

done on a server with two Intel Xeon E5-2640v3 8-core
CPUs and 128 GB RAM.

Figure 2A shows the runtimes versus sequence set size.
At 50% identity, Linclust clusters the 123 million sequences
200 times faster than UCLUST and, by extrapolation,80
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FIG. 2. (A) Double-logarithmic plot of runtimes versus se-
quence set size. Tools were run with sequence identity thresh-
olds of 90%, 70% and 50%. Runtimes at 70 % between smallest
and largest set scale with set size N as N1.75 for CD-HIT, N1.60

for UCLUST and N1.01 for Linclust. (B) Number of clusters
obtained at 90%, 70% and 50% sequence identity. Lower cluster
numbers imply higher sensitivities to detect similar sequences.
Some clustering runs were terminated after 48 h to save time.

more than four orders of magnitude faster than CD-HIT.
At 90% identity, Linclust still clusters these sequences 43
times faster than UCLUST and 27 times faster than CD-
HIT. The speedup factors grow roughly as N0.6 and N0.7

with the dataset size N . Stage 2 (Hamming distance)85

and 3 (ungapped alignment) additionally reduce the run-
time by a factor 2.0 and 1.37, respectively (Supplemental
Fig. S1)

To assess the quality of the clusterings it is sufficient
to measure the number of clusters produced, because the90

tools’ acceptance criteria for linking sequences are very
similar (Supplemental Fig. S2). All three tools pro-
duce similar numbers of clusters at 90% and 70% sequence
identity (Fig. 2B). Importantly, despite Linclust’s lin-
ear scaling of the runtime with the number of sequences,95

the comparison shows that it does not suffer any loss of

FIG. 3. Number of sequences contained in clusters with var-
ious size ranges obtained by Linclust with 50% sequence iden-
tity and a minimum coverage of 80%. Sequences in Metaclust50
clusters are shown in green, sequences from UniParc are violett.

sensitivity for growing dataset sizes.
At 50%, Linclust’s sensitivity reaches its limits, produc-

ing 23% more clusters than UCLUST. But by increasing
the number of k-mers selected per sequence from 20 to 80100

it achieves nearly the same sensitivity at a moderate loss
of speed of a factor 1.6 (Supplemental Fig. S3).

Linclust should enable considerable savings of computer
resources in current clustering applications. Most impor-
tantly, however, it will make previously infeasible tasks105

possible. To demonstrate this, we applied it to cluster
1.6 billion protein sequences of metagenomic and meta-
transcriptomic origin [2, 10, 11] together with 123 millions
sequences from the UniParc database [12].

Because many metagenomic sequences are fragmentary,110

we used the Hamming pre-clustering stage 2 to map frag-
ments to longer sequences that cover at least 99% of
them with a sequence identity of 95%, which yielded the
redundancy-filtered set ”Metaclust95”. We then ran stages
3 to 5 to filter down the Metaclust95 set to 50% sequence115

identity using a minimum coverage of 80% of the shorter
and longer sequence. The representative sequences from
stage 5 (clustering) make up the ”Metaclust50” set.

Runtimes were measured on a server with two Intel Xeon
E5-2680v4 14-core CPUs and 768 GB RAM. Linclust took120

17 hours to filter the 1.72 billion sequences for redundancy
at 95% and remove fragments (stages 1, 2 and 5), pro-
ducing 1.1 billion sequences. Clustering this Metaclust95
sequence set to 50% sequence identity using stages 3 to 5
took another 13 hours and produced 529 million clusters.125

Figure 3 shows the cluster size distribution for the
Metaclust50 set. We also clustered the UniParc database
in exactly the same way, using the 95% redundancy and
fragment filtering and then the clustering to 50%. The
comparison shows that Metaclust50 has a very similar rela-130

tive distribution over the cluster sizes, indicating that only
a small fraction of out-of-frame or chimeric sequences are
contained in Metaclust95. However, because Metaclust95
contains 14 times more sequences than UniParc95 (1.1 B
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versus 80 M), it has 14 times more sequences that are mem-135

bers of large, diverse clusters. E.g. Metaclust50 has 324 M
sequences in clusters with more than 10 sequences, while
UniParc has only 24 M.

Metaclust95 and Metaclust50 are, as far as we know,
the largest freely available redundancy-filtered protein se-140

quence sets. They could become a valuable resource for
applications whose performance grows with the evolution-
ary diversity of multiple sequence alignments of protein
families. (1) They will help to improve the sensitivity of
profile sequence searches and to increase the fraction of an-145

notatable sequences in genomic and metagenomic datasets
[6, 10]. (2) They will boost the number protein families
for which reliable structures can be predicted de novo, as
shown by Ovchinnikov et al. [13], who used an as yet un-
published dataset of 2 billion metagenomic sequences. (3)150

They will allow us to build more accurate models to predict
the effects of mutations on proteins [14].

To achieve linear runtime overall, three insights were
critical. First, the identification of exact k-mer matches by
sorting them, which is similar to double indexing [15], has155

quasi linear time scaling O(N logN). Second, we showed
that a small number m of well-selected k-mers per sequence
is sufficient to cluster sequences down to 50% sequence
identity. Third, by aligning each sequence within a group
of sequences sharing a k-mer to a single ”centre” sequence,160

we limit the number of pairwise alignments to the total
number Nm of extracted k-mers. Fourth, our greedy ap-

proach of assigning centre sequences ensures that they be-
come highly connected hub nodes around which large clus-
ters can be built in the greedy set cover clustering stage.165

We have integrated Linclust into the software package
MMseqs2 (Many-to-many sequence searches) currently un-
der development in our lab [16]. We hope Linclust and
MMseqs2 will prove helpful to many researchers seeking to
exploit the tremendous value of the many publicly avail-170

able metagenomic and metatranscriptomic datasets.
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Online methods

Linclust is composed of five stages (Fig. 1):240

1. Finding exact k-mer matches. The first stage finds
exact k-mers matches between sequences that are extended
in stages 2-4. We transform the sequences into a reduced
alphabet of size A (see below) to increase the number of k-
mer matches and hence the k-mer sensitivity at a moderate245

reduction in selectivity. For each sequence we extract m k-
mers as described below (Selection of k-mers). The default
values are A = 14, k = 10, m = 20. A higher m increases
sensitivity (Supplemental Fig. S3).

We store each extracted k-mer, its position j in250

the sequence, and the sequence identifier, in an array
of length Nm. We sort the array by the k-mers us-
ing insertion sort from the OpenMP template library
(http://freecode.com/projects/omptl). The sorted array
groups sequences together that contain the same k-mer.255

We add group size to each array entry and resort the
array by group size and, with lower priority, by k-mer.
For each group, from largest to smallest, we select as the
group centre the longest sequence that has not already
been chosen as a centre of some previously processed260

group. We store for each array entry the diagonal i− j of
the k-mer match, where i is the positions of the k-mer in
the centre sequence. Linclust requires memory equal to
the size of the array, Nm(k + 6) B.

265

2. Hamming distance pre-clustering. For each group
we compute the Hamming distance (i.e., the number of
mismatches) between the centre sequence and all other
member sequences along the stored diagonals i − j in
the full amino acid alphabet. This operation is fast as270

it needs no random memory or cache access and uses
AVX2/SSE4.1 instructions. Members that already satisfy
the specified sequence identity and coverage thresholds
on the entire diagonal are clustered using the greedy
set-cover algorithm, removed from the set passed to stage275

3, and are added to the cluster of their centre sequence
after step 5.

3. Ungapped alignment filtering. For each group we
compute the optimal ungapped, local alignments between280

the centre sequence and the member sequences along the
stored diagonal i − j, using one-dimensional dynamic
programming with the Blosum62 matrix. We filter out
matches between centre and member sequences if the
ungapped alignment score divided by the length of the285

diagonal is very low. We set a conservative threshold,
such that the false negative rate is 1 %, i.e., only 1 % of
the alignments below this threshold would satisfy the two
criteria, sequence identity and coverage. For each combi-
nation on a grid {50, 55, 60, . . . , 100}⊗{0, 10, 20, . . . , 100},290

we determined these thresholds empirically on 4 M local
alignments sampled from an all-against-all comparison of
the UniProt database [12].

4. Local gapped sequence alignment. Member295

sequences that pass the ungapped alignment filter are

aligned to their centre sequence using the AVX2/SSE4.1-
vectorized alignment module with amino acid composi-
tional bias correction from MMseqs2 [16], which builds on
code from the SSW library [17]. Sequences satisfying the300

sequence identity and coverage thresholds are linked.

5. Clustering using greedy set cover. The sequences
are clustered using the greedy set cover algorithm in
MMseqs [18]. It processes the sequences in order of305

decreasing number of linked sequences. Each such se-
quence and its linked neighbours are assigned to a new
cluster and removed from all lists of neighbours. The
next sequence having the most linked neighbours is picked
until no sequence remains unassigned. Greedy set cover is310

fast and yields good clusterings in practice. Its runtime
is proportional to the total number of edges, which is
bounded by Nm.

Reduced amino acid alphabet We iteratively con-315

structed reduced alphabets starting from the full amino
acid alphabet. At each step we merged the two letters
{a, b} → a′ = (a or b) that conserve the maximum mutual

information, MI =
∑A

x,y=1 p(x, y) log2 (p(a, y)/p(x)/p(y)).

Here A is the new alphabet size, p(x) is the probability of320

observing letter x at any given position, and p(x, y) is the
probabilities of observing x and y aligned to each other.
These probabilities are extracted from the Blosum62
matrix. When a and b are merged into a′, for example,
p(a′) = p(a) + p(b) and p(a′, y) = p(a, y) + p(b, y). The325

default alphabet with A = 14 merges (L,M), (I,V), (K,R),
(E, Q), (A,S,T), and (F,Y).

Selection of k-mers. To be able to cluster together se-
quences with, e.g. 50% sequence identity, we need to find a330

k-mer in the reduced alphabet common to both. Because
we extract only a small fraction of k-mers from each se-
quence, we need to avoid picking different k-mers in each
sequence. Our first criterion for k-mer selection is there-
fore to extract the same subset of k-mers in all sequences.335

Second, we need to avoid positional clustering of selected
k-mers in order to be sensitive to detect local homologies in
every region of a sequence. Third, we would like to extract
k-mers that tend to be conserved between homologous se-
quences. We note that the k-mers to be selected cannot340

simply be stored due to their sheer number (≈Ak m/L).
We can satisfy the first two criteria by computing hash

values for all k-mers in a sequence and selecting the m k-
mers that obtain the lowest hash values. Since appropriate
hash functions can produce values that are not correlated345

in any simple way with the hash keys, i.e. our k-mers, this
method should randomly select k-mers from the sequences
such that the same k-mers always tend to get selected in
all sequences. We developed a simple 16 bit rolling hash
function with good mixing properties, which we can com-350

pute very efficiently using the hash value of the previous
k-mer (Supplemental Fig. 4).

In view of the third criterion, we experimented with
combining the hash value with a k-mer conservation
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score Scons(x1:k) =
∑k

i=1 S(xi, xi)/k. This score ranks355

k-mers x1:k by the conservation of their amino acids,
according to the diagonal elements of the Blosum62
substitution matrix S(·, ·). We scaled the hash func-
tion with a rectified version of the conservation score:
hash-value(x1:k)/max {1, Scons(x1:k)− Soffset}. Despite360

its intuitive appeal, we did not succeed in obtaining
significant improvements and reverted to the simple hash
function.

Parallelization and supported platforms. We used365

OpenMP to parallelize all stages except the IO-limited
stage 1c (Figure 1A), by applying the ”#pragma omp
parallel for” directive to the loops over the input sequences
(stage 1a,b) or centre sequences (stages 2, 3). Linclust
supports Linux and Mac OS X and CPUs with AVX2 or370

SSE4.1 instructions.

Tools and command line options for benchmark
comparison. We tested CD-HIT (version 4.6) with the
parameters -T 16 -M 0 and -n 5 -c 0.9, -n 4 -c 0.7, and375

-n 3 -c 0.5 for 90%, 70% and 50% respectively. UCLUST
(version 7.0.1090) was run with --id 0.9, 0.7, 0.5, and
Linclust (commit fe2369c) was executed using --target-cov
and 0.9 --min-seq-id 0.9 or --min-seq-id 0.7 or --min-seq-id
0.5 for 90%, 70% and 50% respectively.380

Clustering metagenomic sequences. We down-
loaded ∼1800 metagenomic and ∼400 metatran-
scriptomic datasets with assembled contigs from
IMG/M [2] and NCBI’s Sequence Read Archive [11]385

(ftp://ftp.ncbi.nlm.nih.gov/sra/wgs aux) using the
script metadownload.sh from https://bitbucket.org/

martin steinegger/linclust-analysis. We predicted genes
and protein sequences using Prodigal [19] in the contigs
and added the 40.2 million protein sequences from the390

Ocean Microbiome Reference Gene Catalog (OM-RGC)
[10] and the 123 million sequences from UniParc [12].
Since many of the predicted protein sequences are frag-
ments, we chose as acceptance criteria in the Hamming
stage 2 a minimum coverage of the shorter of the two395

sequences of 99% and a sequence identity of 95% (Linclust
options --target-cov 99 --min-seq-id 0.5). Running stage
2 but choosing the greedy clustering algorithm instead
of greedy set-cover (Linclust options --cluster-mode 2)
produced the set Metaclust95. We further clustered the400

sequences in Metaclust95 down to 50% with a minimum
symmetrical coverage threshold of 80% using stages 3 to 5.

Metaclust95 and Metaclust50 protein sequence
sets. These datasets are freely available as FASTA for-405

matted flat files at https://metaclust.mmseqs.com/. We
used the summarizeheaders tool [20] to generate headers
for the Metaclust50 sequences that list the identifiers of
all Metaclust95 member sequences.

410

Code availability. Linclust has been integrated into our
free GPLv3-licenced MMseqs2 software suite [16]. The
source code and binaries for Linclust can be download at
https://github.com/soedinglab/mmseqs2.

415

Data availability. All scripts and benchmark data
including command-line parameters necessary to repro-
duce the benchmark and analysis results presented here
are available at https://bitbucket.org/martin steinegger/
linclust-analysis.420
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