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 2 

Abstract 38 

 39 

Genetic contributions to plant morphology are not partitioned between shoots and 40 

roots. Yet, shoot and root architectures are rarely measured in the same plants. 41 

Even if shoot and root architectures are both studied, the application of 42 

mathematical methods flexible enough to accommodate the disparate topologies 43 

and shapes within a plant, and across scales, are lacking. Here, we advocate the use 44 

of persistent homology, a mathematical method robust to noise, invariant with 45 

respect to orientation, capable of application across diverse scales, and importantly, 46 

compatible with diverse functions to quantify disparate plant morphologies, 47 

architectures, and textures. To demonstrate the usefulness of this method, we apply 48 

persistent homology approaches to the shape of leaves, serrations, and root 49 

architecture as measured in the same plants of a domesticated tomato Solanum 50 

pennellii near-isogenic introgression line population under field conditions. We find 51 

that genetic contributions to morphology affect the plant in a concerted fashion, 52 

affecting both the shoot and root, revealing a pleiotropic basis to natural variation in 53 

tomato.  54 

 55 

Introduction 56 

 57 

Plant morphology cannot be partitioned; every part of the plant contributes to its 58 

morphology as much as any other (Chitwood and Topp, 2015; Topp et al., 2016). 59 

Yet, when measuring morphological traits, plants are routinely discretized, 60 

especially into above- and belowground parts. Any model predicting phenotype 61 

from genotype would be incomplete without considering the shoot and root as a 62 

whole. If morphology truly imparts function, then because of the extensive 63 

molecular, metabolic, hormonal, and physiological intercommunication between the 64 

root and shoot (Molnar et al., 2010; Thieme et al., 2015; Albacete et al., 2015; 65 

Warchefsky et al., 2016), even slight morphological changes in one would impact the 66 

other. The development of the shoot and root are also governed by similar 67 

molecular pathways (Wysocka-Diller et al., 2000; Sarkar et al., 2007; Stahl et al., 68 
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2009; Carlsbecker et al., 2010; Slewinski et al., 2012), which would suggest genetic 69 

changes affecting either could potentially impact both.  70 

 71 

Even if root and shoot morphology are measured in the same plants, the different 72 

architectures and accessibilities of each has, until recently, necessitated disparate 73 

types of analyses. Roots and branches are intrinsically topological, and have been 74 

measured using a variety of length and width measures, branching parameters, 75 

skeletonization, shape descriptors, network properties, and other summary 76 

statistics (e.g. Drew, 1975; Fitter, 1987; Berntson, 1996; Lynch et al., 1997; Iyer-77 

Pascuzzi et al., 2011; Bucksch et al., 2014). Contrastingly, many shoot organs can be 78 

represented as shapes, including leaves and other lateral organs (such as petals), 79 

fruits, and seeds. Unlike roots and branches, these structures can be quantified 80 

using geometric morphometric approaches, such as homologous landmarks (Viscosi 81 

and Cardini, 2011; Hasson et al., 2011; Klingenberg et al., 2012; Wang et al., 2014; 82 

Chitwood et al., 2014a; 2016a; 2016b), pseudo-landmarks (Langlade et al., 2005; 83 

Bensmihen et al., 2008; Weight et al., 2008; Feng et al., 2009; Cui et al., 2010; Costa 84 

et al., 2012), Elliptical Fourier Descriptors (Kuhl and Giardina, 1982; Iwata et al., 85 

1998; Iwata and Ukai, 2002; Chitwood et al., 2012a; 2012b; 2012c; 2013; 2014b; 86 

Chitwood, 2014; Iwata et al., 2015), as well as using a variety of shape descriptors 87 

(Gonzalo et al., 2009). Shapes without orientation, such as pavement cells, require 88 

other approaches, such as isolating individual lobes from convex hulls (Wu et al., 89 

2016), and overall dissection of closed contours can be measured using methods 90 

such as bending energy (Backhaus et al., 2010; Kuwabara et al., 2011). 91 

 92 

The use of different analytic methods, applied to different organs and scales, should 93 

be disconcerting. If the organ systems of a plant represent the inextricably linked 94 

morphological manifestation of information encoded by the genome, analyzing the 95 

shoots and roots separately falsely dichotomizes plants. To understand the 96 

phenotypic representation of genomic information requires measuring morphology 97 

globally, across roots and shoots, using a comparable mathematical and statistical 98 
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framework that can accommodate the disparate architectures, across scales, found 99 

within a single plant.  100 

 101 

Here, we advocate the use of persistent homology as a method to quantify the 102 

topologies of root and shoot architectures and the shapes of leaves and other lateral 103 

organs. Persistent homology approaches are robust against noise, can be 104 

implemented in an orientation-invariant manner, accommodate the diverse scales 105 

found in plant structures, and most importantly, are flexible, employing varied 106 

functions to describe disparate topologies, shapes, and textures. As an example of 107 

the utility of persistent homology, we describe mapping the genetic basis of plant 108 

morphology in the roots and shoots of individual tomato plants from the Solanum 109 

pennellii introgression line (IL) population (Eshed and Zamir, 1995). We describe 110 

different functions applied through a persistent homology approach to quantify leaf 111 

shape, serrations, and root architecture. We find that the ILs with the most 112 

substantial morphological changes compared to the parent background (cv. M82) 113 

are affected in all examined structures. By measuring plant morphology in both the 114 

shoot and root using a common mathematical approach, insights into concerted 115 

genetic effects globally impacting plant architecture were uncovered that would 116 

have been missed using conventional techniques. We end by describing the 117 

importance of adopting mathematical frameworks, such as persistent homology, to 118 

accommodate comprehensive phenotypic descriptions of plant morphology and its 119 

potential to integrate seemingly discordant types of data in the plant sciences 120 

through an inherently topological, network-based perspective. 121 

 122 

Results 123 

 124 

A persistent homology primer 125 

 126 

Persistent homology is a topological data analysis method that can be used to 127 

quantify complex shapes and construct informative summaries of data (Verri et al., 128 

1993; Carlsson, 2009; Edelsbrunner and Harer, 2010). Results from methods other 129 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 3, 2017. ; https://doi.org/10.1101/104141doi: bioRxiv preprint 

https://doi.org/10.1101/104141
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

than persistent homology often vary based on the scale or parameters chosen for 130 

analysis. Choosing an “optimal” scale for analysis may be difficult, or impossible if 131 

features of the data are represented across scales. Thus, instead of analyzing a single 132 

scale, persistent homology tracks the evolution of features across all possible scales. 133 

In a persistent homology framework, the features are homology groups, recording 134 

the connectivity information within a topological space. Homology groups are of 135 

different orders, including H0 (zeroth order homology, path-connected 136 

components), H1 (first order homology, one-dimensional holes), or H2 (cavities or 137 

voids) (Hatcher, 2002). Persistent homology not only records features within each 138 

scale, but it also examines how features persist across scales, both the scale that 139 

features are generated (“born”) and disappear (“die”). To do so, it requires a 140 

filtration (a nested sequence of expanding shapes). This arises from a continuous 141 

function assigning values on the domain, which can be the shape itself, or a larger 142 

bounded region, such as a rectangle enclosing the shape, for example.  143 

 144 

Below, we apply a persistent homology framework to diverse morphologies in the 145 

same tomato plants of a near-isogenic Solanum pennellii introgression line 146 

population (Eshed and Zamir, 1995), measuring leaf shape, leaf serrations, and root 147 

architecture, to demonstrate the versatility of this approach. 148 

 149 

Persistent homology and leaf shape 150 

 151 

We quantify tomato leaflet shape (Fig. 1A) by studying the leaflet contour (Fig. 1B), 152 

which is a 2D point cloud comprised of contour pixels. We center and normalize the 153 

leaflet contour to the centroid size to focus only on shape. Since the data may be 154 

noisy and leaflets possess an orientation, we choose a method that is robust to noise 155 

and blind to orientation. To robustly represent the leaf contour, we use a Gaussian 156 

kernel density estimator (Fig. 1C), which can estimate the density directly from the 157 

data (Hwang et al., 1994). It is a smooth function that achieves higher values where 158 

there are concentrations of data, which in this case are contour pixels, highly 159 

concentrated in areas such as the tip of the leaflet, serrations, and lobes. The density 160 
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estimator decays as it moves away from the data. Noise is usually very sparse, such 161 

that the function has smaller values around noise. To be invariant towards rotation, 162 

we study shapes falling in an annulus centered around the centroid of the leaflet 163 

contour (Fig. 1D). This can be achieved (Fig. 1E) by multiplying the density 164 

estimator (Fig. 1C) by the annulus kernel (a function that highlights and smoothens 165 

the annulus) (Fig. 1D). If we depict the function value as height, then the function is 166 

intuitively visualized as a set of ridges (Fig. 1F). As a plane moves from the highest 167 

function values to the lowest, we study the function values as superlevel sets (that 168 

is, the shape above the plane). The plane sometimes touches the peak of new ridge 169 

so that it generates a new connected component; alternatively, sometimes the 170 

ridges merge so that one connected component disappears. We use a persistence 171 

barcode (Fig. 1G) to record these changes: a bar, recording the scale at which the 172 

component is “born” and “dies”, represents each H0 connected component. For each 173 

leaflet contour, we compute 16 such persistence barcodes corresponding to 16 174 

expanding annuli (Fig. 1B) to represent the shape of each leaflet. 175 

 176 

Persistent homology and leaf serrations 177 

 178 

Although leaf shape contains some shape information about serrations, it is possible 179 

to craft persistent homology functions to focus on leaf serrations specifically. The 180 

serrations can be treated as the difference between the leaflet contour and a coarse 181 

approximation. To coarsely approximate the leaflet contour, we use Elliptical 182 

Fourier Descriptors (EFDs) (Kuhl and Giardina, 1982; Iwata et al., 1998; Iwata and 183 

Ukai, 2002). Such descriptors decompose the contour into a weighted sum of wave 184 

functions with different frequencies. Summing the higher frequency waves in the 185 

series, we describe finer details of the contour and achieve a closer approximation 186 

of leaflet shape. In contrast, if we use EFDs of the five lowest frequencies, we capture 187 

only coarse shape information (Fig. 2B). We then compute a distance function from 188 

the leaf contour to the EFD approximation. If the data point is inside of the 189 

approximated outline, we assign a negative sign to the distance value from the 190 

contour (blue), and if a data point falls outside, a positive sign distance value (red). 191 
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We refer to this function as a signed distance function (Fig. 2C). Given a threshold (a 192 

number), the sublevel set is the points on the contour that have smaller values than 193 

the threshold. Changing the threshold continuously from small to large, we get the 194 

sublevel set filtration. Such sets can be roughly interpreted as the intersection 195 

between of the actual contour with a coarse shape of different sizes (the pink region 196 

in Fig. 2D intersecting the contour in dark magenta). We use an Euler characteristic 197 

(the number of connected components minus the number of loops) curve (Fig. 2D) 198 

of the signed distance function between the leaflet contour and the EFD 199 

approximation to quantify leaflet serrations.  200 

 201 

Persistent homology and root architecture 202 

 203 

To measure root architecture, we took a “shovel-omics” approach, in which roots of 204 

field-grown plants are dug up, washed, and photographed, capturing root 205 

architecture as a two-dimensional projection (Bucksch et al., 2014; Das et al., 2015) 206 

(Fig. 3A). The architectural complexity of a root is partly captured by the crossing of 207 

branches in the projection. Whereas traditional 2D root metrics are confounded by 208 

such crossings, we take advantage of them to quantify the complexity of the root 209 

system. When branches cross, they form loops, which is first-order homology (H1). 210 

We assign each pixel a value based on the distance to the root (Fig. 3B). Given a 211 

threshold (a distance value), we study the shape consisting of the pixels that have 212 

smaller values than this threshold. We record the number of loops (β1) formed by 213 

this shape. As we continuously vary this threshold, the number of loops also varies 214 

and becomes a β1 curve (Fig. 3C). We use this curve to quantify the complexity of 215 

branching pattern of 2D root projections.  216 

 217 

Persistent homology can detect global, genetic changes to shoot and root architectures 218 

 219 

As described above, a persistent homology framework, combined with tailored 220 

functions, can describe morphologies as diverse as the shape of leaves (Fig. 1), 221 

serrations (Fig. 2), and root architecture (Fig. 3). By measuring these features in the 222 
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same plants across a morphologically diverse population, we can determine the 223 

extent that genetic alterations globally or locally influence plant architecture. To do 224 

so, we leverage the near-isogenic Solanum pennellii tomato introgression lines (ILs) 225 

(Eshed and Zamir, 1995). These lines each harbor a single, relatively small 226 

introgressed region from the wild desert tomato S. pennellii in an otherwise 227 

domesticated tomato background of the cultivar M82. Detecting a significant 228 

phenotypic difference in an IL compared to the cv. M82 parent delimits the 229 

underlying genetic cause to the introgressed region (Chitwood et al., 2013). As we 230 

describe below, the ability to compare each IL against the cv. M82 parent provides a 231 

convenient means to reduce highly multivariate persistent homology data 232 

describing global features of complex morphologies into single discriminant values. 233 

These discriminant values can be correlated with each other to test hypotheses of 234 

how the morphology of different organs change in a concerted fashion or 235 

independently from each other in the presence of different introgressed regions. In 236 

the examples below we compare the introgression line IL4-3, which has large, 237 

previously documented changes in leaf shape and serrations (Chitwood et al., 2013; 238 

2014b), to the cv. M82 parent. 239 

 240 

We use 16 persistence barcodes, derived from 16 rings (Fig. 1), to quantify each leaf 241 

shape. For each pair of leaf shapes, we compute the bottleneck 2-distance (compute 242 

the bottleneck distance for each ring, then take the square root of the sum of these 243 

16 bottleneck distances squared) between them. From all pairwise distances, we 244 

employ multidimensional scaling (MDS) to project the data into a reduced 245 

dimensional Euclidean space, to preserve the pairwise distances as much as 246 

possible. We then apply a canonical variant analysis (CVA) to the reduced 247 

dimensional projection to determine the discriminant features for two groups, 248 

which in this case is each individual IL compared to the cv. M82 parent. Because 249 

there are only two groups (IL vs. cv. M82), there is only one canonical variant (CV1). 250 

For example, CV1 values separating IL4-3 and cv. M82 is a composite of persistent 251 

homology features discriminating these two groups (Fig. 4A). A bootstrap test 252 

demonstrates that the detected difference between the mean CV1 scores of these 253 
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 9 

two groups has high statistical significance (p<0.0001; Fig. 4). To interpret the 254 

morphological differences between lines, we can compute the contributions for each 255 

annulus using a linear discriminant analysis. For each ring, we compute the ratio of 256 

between-class scatter to within-class scatter to measure the contribution of each 257 

ring. For the comparison between IL4-3 and cv. M82, we see that the 16th ring 258 

contributes the most discrimination between these genotypes (Fig. 4A). From the 259 

illustration (Fig. 4A), we can see that the difference is mainly derives from leaf 260 

length. The sixth and tenth rings contribute to the discrimination of the IL4-3 261 

phenotype as well, and we can see that these differences mainly result from leaf 262 

width and lobing. The length and width of IL4-3 leaves has been previously shown 263 

to be some of the most discriminating features of this introgression line (Chitwood 264 

et al., 2013; 2014b). 265 

Another previously described feature of IL4-3 leaves is reduced serration compared 266 

to cv. M82, as quantified using circularity (a ratio of area to perimeter, 4� �267 

�
����

����������
��(Chitwood et al., 2013; 2014b). The Euler characteristic (EC) curves for 268 

all IL4-3 and cv. M82 replicates clearly indicate quantitative differences in leaflet 269 

serration as detected using persistent homology. Note that the Euler characteristic 270 

rises earlier and more quickly for cv. M82 (blue) compare to IL4-3 (red), indicating 271 

more numerous and deeper serrations (Fig. 4B). The EC curve for each leaflet is 272 

discretized into an 112-dimensional vector and then reduced in its dimensionality 273 

using a principal component analysis (PCA). Similar to leaf shape, we then apply a 274 

CVA and compute the CV1 score discriminating the genotypes by serration (Fig. 4B). 275 

Multiplying the PCA loadings by CVA loadings, we can measure the contribution of 276 

every seven vectors to the morphological differences between IL4-3 and cv. M82. 277 

The first order betti number (β1) curves (the number of loops) for all replicates of 278 

IL4-3 and cv. M82 reveal differences in root architecture between these genotypes 279 

(Fig. 4C). We discretize each curve into an 80-dimensional vector and reduce the 280 

dimensionality by PCA to compute CV1 scores (Fig. 4C). The contribution for every 281 

five vectors to the root architecture differences is computed in the same way as in 282 
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the leaf serration analysis. Examining the β1 curves, it is evident that cv. M82 has 283 

greater root architecture complexity compared to IL4-3. 284 

Following the analyses comparing IL4-3 to cv. M82 (Fig. 4), we compare other ILs 285 

with cv. M82 similarly (Fig. 5). Because persistent homology can detect exquisite 286 

morphological and architectural differences in a highly multivariate space, 287 

comparing each IL to cv. M82 using a discriminant analysis provides an indicator of 288 

global morphological differences for each IL, while allowing such differences to be 289 

fundamentally different in their nature. In other words, overall differences in leaf 290 

shape (Fig. 5A), leaf serrations (Fig. 5B), and root architecture (Fig. 5C), can be 291 

represented as a magnitude value (CV1), regardless of the myriad potential ways 292 

such morphological differences manifest. 293 

 294 

Persistent homology detects concerted changes in shoot and root architecture 295 

 296 

Applying a persistent homology framework to the S. pennellii ILs allows a single 297 

value encapsulating the global morphological features of different plant organs—298 

leaf shape, serrations, and root architecture—to be calculated across genotypes. 299 

Such comprehensive traits differ from univariate traits that dramatically changed 300 

during domestication, such as fruit weight (Frary et al., 2000), for which a large 301 

amount of phenotypic variance is attributable to a single locus. Rather, persistent 302 

homology traits more closely resemble other multivariate traits, such as was used to 303 

identify QTL controlling 3D rice-root architecture (Topp et al., 2013), or the Fourier 304 

decomposition of leaf shape (Chitwood et al., 2013; 2014b), which is highly 305 

heritable but extremely polygenic. By reducing the myriad possible architectural 306 

changes in leaves and roots to a single value reflecting magnitude through 307 

discriminant analyses between ILs and cv. M82, we ask and begin to answer 308 

fundamental questions in plant biology: Do genetic alterations affecting one part of 309 

the plant affect others? Generally, are genetic changes in shoot architecture 310 

accompanied by changes in the root (and vice versa), or are these organ systems 311 

under separate genetic controls? 312 
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 313 

Comparing CV1 values normalized to cv. M82 across traits, it becomes apparent that 314 

ILs with the most profound differences from cv. M82 for one trait, tend to be 315 

profoundly altered in others (Fig. 6A). Eight ILs (IL3-2, IL4-2, IL4-3, IL6-2-2, IL7-2, 316 

IL8-1, IL8-1-1, and IL8-1-5) are among the strongly altered ILs for leaf shape (in the 317 

top 12), leaf serrations (in the top 15), and root architecture (in the top 27). 318 

Furthermore, the median values of the normalized CV1 values for each trait are 319 

significantly correlated with each other (Fig. 6B), although leaf shape and serrations 320 

are more highly correlated with each than with root architecture. 321 

 322 

Our results indicate that shoot and root architectures, when analyzed with a metric 323 

capable of quantifying multivariate features across scales, are under concerted 324 

genetic control. We emphasize that these changes only represent the magnitude of 325 

architectural changes, implying that changes in shoot morphology are simply 326 

accompanied by changes in root architecture (and vice versa), but that nothing is 327 

implied about the direction of the phenotypic changes within the multivariate space. 328 

 329 

Discussion 330 

 331 

Persistent homology is a framework for analyzing topology at different resolutions, 332 

and as such bypasses major obstacles that currently confront the analysis of 333 

discretized shoot and root architectures. It can be applied in an orientation-334 

independent fashion and by analyzing shape and topology through a continuum of 335 

resolutions, is robust to noise and accommodates features at multiple scales. The 336 

most versatile feature of a persistent homology framework is that any number of 337 

functions, specific to the task at hand, can be analyzed for topological properties at 338 

different resolutions. The examples of leaf shape, serrations, and root architecture in 339 

this work exemplify the utility of such an approach in the global analysis of plant 340 

morphology. Density functions applied through growing annuli originating from leaf 341 

centroids measure shape (Fig. 1); set levels emanating from a Fourier transform 342 

approximation of leaf shape measure serrations (Fig. 2); and dilation of root 343 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 3, 2017. ; https://doi.org/10.1101/104141doi: bioRxiv preprint 

https://doi.org/10.1101/104141
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

architectures can detect first order Betti number (β1) loops (Fig. 3). The metaphor 344 

of topology used across varying resolutions is an adaptable one, and when applied 345 

to different features throughout the same plants, can determine the genetic basis of 346 

global morphology (Figs. 4-5) and concerted changes in root and shoot 347 

architectures revealing previously undetected pleiotropy in tomato (Fig. 6). 348 

 349 

It is worth contrasting persistent homology with conventional morphometric 350 

methods in plants. What persistent homology gains by being universally applicable 351 

it loses in being less intuitive, requiring an understanding of the functions used and 352 

how they are applied. For example, many conventional root measures are literal and 353 

easy to comprehend (such as root length and diameter, branching angles and 354 

densities, convex area, and other shape descriptors). But even in sum, they can 355 

represent only limited aspects of the morphospace, and thus our understanding of 356 

their genetic basis. Similarly, Procrustes-adjusted homologous landmarks and 357 

pseudo-landmarks have literal meaning and can be represented as eigenshapes, but 358 

the decision of which landmarks to use and the scale of the features they measure is 359 

also arbitrary. Even though somewhat abstract, Elliptical Fourier Descriptors (EFDs) 360 

can also be used to reconstruct eigen-representations of leaves but fail to measure a 361 

range of scales, sacrificing the local measurement of serrations for overall leaf 362 

shape. Features such as pavement cell lobes and leaf serrations and lobes can be 363 

isolated and measured for specific properties, but again, such approaches focus on 364 

local (and discretized) elements of plant morphology. Although straightforward to 365 

understand, all these approaches suffer from partitioning the plant into discrete 366 

units that do not exist in reality, capturing either magnitude or shape, or focus on 367 

only one scale of resolution, foregoing a truly comprehensive measure of 368 

morphology from local to global features. 369 

 370 

By applying functions over a range of resolutions, persistent homology can measure 371 

local features in a global manner, and this is where its versatility and power lies. The 372 

multivariate representations of persistent homology results are therefore not an 373 

assembly of myriad, piecemeal measurements of parts of the plant defined by 374 
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human intuition; rather, persistent homology results are represented as a 375 

continuum of function outputs applied over a range of resolutions. It is this 376 

underlying philosophy that allows persistent homology to be applied to any number 377 

of plant morphological features—topology, shape, texture (such as in pollen grains; 378 

Mander et al., 2013), and more—permitting an unprecedented, unified view of plant 379 

architecture. It will be particularly useful for analyzing dynamic changes in plant 380 

morphology over time, a reflection of the ability to apply persistent homology in n-381 

dimensional spaces and of the requirement to analyze over ranges of resolutions. 382 

Importantly, persistent homology can be applied to networks, and by reducing 383 

datasets (such as gene expression, proteomic, metabolite, and other molecular data) 384 

to topologies, potentially represents a way to analyze disparate data types in a truly 385 

integrated fashion. Such a unified view of plant morphology (and plant science, in 386 

general) is desperately required in an age when the automated acquisition of plant 387 

morphological and molecular data is reaching unprecedented levels. 388 

 389 

Materials and Methods 390 

 391 

Plant material and growth conditions 392 

 393 

Solanum pennellii introgression lines (ILs, LA4028-LA4103; Eshed and Zamir, 1995) 394 

and cv. M82 seeds were treated with 50% bleach for 1 min, rinsed with water, and 395 

germinated in phytatrays lined with moist paper towels. The seeds were left in the dark 396 

for 3 days, followed by 3 days in light, and transferred to greenhouse conditions in 50-397 

plug trays. At this point, the plants were randomized according to a block design at a 398 

replication of 15. Plants were hardened by moving them outside for 10 days (5/10/2014).  399 

Hardened plants were transplanted to field conditions (5/21/2014, Bradford Research 400 

Station, Columbia, MO) with 10 feet between rows and 4-foot spacing between plants 401 

within rows. The final design had 15 blocks, each consisting of 4 rows with 20 plants per 402 

row. Each of the 76 ILs and 2 experimental cv. M82 plants were randomized within each 403 

block. After flowering (the week of 7/21/2014), four fully expanded adult leaves were 404 

harvested from each plant, and the adaxial surfaces of the left distal leaflets were 405 
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scanned. The scans were processed using Image J macros to segment individual leaflets 406 

and to threshold and binarize each leaflet image. After fruit harvest, the roots of all plants 407 

were dug out manually, washed and imaged using a camera setup as detailed in Das et al. 408 

(2015).  409 

 410 

Persistent Homology 411 

 412 

Persistent homology (Verri et al., 1993; Carlsson, 2009; Edelsbrunner and Harer, 413 

2010) is a tool of topological data analysis that is well suited for the study of 414 

complex shapes such as plant morphological data extracted from digital images. 415 

Persistent homology applied to a function captures information about its shape by 416 

integrating topological signatures of its various sublevel or superlevel sets into a 417 

single persistence diagram.  The data analyzed in this paper consist of 2D point 418 

clouds extracted from images that are converted into functions that encode local-to-419 

global morphological properties such as leaf shape, leaf serrations, and root 420 

architecture. Our pipeline for converting 2D plant imaging data into persistence 421 

diagrams involves four main steps: 422 

1. Extracting point clouds from images: From binary images, we extract 2D point 423 

clouds representing leaf contours or 2D projections of roots, where a pixel is 424 

converted into a point via its coordinates. 425 

2. Converting point clouds to functions: From point cloud data, we construct 426 

various functions that carry local and global information about leaf shape, 427 

leaf serrations, or root architecture.  A more detailed description of these 428 

functions is given below. 429 

3. Forming filtrations: A filtration of a domain D is an expanding sequence of 430 

subsets that eventually cover D. In applications, D may be a leaf contour, a 2D 431 

projection of a root, or a full rectangle containing such data. A function on D 432 

yields a filtration as follows. Given a threshold value r (a number), the set of 433 

points in D whose function values do not exceed the threshold is called the 434 

sublevel set for r, which can be mathematically described as 435 
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f −1(−∞,r] :={x : f (x) ≤ r}. Similarly, the set consisting of points whose 436 

function values are not smaller than the threshold is called the superlevel set 437 

for r and given by f −1[r,+∞) :={x : f (x) ≥ r}.  If r1 < r2, then the sublevel set for 438 

r1 is always included in the sublevel set for r2. As we reach the maximum 439 

value of the function, its sublevel set comprises the entire domain. Thus, we 440 

obtain a filtration called the sublevel set filtration. A similar construction 441 

applies to superlevel sets. Fig. 1G provides an example of a superlevel set 442 

filtration, where the domain D is a square containing a leaf.  Fig. 2D depicts a 443 

filtration of the contour of a leaf in which sublevel sets correspond to 444 

intersections of the growing pink regions with the leaf contour. In Fig. 3C, the 445 

sublevel sets correspond to different dilations of a root.  446 

4. Computing persistent homology:  From a filtration, as described above, we 447 

construct barcodes that summarize the topology of the various stages of the 448 

filtration; more specifically, their 0-dimensional and 1-dimensional 449 

homology. Here, homology refers to a mathematical descriptor of the shape 450 

of the filtration, distinct from the concept of homology by descent from a 451 

common ancestor in biology. 0-homology captures the number of connected 452 

components (the number of islands) at each stage of the filtration. This 453 

number is known as the 0-th Betti number and is denoted 
0β . For example, in 454 

Fig. 2D, we see three connected components at the first stage, then six, etc. 455 

The full evolution as components are created or merge along the filtration 456 

can be encoded in a single barcode (Carlsson et al.,2005; Ghrist, 2008), as 457 

illustrated in Fig. 1G. A bar in a barcode starting at a value b (birth) and 458 

ending at d (death) indicates a connected component newly generated at the 459 

level b that merges with others at level d. Thus, more than just tracking the 460 

evolution of 
0β , a persistence diagram contains information about how 461 

components coalesce at different stages of the filtration. Similarly, 1-462 

homology is about the number 
1β  

of essential loops (holes), known as the first 463 

Betti number, leading to a barcode for the 1-homology of a filtration. There 464 

are higher dimensional analogues; however, they will not play a role in our 465 
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analyses because our data is 2-dimensional. We use the software package 466 

JavaPlex (Adams et al. 2014) to compute barcodes. Some useful reductions of 467 

persistence diagrams that are simpler to compute are the 
0β curve, the

1β  468 

curve, and the Euler characteristic curve, which are described next. As we 469 

vary the threshold r continuously, 
0β  

also changes producing a 
0β  

curve that 470 

describes how the 0-th Betti number evolves with the threshold. Similarly, 471 

we obtain a 
1β  curve, as exemplified in Fig. 3C (to measure complexity of root 472 

architecture). For 2D domains, the Euler characteristic (EC) is given by473 

χ = β
0

− β
1
, also viewed as a curve, as in Fig. 2D (to measure serrations). The 474 

Euler characteristic is the easiest to compute since it may be calculated 475 

directly from a triangulation of an object. 476 

For statistical shape analysis based on persistence diagrams, a key ingredient is a 477 

metric to measure similarity between two persistence diagrams. The metric of 478 

choice is known as the bottleneck distance, with respect to which persistence 479 

diagrams are known to be robust features (Cohen-Steiner et al., 2007). We also 480 

carry out statistical analysis based on EC curves and
1β  curves. These are Euclidean 481 

features that can be approached with standard techniques such as principal 482 

component analysis (PCA) and linear discriminant analysis (LDA). 483 

 484 

A key step in the present approach to quantification of variation in morphology is 485 

the design of functions that effectively capture shape properties: local, regional, and 486 

global. Next, we describe the functions used for analyses of leaf shape, leaf 487 

serrations, and root architecture. 488 

 489 

Leaf shape: Topological features often times become significantly more effective for 490 

shape representation and analysis under spatial localization. For leaf contour shape, 491 

we begin with a Gaussian density estimator for the entire contour of a leaf, defined 492 

as 
21

( )
2

1

1 1
( ) :

2

ix yn
h

i

x e
n

ϕ
π

−−

=

= ∑ , where y
1
,� , y

n
 are the data points on the contour and 493 
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h is a bandwidth parameter; see Fig. 1C. We then modulate this function by 494 

multiplying it by a “bump” function K that localizes it to a particular region. In our 495 

analyses, we use localization to concentric rings about the centroid of a leaf. The 496 

annular domains ensure that the resulting topological features are independent of 497 

orientation, as shown in Fig. 1D-F. More precisely, we use modulation by kernels of 498 

the form 

2

2

( ( , ) )

2
, , ( ) :

d x y t

t yK x e
σ

σ
σ

−−
= , where y is the center of the annulus, tσ determines 499 

its radius, and the parameter σ its width. We refer to persistent homology derived 500 

from such localized functions as local persistent homology. 501 

 502 

Leaf serrations: Elliptical Fourier Descriptors (EFD) decompose a contour into a 503 

weighted sum of wave functions with different frequencies. Summing only over a 504 

finite number of harmonics gives a smooth approximation of the contour. This 505 

smoothing effect leads to loss in such details as serrations to a certain degree. 506 

However, we take advantage of this and quantify serrations by looking at residuals; 507 

that is, the difference between the original contour and the smooth approximation.  508 

Our experiments indicated that EFDs for the first five lowest frequencies yield 509 

smooth approximations suitable for serration analysis. Let C denote the original leaf 510 

contour and T the smooth approximation. We compute the distance from each point 511 

on C to T with the convention that if the point on C is inside the contour T, then we 512 

assign a negative sign to the distance. The distance is non-negative otherwise.  We 513 

analyze serrations via the Euler characteristic function associated with the sublevel 514 

set filtration of this signed distance function. In this case, the EC curve is closely 515 

related to the 
0β curve, but easier to calculate. 516 

 517 

Root architecture: From an image of a 2D root projection, we construct a distance 518 

from function that computes the distance from a point to the nearest pixel on the 519 

root.  In this way, all points on the root have value 0. The farther the point is from 520 

the root, the larger the value of the function. If we increase the threshold value 521 

starting from 0, the sublevel set filtration gives progressively larger dilations of the 522 

root. Since root branching typically creates numerous crossings and loops in 2D 523 
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projections, we use the 
1β  curve associated with this distance function as a measure 524 

of complexity of root architecture.  525 

 526 

All Matlab functions necessary to calculate persistence barcodes, bottleneck 527 

distances for leaf shape, euler characteristic curves for leaf serrations, and 
1β  curves 528 

for root architecture used in this manuscript can be found at the following GitHub 529 

repository: https://github.com/maoli0923/Persistent-Homology-Tomato-Leaf-Root 530 
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 761 

Figure Legends 762 

Figure 1: Persistent homology and leaf shape. A) A binary tomato leaflet image. 763 

B) Point cloud representing the contour of the leaflet and sampling of the 16 annuli 764 

used to subset data in analysis. The green ring (“10”) is used as an example 765 

subsequently. C) A colormap of a Gaussian density estimator applied to the contour 766 

point cloud. The density estimator is robust to noise. Red indicates a larger density 767 

of contour points (e.g., near serrations), blue a smaller density of contour points 768 

(e.g., straighter edges). D) An annulus kernel, a technique to localize and smoothen 769 

the isolation of density data. E) The multiplication of the density estimator (C) with 770 

the kernel annulus (D) emphasizes leaflet density features falling within the green 771 

ring indicated in (B). F) Side view of (E) showing the distribution of density features 772 

within the annulus. G) A persistence barcode. Each bar (vertical axis) represents the 773 

“birth” and “death” of a connected component. Connected components are “born” as 774 

different scales of the density features are traversed (horizontal axis) and “die” as 775 
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they merge with other components. Eventually only a single component persists. 776 

The traversal of scales across density features is visually depicted (bottom), with 777 

magenta dotted lines indicating the relevant position in the persistence barcode 778 

(top). 779 

 780 

Figure 2: Persistent homology and leaf serrations. A) Point cloud representing 781 

the contour of a leaflet. B) A coarse approximation of the contour using an elliptical 782 

Fourier transform. C) A colormap of a signed distance function from the contour to 783 

the Fourier approximation. D) The Euler characteristic (the number of connected 784 

components minus the number of holes) curve. The Euler characteristic is plotted 785 

against traversal of the signed distance function. Shown are example leaves 786 

depicting the number of connected components (dark magenta) at the indicated 787 

positions in the curve (magenta dotted lines). 788 

 789 

Figure 3: Persistent homology and root architecture. A) A binary image of root 790 

architecture as a 2D projection. B) A colormap of a distance function of pixels to the 791 

root. C) A β1 curve plotting the number of loops as a function of the distance function 792 

to quantify the complexity of root architecture. Shown are example root images 793 

(bottom) at indicated positions in the curve (magenta dotted lines). 794 

 795 

Figure 4: Comparing persistent homology results between IL4-3 and the 796 

parent cv. M82. A) Analysis of leaf shape. A boxplot of the canonical variant scores 797 

(CV1)  between IL4-3 (red) and cv. M82 (blue), representing the discrimination of 798 

these two genotypes by 16 persistence barcodes (left). Example leaflets from each 799 

genotype and the superimposition of annuli used for analysis (middle). The 800 

contribution of rings to discriminating IL4-3 and cv. M82 (right). B) Analysis of 801 

serrations. The boxplot of CV1 scores (left), the Euler characteristic curves for all 802 

replications of IL4_3 (red) and cv. M82 (blue) (middle), and the contribution of 803 

every seven level sets of the Euler characteristic to discrimination of serration 804 

differences between the genotypes (right). C) Analysis of root architecture. The 805 

boxplot of CV1 scores (left), β1 curves depicting the number of loops across scales 806 
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for all replications of IL4-3 (red) and cv. M82 (blue) and example root data (middle), 807 

and the contribution of every five level sets to root architecture discriminating IL4-3 808 

and cv. M82 (right). 809 

 810 

Figure 5: Overall morphological differences between near-isogenic 811 

introgression lines and the parent cv. M82. Normalized canonical variant scores 812 

(CV1) measuring global, discriminating differences between introgression lines 813 

(ILs) and cv. M82 plotted against IL identity, ranked by median CV1 value. Color 814 

indicates p values. Shown are CV1 scores for A) leaf shape, B) leaf serrations, and C) 815 

root architecture. 816 

 817 

Figure 6: Concerted changes in leaf and root architecture underlie 818 

morphological diversity in tomato introgression lines. A) The most extreme ILs 819 

for each trait ranked by median CV1 value. Left, leaf shape; middle, serrations; right, 820 

root architecture. B) Scatter plots of median values for leaf shape vs. serrations 821 

(left), leaf shape vs. root architecture (middle), and root architecture vs. serrations 822 

(right). The most morphologically different ILs from cv. M82 are consistently so 823 

across traits. The most extreme ILs are similarly colored across all plots. Black 824 

indicates cv. M82.  825 

 826 

Supplemental data 827 

 828 

All Matlab functions necessary to calculate persistence barcodes, bottleneck 829 

distances for leaf shape, euler characteristic curves for leaf serrations, and 
1β  curves 830 

for root architecture used in this manuscript can be found at the following GitHub 831 

repository: https://github.com/maoli0923/Persistent-Homology-Tomato-Leaf-Root 832 

 833 

 834 

 835 
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