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ABSTRACT: 

Biochemical  reactions  within  individual  cells  result  from the  interactions  of  molecules,

typically  in  small  numbers.  Consequently,  the  inherent  stochasticity  of  binding  and  diffusion

processes generate noise along the cascade that leads to the synthesis of a protein from its encoding

gene. As a result,  isogenic cell populations display phenotypic variability even in homogeneous

environments. The extent and consequences of this stochastic gene expression have only recently

been  assessed  on  a  genome-wide  scale,  in  particular  owing  to  the  advent  of  single  cell

transcriptomics.  However,  the  evolutionary  forces  shaping  this  stochasticity  have  yet  to  be

unraveled. We take advantage of two recently published data sets of the single-cell transcriptome of

the domestic mouse Mus musculus in order to characterize the effect of natural selection on gene-

specific transcriptional stochasticity. We show that noise levels in the mRNA distributions (a.k.a.

transcriptional noise) significantly correlate with three-dimensional nuclear domain organization,

evolutionary constraint on the encoded protein and gene age. The position of the encoded protein in

biological pathways, however, is the main factor that explains observed levels of transcriptional

noise, in agreement with models of noise propagation within gene networks. Because transcriptional

noise is under widespread selection, we argue that it constitutes an important component of the

phenotype  and  that  variance  of  expression  is  a  potential  target  of  adaptation.  Stochastic  gene

expression should therefore be considered together with mean expression level in functional and

evolutionary studies of gene expression.
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Introduction

Isogenic cell populations display phenotypic variability even in homogeneous environments

(Spudich and Koshland 1976). This observation challenged the clockwork view of the intra-cellular

molecular machinery and led to the recognition of the stochastic nature of gene expression. Since

biochemical  reactions  result  from  the  interactions  of  individual  molecules  in  small  numbers

(Gillesple 1977), the inherent stochasticity of binding and diffusion processes generates noise along

the biochemical cascade leading to the synthesis of a protein from its encoding gene (Figure 1).

The study of stochastic gene expression (SGE) classically recognizes two sources of expression

noise. Following the definition introduced by Elowitz et al  (Elowitz et al. 2002), extrinsic noise

results from variation in concentration, state and location of shared key molecules involved in the

reaction cascade from transcription initiation to protein folding. This is because molecules that are

shared among genes, such as ribosomes and RNA polymerases, are typically present in low copy

numbers  relative  to  the  number  of  genes  actively  transcribed  (Shahrezaei  and  Swain  2008).

Extrinsic factors also include physical properties of the cell such as size and growth rate, likely to

impact the diffusion process of all molecular players. Extrinsic factors therefore affect every gene in

a cell equally. Conversely, intrinsic factors generate noise in a gene-specific manner. They involve,

for example, the strength of cis-regulatory elements (Suter et al. 2011) as well as the stability of the

mRNA molecules that are transcribed (Mcadams and Arkin 1997; Thattai and Oudenaarden 2001).

Every gene is affected by both sources of stochasticity and the relative importance of each has been

discussed in the literature (Becskei et al. 2005; Raj and Oudenaarden 2008). Shahrezaei and Swain

(Shahrezaei and Swain 2008) proposed a more general, systemic and explicit  definition for any

organization level, where intrinsic stochasticity is “generated by the dynamics of the system from

the random timing of individual reactions” and extrinsic stochasticity is “generated by the system

interacting with other stochastic systems in the cell  or its environment”.  This generic definition

therefore includes Raser and O’Shea's  (Raser and O’Shea 2005) suggestion to further distinguish

extrinsic noise occurring “within pathways” and “between pathways”. Other  organization levels of

gene expression are also likely to affect expression noise, such as chromatin structure (Blake et al.

2003; Hebenstreit 2013), and three-dimensional genome organization (Pombo and Dillon 2015).

Pioneering work by Fraser et al (Fraser et al. 2004) has shown that SGE is an evolvable trait

which is subject to natural selection. First, genes involved in core functions of the cell are expected

to behave more deterministically  (Barkai and Leibler 1999) because temporal oscillations in the

concentration  of  their  encoded  proteins  are  likely  to  have  a  deleterious  effect.  Second,  genes

involved  in  immune  response  (Arkin  et  al.  1998;  Norman  et  al.  2015) and  response  to

environmental conditions can benefit from being unpredictably expressed in the context of selection
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for bet-hedging (Thattai and Oudenaarden 2004). As the relation between fitness and stochasticity

depends on the function of the underlying gene, selection on SGE is expected to act mostly at the

intrinsic  level  (Newman  et  al.  2006;  Lehner  2008;  Wang  and  Zhang  2011).  The  molecular

mechanisms by which natural selection operates to regulate expression noise, however, remain to be

elucidated.

Due to methodological limitations, seminal studies on SGE (both at the mRNA and protein

levels) have focused on only a handful of genes (Elowitz et al. 2002; Ozbudak et al. 2002; Chubb et

al. 2006). The canonical approach consists in selecting genes of interest and recording the change of

their noise levels in a population of clonal cells as a function of either (1) the concentration of the

molecule that allosterically controls affinity of the transcription factor to the promoter region of the

gene  (Blake et al. 2003; Bar-even et al. 2006) or (2) mutations artificially imposed in regulatory

sequences (Ozbudak et al. 2002). In parallel with theoretical work (Kepler and Elston 2001; Batada

and  Hurst  2007;  Kaufmann  and  van  Oudenaarden  2007;  Sánchez  and  Kondev  2008), these

pioneering studies have provided the basis of our current understanding of the proximate molecular

mechanisms behind SGE, namely complex regulation by transcription factors, architecture of the

upstream region (including the presence of TATA box) and gene orientation  (Wang et al. 2011),

translation efficiency and mRNA / protein stability  (Eldar and Elowitz 2010), properties  of the

protein-protein interaction network  (Li et  al.  2010). Measurements at  the genome scale coupled

with rigourous statistical analyses are however needed in order to go beyond gene idiosyncrasies

and particular histories, and test hypotheses about the evolutionary forces shaping SGE (Sauer et al.

2007).

The  recent  advent  of  single-cell  RNA  sequencing  makes  it  possible  to  sequence  the

transcriptome of each individual cell in a collection of clones, and to observe the variation of gene-

specific mRNA quantities across cells. This provides a genome-wide assessment of transcriptional

noise. While not accounting for putative noise resulting from the process of translation of mRNAs

into proteins, transcriptional noise accounts for noise generated by both synthesis and degradation

of mRNA molecules  (Figure 1).  Previous studies,  however,  have shown that  transcription  is  a

limiting  step  in  gene  expression,  and  that  transcriptional  noise  is  therefore  a  good  proxy  for

expression noise  (Newman et al. 2006; Taniguchi et al. 2011). Here, we used publicly available

single-cell transcriptomics data sets to quantify gene-specific transcriptional noise and relate it to

other genomic factors, including protein conservation and position in the interaction network, in

order to uncover the molecular basis of selection on stochastic gene expression.
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Results

A new measure of noise to study genome-wide patterns of stochastic 

gene expression

We used the dataset generated by Sasagawa et al (2013), which quantifies gene-specific

amounts of mRNA as fragments per kilobase of transcripts per million mapped fragments (FPKM)

values for each gene and each individual  cell.  Among these,  we selected  all  genes  in a subset

containing 20 embryonic stem cells in G1 phase in order to avoid recording variance that is due to

different cell types or cell-cycle phases. The Quartz-Seq sequencing protocol captures every poly-A

RNA present in the cell at one specific moment, allowing to assess transcriptional noise.  Following

Shalek et al (2014) we first filtered out genes that were not appreciably expressed in order to reduce

the contribution of technical noise to the total noise. For each gene we further calculated the mean μ

in FPKM units and variance σ
2

in FPKM
2 
units, as well as two previously published measures of

stochasticity: the  Fano factor, usually referred to as the bursty parameter, defined as σ
2/ μ and

Noise, defined as the coefficient of variation squared ( σ
2/ μ

2
). Both the variance and Fano factor

are monotonically increasing functions of the mean (Figure 2A). Noise is inversely proportional to

mean expression (Figure 2A), in agreement with previous observations at the protein level  (Bar-

even et al. 2006; Taniguchi et al. 2011). While this negative correlation was theoretically predicted

(Tao et al. 2007), it may confound the analyses of transcriptional noise at the genome level, because

mean gene expression is under specific selective pressure (Pál et al. 2001). In order to disentangle

these  effects,  we  developed  a  new  quantitative  measure  of  noise,  independent  of  the  mean

expression level of each gene. To achieve this we performed polynomial regressions  in the log-

space plot of variance versus mean. We defined F* as σobs

2 /σ pred

2
(see Material and Methods) that

is, the ratio of the observed variance over the variance component predicted by the mean expression

level. We selected the simplest model for which no correlation between F* and mean expression

was  observed,  and  found  that  a  degree  3  polynomial  model  was  sufficient  to  remove  further

correlation  (Kendall’s tau = -0.0037, p-value = 0.5217,  Figure 2A). Genes with F* < 1 have a

variance lower than expected according to their mean expression whereas genes with F* > 1 behave

the opposite way (Figure 2B). This approach fulfills the same goal as the running median approach

of Newman et. al  (Newman et al. 2006), whilst it includes the effect of mean expression directly

into the measure of stochasticity instead of correcting a posteriori a dependent measure (in that case,

the Fano factor). We therefore use F* as a measure of SGE throughout this study.
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Stochastic gene expression correlates with the three-dimensional 

structure of the genome

We  first  sought  to  investigate  whether  genome  organization  significantly  impacts  the

patterns of stochastic gene expression. We assessed whether genes in proximity along chromosomes

display more similar amount of transcriptional noise than distant genes. We tested this hypothesis

by computing the primary distance on the genome between each pair of genes, that is, the number

of  base  pairs  separating  them  on  the  chromosome,  as  well  as  the  relative  difference  in  their

transcriptional noise (see Methods). We found no significant association between the two distances

(Mantel  tests,  each  chromosome  tested  independently).  Contiguous  genes  in  one  dimension,

however,  have  significantly  more  similar  transcriptional  noise  that  non-contiguous  genes

(permutation test, p-value < 1e-4, Figure S1). Using Hi-C data from mouse embryonic cells (Dixon

et al. 2012), we report that genes in contact in three-dimensions have significantly more similar

transcriptional noise than genes not in contact (permutation test, p-value < 1e-3, Figure S1). Most

contiguous genes in one-dimension also appear to be close in three-dimensions and the effect of 3D

contact  is  stronger  than  that  of  1D  contact.  These  results  therefore  suggest  that  the  three-

dimensional structure of the genome has a stronger impact on stochastic gene expression than the

position of the genes along the chromosomes. We further note that while highly significant, the size

of this effect is small, with a difference in relative expression of -1.10% (Figure S1).

Transcription factors binding and histone methylation impact 

stochastic gene expression

The binding of  transcription  factors  (TF) to  promoter  constitutes  one  notable  source  of

transcriptional  noise  (Figure  1)  (Blake  et  al.  2003;  Newman  et  al.  2006).  In  eukaryotes,  the

accessibility of promoters is determined by the chromatin state, which is itself controlled by histone

methylation. We assessed the extent to which transcriptional noise is linked to particular TFs and

histone  marks  by  using  data  from the  Ensembl  regulatory  build  (Zerbino  et  al.  2015),  which

provides data from experimental evidence of TF binding and methylation sites along the genome.

First  we  contrasted  the  F*  values  of  genes  with  binding  evidence  for  each  annotated  TF

independently. Among 13 TF represented by at least 5 genes in our data set, we found that 4 of

them  significantly  influence  F*  after  adjusting  for  a  global  false  discovery  rate  of  5%:  the

transcription  repressor  CTFC  (adjusted  p-value  =  0.0321),  the  transcription  factor  CP2-like  1

(Tcfcp2l1, adjusted p-value = 0.0087), the X-Linked Zinc Finger Protein (Zfx, adjusted p-value =

0.0284)  and  the  Myc  transcription  factor  (MYC,  ajusted  p-value  =  0.0104).  Interestingly,

association with each of these four TFs led to an increase in transcriptional noise. We also report a

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2017. ; https://doi.org/10.1101/104216doi: bioRxiv preprint 

https://doi.org/10.1101/104216
http://creativecommons.org/licenses/by-nc-nd/4.0/


weak but significant  positive correlation between the number of transcription factors associated

with each gene and the amount of transcriptional noise (Kendall’s tau = 0.0238, p-value = 0.0007).

This observation is consistent with the idea that noise generated by each TF is cumulative (Sharon

et al. 2014). We then tested if particular histone marks are associated with transcriptional noise.

Among five histone marks represented in our data set, three were found to be highly significantly

associated to a higher transcriptional noise: H3K4me3 (adjusted p-value = 1.9981e-146), H3K4me2

(adjusted p-value = 5.4524e-121) and H3K27me3 (adjusted p-value = 5.2985e-34). Methylation on

the fourth Lysine of histone H3 is associated with gene activation in humans, while tri-methylation

on lysine 27 is usually associated with gene repression (Barski et al. 2007). These results suggest

that  both  gene  activation  and  silencing  contribute  to  the  stochasticity  of  gene  expression,  in

agreement  with  the  view that  bursty  transcription  leads  to  increased  noise  (Blake  et  al.  2003;

Newman et al. 2006; Batada and Hurst 2007). 

Low noise genes are enriched for housekeeping functions

We investigated  the function  of genes  at  both ends of  the F* spectrum. We defined as

candidate gene sets the top 10% least noisy or the top 10% most noisy genes in our data set, and

tested for enrichment of GO terms and Reactome pathways (see Methods). It is expected that genes

encoding proteins participating in housekeeping pathways are less noisy because fluctuations in

concentration  of  their  products  might  have  stronger  deleterious  effects  (Pedraza  and  van

Oudenaarden  2005).  On  the  other  hand,  stochastic  gene  expression  could  be  selectively

advantageous for genes involved in immune and stress response, as part of a bet-hedging strategy

(eg Arkin et al. 1998; Shalek et al. 2013). GO terms enrichment test revealed significant categories

enriched in the low noise gene set only: molecular functions “nucleic acid binding” and “structural

constituent  of  ribosome”,  the  biological  processes  “nucleosome  assembly”,  “innate  immune

response in mucosa” and “translation”, as well as the cellular component “cytosolic large ribosomal

subunit” (Table 1). All these terms but one relate to gene expression, in agreement with previously

reported findings in yeast (Newman et al. 2006). We further find a total of 41 Reactome pathways

significantly  over-represented  in  the  low-noise  gene  set  (false  discovery  rate  set  to  1%).

Interestingly,  the top most  significant  pathways belong to modules  related  to  translation  (RNA

processing, initiation of translation and ribosomal assembly), as well as several modules relating to

gene expression, including chromatin regulation and mRNA splicing (Figure 3). Only one pathway

was found to be enriched in the high noise set: TP53 regulation of transcription of cell cycle genes

(p-value = 0.0079). This finding is interesting because TP53 is a central regulator of stress response

in the cell  (Hussain and Harris 2006). These results therefore corroborate previous findings that

genes involved in stress response might be evolving under selection for high noise as part of a bet
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hedging strategy  (Shalek et al. 2013; Viney and Reece 2013). The small amount of significantly

enriched Reactome pathways by high noise genes can potentially be explained by the nature of the

data set: as the original experiment was based on unstimulated cells, genes that directly benefit from

high SGE might not be expressed in these experimental conditions.

Highly connected proteins are synthesized by low-noise genes

The structure of the interaction network of proteins inside the cell can greatly impact the

evolutionary dynamics of genes  (Jeong et al. 2000; Barabási and Oltvai 2004). Furthermore, the

contribution of each constitutive node within a given network varies. This asymmetry is largely

reflected  in  the  power-law-like  degree  distribution  that  is  observed  in  virtually  all  biological

networks (Barabási and Albert 1999) with a few genes displaying many connections and a majority

of genes displaying only a few. The individual characteristics of each node in a network can be

characterized by various measures of centrality  (Newman 2003).  Following previous studies on

protein evolutionary  rate  (Fraser  et  al.  2002;  Hahn et  al.  2004;  Jovelin  and Phillips  2009) and

protein-protein interaction (PPI) networks (Li et al. 2010) we asked whether, at the gene level, there

is a link between centrality  of a protein and the amount of transcriptional  noise.  We study six

centrality  metrics  measured  on  two  types  of  network  data:  (i)  pathway  annotations  from  the

Reactome database (Fabregat et al. 2016) and (ii) PPI data from the iRefIndex database. PPI data

are typically more complete (5,553 genes with gene expression data) but do not provide functional

evidence. The Reactome database is based on published functional evidence, but encompasses less

genes (4,454 genes for which expression data is available).  In addition,  graph representing PPI

network are not oriented while graph representing Pathway annotations are, implying that distinct

statistics can be computed on both types of networks.

We first  estimated  the  pleiotropy  index  of  each  gene  by  counting  how many  different

pathways the corresponding proteins are involved in. We then computed centrality  measures as

averages  over  all  pathways  in  which  each  gene is  involved.  These  measures  include  (1)  node

degree, which corresponds to the number of other nodes a given node is directly connected with, (2)

hub score, which estimates the extent to which a node links to other central nodes, (3)  authority

score,  which  estimates  the  importance  of  a  node  by  assessing  how many  hubs  link  to  it,  (4)

transitivity, or  clustering coefficient, defined as the proportion of neighbors that also connect to

each other, (5)  closeness, a measure of the topological distance between a node and every other

reachable node (the fewer edge hops it takes for a protein to reach every other protein in a network,

the higher its closeness), and (6)  betweenness, a measure of the frequency with which a protein

belongs to the shortest path between every pairs of nodes.
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We find that node degree, hub score, authority score and transitivity are all significantly

negatively  correlated  with  transcriptional  noise on pathway-based networks:  the more  central  a

protein is, the less transcriptional noise it displays (Figure 4A-D and Table 2). We also observed

that  pleiotropy  is  negatively  correlated  with  F* (Kendall’s  tau  = -0.0514,  p-value  = 8.31E-07,

Figure 4E,  Table 2), suggesting that a protein that potentially performs multiple functions at the

same time needs to be less noisy. This effect is not an artifact of the fact that pleiotropic genes are

themselves more central (e.g. correlation of pleiotropy and node degree: Kendall’s tau = 0.2215, p-

value < 2.2E-16) or evolve more slowly (correlation of pleiotropy and Ka / Ks ratio: Kendall’s tau =

-0.1060, p-value < 2.2E-16) since it is still significant after controlling for these variables (partial

correlation of pleiotropy and F*, accounting for centrality measures and Ka / Ks: Kendall's tau =

-0.0254, p-value  = 7.45E-06).  Closeness  and betweenness,  on the other  hand,  show a negative

correlation  with  F*,  yet  much  less  significant  (Kendall’s  tau  =  -0.0254,  p-value  =  0.0109  for

closeness and tau = -0.0175, p-value = 0.0865 for betweenness, see Figure 4FG and Table 2). In

modular  networks  (Hartwell  et  al.  1999) nodes  that  connect  different  modules  are  extremely

important to the cell (Guimera and Amaral 2005) and show high betweenness scores. In yeast, high

betweenness proteins tend to be older and more essential  (Joy et al.  2005), an observation also

supported by our data set (betweenness  vs  gene age, Kendall's tau = 0.0619, p-value = 1.09E-07;

betweenness vs Ka/Ks, Kendall's tau = -0.0857, p-value = 3.83E-16). It has been argued, however,

that in protein-protein interaction networks high betweenness proteins are less essential due to the

lack of directed information flow, compared to, for instance, regulatory networks (Yu et al. 2007), a

hypothesis which could explain the observed lack of correlation.

 By applying similar measures on the PPI network, we report significant negative correlation

between F* and PPI centrality measures (Figure 4H-K , Table 2). Because the PPI network is not

directed,  authority scores and hub scores cannot be distinguished. The results obtained with the

mouse PPI interaction network are qualitatively similar to the ones obtained by Li et al (2010) on

Yeast expression data (Li et al. 2010). In addition, we further report that genes involved in complex

interactions (that is, genes which interact with more than one other protein simultaneously) have

reduced  noise  in  gene  expression  (Wilcoxon  rank  test,  p-value  =  8.053E-05,  Figure  4L),

corroborating  previous  findings  in  Yeast  (Fraser  et  al.  2004).  Conversely,  genes  involved  in

polymeric interactions,  that is,  where multiple  copies of the encoded protein interact  with each

other, did not show significantly different noise than other genes (Wilcoxon rank test, p-value =

0.0821, Figure 4M).

It was previously shown that centrality measures negatively correlate with evolutionary rate

(Hahn and Kern 2004). Our results suggest that central genes are selectively constrained for their

transcriptional noise, and that centrality therefore also influences the regulation of gene expression.
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Interestingly, it has been reported that central genes tend to be more duplicated (Vitkup et al. 2006).

The authors proposed that such duplication events would have been favored as they would confer

greater robustness to deleterious mutations in proteins. Our results are compatible with another, non

exclusive,  possible  advantage:  having  more  gene  copies  could  reduce  transcriptional  noise  by

averaging the amount of transcripts produced by each gene copy (Raser and O’Shea 2005).

Network structure impacts transcriptional noise of constitutive genes

Whereas  estimators  of  node  centrality  highlight  gene-specific  properties  inside  a  given

network, measures at  the whole-network level  enable the comparison of networks with distinct

properties. We computed the size, diameter and global transitivity for each annotated network in our

data set (1,364 networks, Supplementary Material) which we compare with the average F* measure

of all  constitutive  nodes.  The size of a network is  defined as its  total  number of nodes,  while

diameter is the length of the shortest path between the two most distant nodes. Transitivity is a

measure of connectivity, defined as the average of all nodes' clustering coefficients. Interestingly,

while network size is positively correlated with average degree and transitivity (Kendall’s tau =

0.5880, p-value < 2.2e-16 and Kendall’s tau = 0.1166, p-value = 1.08E-10, respectively), diameter

displays a positive correlation with average degree (Kendall’s tau = 0.2959, p-value < 2.2e-16) but

a  negative  correlation  with  transitivity  (Kendall’s  tau  =  -0.0840,  p-value  =  2.17E-05).  This  is

because  diameter  increases  logarithmically  with  size,  that  is,  addition  of  new  nodes  to  large

networks do not increase the diameter as much as additions to small networks. This suggests that

larger networks are relatively more compact  than smaller ones, and their  constitutive nodes are

therefore more connected.  We find that  average transcriptional  noise correlates  negatively  with

network size (Kendall’s tau = -0.0514, p-value = 0.0039), while being independent of the diameter

(Kendall’s tau = 0.0061, p-value = 0.7547 see  Table 3). These results are in line with the node-

based  analyses,  and  show  that  the  more  connections  a  network  has,  the  less  stochastic  the

expression of  the  underlying  genes  is.  This  supports  the view of  Raser  and Oshea  (Raser  and

O’Shea 2005) that the gene-extrinsic, pathway-intrinsic level is functionally pertinent and needs to

be distinguished from the globally extrinsic level.  We further asked whether genes with similar

transcriptional noise tend to synthesize proteins that connect to each other (positive assortativity) in

a given network, or on the contrary, tend to avoid each other (negative assortativity). We considered

all Reactome pathways annotated to the mouse and estimated their respective F* assortativity. We

found the mean assortativity  to  be significantly  negative,  with a  value of  -0.1384 (one sample

Wilcoxon rank test,  p-value < 2.2e-16),  meaning that  proteins with different  F* values  tend to

connect with each other (Figure S3). Maslov & Sneppen (Maslov and Sneppen 2002) reported a

negative  assortativity  between  hubs  in  protein-protein  interaction  networks,  which  they
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hypothesized to be the result of selection for reduced vulnerability to deleterious perturbations. In

our data set, however, we find the assortativity of hub scores to be significantly positive (average of

0.1221, one sample Wilcoxon rank test, p-value = 1.212E-12,  Figure S5), although with a large

distribution of assortativity values. As we showed that hub scores correlates negatively with F*

(Table 2), we asked whether the negative assortativity of hub proteins can at least partly explain the

negative  assortativity  of  F*.  We  found  a  significantly  positive  correlation  between  the  two

assortativity measures (Kendall’s tau = 0.2581, p-value < 2.2e-16). The relationship between the

measures, however, is not linear (Figure S5), suggesting a distinct relationship between hub score

and F* for negative  and positive hub score assortativity.  Negative  assortativity  of hub proteins

contributes to a negative assortativity of SGE (Kendall’s tau = 0.2730, p-value < 2.2e-16), while for

pathways with positive hub score assortativity the effect vanishes (Kendall’s tau = 0.0940, p-value

= 3.135E-4). While assortativity of F* is closer to 0 for pathways with positive assortativity of hub

score, we note that it is still significantly negative (average = -0.0818, one sample Wilcoxon test

with  p-value  <  2.2e-16).  This  suggests  the  existence  of  additional  constraints  that  act  on  the

distribution of noisy proteins in a network.

Transcriptional noise is positively correlated with the evolutionary 

rate of proteins

In the yeast Saccharomyces cerevisiae, evolutionary divergence between orthologous coding

sequences correlates negatively with fitness effect on knock-out strains of the corresponding genes

(Hirsh  and  Fraser  2001),  demonstrating  that  protein  functional  importance  is  reflected  in  the

strength of purifying selection acting on it. Fraser et al (Fraser et al. 2004) studied transcription and

translation rates of yeast genes and classified genes in distinct noise categories according to their

expression strategies. They reported that genes with high fitness effect display lower expression

noise than the rest.  Following these pioneering observations,  we hypothesized that genes under

strong purifying selection at the protein sequence level should also be highly constrained for their

expression and therefore display a lower transcriptional noise. To test this hypothesis, we correlated

F* with  the  ratio  of  non-synonymous  (Ka)  to  synonymous  substitutions  (Ks),  as  measured  by

sequence comparison between mouse genes and their human orthologs, after discarding genes with

evidence for positive selection (n = 5). In agreement with our prediction, we report a significantly

positive correlation between the Ka / Ks ratio and F* (Figure 4N, Kendall's tau = 0.0557, p-value <

1.143E-05), that is, highly constrained genes (low Ka / Ks ratio) display less transcriptional noise

(low F*) than  fast  evolving  ones.  This  result  demonstrates  that  genes  encoding proteins  under

strong purifying selection are also more constrained on their transcriptional noise.
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Older genes are less noisy

Evolution  of  new genes  was long thought  to  occur  via  duplication  and modification  of

existing  genetic  material  (“evolutionary  tinkering”,  (Jacob  1977)).  Evidence  for  de  novo gene

emergence is however becoming more and more common (Tautz and Domazet-Lošo 2011; Xie et

al. 2012). De novo created genes undergo several optimization steps, including their integration into

a  regulatory  network  (Neme  and  Tautz  2013).  We  tested  whether  the  historical  process  of

incorporation of new genes into pathways impacts the evolution of transcriptional noise. We used

the phylostratigraphic approach of Neme & Tautz (Neme and Tautz 2013), which categorizes genes

into 20 strata, to compute gene age and tested for a correlation with F*. As older genes tend to be

more conserved (Wolf et al. 2009), more central (according to the preferential attachment model of

network growth (Jeong et al. 2000; Jeong et al. 2001)) and more pleiotropic, we controlled for these

confounding factors (Kendall's tau = -0.0663, p-value = 1.58E-37 ; partial correlation controlling

for Ka / Ks ratio, centrality measures and pleiotropy level,  Figure 4O). These results suggest that

older genes are more deterministically expressed while younger genes are more noisy.  While we

cannot rule out that functional constraints not fully accounted for by the Ka / Ks ratio or unavailable

functional annotations could explain at least partially the correlation of gene age and transcriptional

noise, we hypothesise that the observed correlation results from ancient genes having acquired more

complex regulation schemes through time. Such schemes include for instance negative feedback

loops, which have been shown to stabilize gene expression and reduce expression noise  (Becskei

and Serrano 2000; Thattai and Oudenaarden 2001).

Position in the protein network is the main driver of transcriptional 

noise

In order to jointly assess the effect of network topology, epigenomic factors, Ka / Ks ratio

and gene age, we modeled the patterns of transcriptional noise as a function of multiple predictive

factors within the linear model framework. This analysis could be performed on a set of 2,794 genes

for which values were available jointly for all variables. In order to avoid colinearity issues because

some of these variables are intrinsically correlated, we performed data reduction procedures prior to

modeling. For continuous variables, including Pathway and PPI network variables, Ka / Ks ratio

and gene age, we conducted a principal component analysis (PCA) and used as synthetic measures

the first eight principal components (PC), explaining together more than 80% of the total inertia

(Figure S2A). The first principal component (PC1) of the PCA analysis is associated with pathway

centrality measures (degree, hub score, authority score and transitivity,  Figure S2B). The second

principal  component  (PC2)  corresponds  to  PPI  centrality  measures  (degree,  hub  score  and
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betweenness), while the third component (PC3) relates to gene age and Ka / Ks ratio. The fourth

component (PC4) is associated with PPI complex interactions and transitivity. PC5 and PC6 are

essentially  associated  to  betweenness  and  closeness  of  the  pathway  network,  PC7  with  PPI

polymeric interactions and PC8 with pathway pleiotropy. As transcription factors and histone marks

data are binary (presence / absence for each gene), we performed a logistic PCA for both type of

variables (Landgraf and Lee 2015). For transcription factors, we selected the three first components

(hereby noted  TFPC),  which  explained 78% of  deviance  (Figure S3A).  The loads  on the  first

component (TFPC1) are all negative, meaning that TFPC1 captures a global correlation trend and

does not discriminate between TFs. Tcfcp2l1 appears to be the TF with the highest correlation to

TFPC1.  The  second  component  TFPC2  is  dominated  by  TCFC  (positive  loading)  and  Oct4

(negative loading), while the third component TFPC3 is dominated by Esrrb (positive loading) and

MYC,  nMyc  and  E2F1  (negative  loadings,  Figure  S3B).  For  histone  marks,  the  two  first

components (hereby noted HistPC) explained 95% of variance and were therefore retained (Figure

S4A). HistPC1 is dominated by marks H3K27me3 linked to gene repression (negative loadings)

and  HistPC2 by  marks  H3K4me1  and  H3K4me3 linked  to  gene  activation  (positive  loadings,

Figure S4A).

We fitted a linear model with F* as a response variable and all 13 synthetic variables as

explanatory variables. We find that PC1 has a significant positive effect on F* (Table 3). As the

loadings of the centrality measures on PC1  are negative (Figure S2C), this result is consistent with

our finding of a negative correlation of pathway-based centrality measure with F*. PC3 has a highly

significant negative effect on F*, which is consistent with a negative correlation with gene age

(positive loading on PC3) and a positive correlation with the Ka / Ks ratio (negative loading on

PC3,  Figure  S2D).  The last  highly  significant  variable  is  the  first  principal  component  of  the

logistic PCA on histone methylation patterns, HistPC1, which has a negative effect on F*. Because

the loadings are essentially negative on HistPC1, this suggests a positive effect of methylation, in

particular  the  repressive  H3K27me3.  Altogether,  the  linear  model  with  all  variables  explained

4.01%  of  the  total  variance  (adjusted  R^2).  This  small  value  indicates  either  that  gene

idiosyncrasies  largely  predominate  over  general  effects,  or  that  our  estimates  of  transcriptional

noise  have  a  large  measurement  error,  or  both.  To  compare  the  individual  effects  of  each

explanatory variable, we conducted a relative importance analysis. As a mean of comparison, we

fitted a similar model with mean expression as a response variable. We find that pathway centrality

measures (PC1 variables) account for 38% of the explained variance, while protein constraints and

gene  age  (PC3)  account  for  32%.  Chromatin  state  (HistPC1)  account  for  another  15% of  the

variance (Figure 5). These results contrast with the model of mean expression, where HistPC1 and

HistPC2 respectively account for 51% and 9% of the explained variance, and PC1 and PC3 20%
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and  10% only  (Figure  5).  This  suggests  (1)  that  among  all  factors  tested,  position  in  protein

network is the main driver of the evolution of gene-specific  stochastic expression,  followed by

protein constraints and gene age and (2) that different selective pressures act on the mean and cell-

to-cell variability of gene expression. 

We further included the effect of three-dimensional organization of the genome in order to

assess whether it could act as a confounding factor. We developed a correlation model allowing for

genes in contact to have correlated values of transcriptional noise. The correlation model was fitted

together  with the previous linear  model  in  the generalized least  square (GLS) framework. This

model allows for one additional parameter,  λ, which captures the strength of correlation due to

three-dimensional organization of the genome (see Methods). The estimate of λ was found to be

0.0016, which means that the spatial autocorrelation of transcriptional noise is low on average. This

estimate  is  significantly  higher  than  zero,  and  model  comparison  using  Akaike’s  information

criterion favors the linear model with three-dimensional correlation (AIC = 4880.858 vs. AIC =

4890.396 for a linear model without three-dimensional correlation). Despite the significant effect of

3D genome correlation, our results were qualitatively and quantitatively very similar to the model

ignoring 3D correlation (Table 3).

Analysis of bone marrow-derived dendritic cells supports the 

generality of the results

We  assessed  the  reproducibility  of  our  results  by  analyzing  an  additional  single-cell

transcriptomics data set of 95 unstimulated bone marrow-derived dendritic cells (BMDC) (Shalek et

al. 2014). After filtering (see Methods), the data set consisted of 11,640 genes. Using the same

normalization  procedure as for  the ESC data set,  we nonetheless  report  a  weak but  significant

negative  correlation  between  F*  and  the  mean  expression,  even  with  a  degree-5  polynomial

regression (-0.0459, p-value < 1.13E-13). This effect is due to the distribution of per-gene, between

cell RFKM values being extremely skewed in this data set. In order to assess the impact of the

residual correlation with the mean, we computed a value of F* (noted FR*) on a restricted dataset

where the variance was between 1/8 and 8 times the mean (75% of all genes) using a quantile

regression  on the  median  instead  of  a  linear  regression.  A second degree  polynomial  quantile

regression proved to be sufficient to remove the effect of mean expression (Kendall’s tau = 0.0114,

p-value = 0.1125) on this restricted data set. As all results were consistent when using the FR* and

F* measures, we only discuss here results obtained with F* and refer to Supplementary Data 1 for

detailed results obtained with the FR* measure.
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We report a highly significant positive correlation between F* values measured on the 8,792

genes with expression in both data sets, suggesting that cell-to-cell variance in gene expression is to

a large extent conserved among the two cell  types (Kendall’s  tau = 0.1289, p-value < 2.2E-16,

Figure  S6A).  GO terms  or  reactome  pathways  enrichment  analyses  reveal  less  significant  but

consistant  terms  with  the  ESM analysis:  the  high  F*  gene  set  did  not  show any  significantly

enriched GO term or reactome pathway (FDR set to 1%) and the low F* gene set revealed RNA-

binding as a significantly enriched molecular function, as well as 21 enriched pathways (Figure

S7).  In  agreement  with  results  from the  ESM analysis,  many  of  the  most  significant  enriched

pathways relate to gene expression, including translation and splicing. Interestingly, the two most

significant pathways, however, are “Vesicle-mediated transport” and “Membrane trafficking”, two

essential pathways for the functioning of dendritic cells. Analyses of network centrality measures

also generally show consistent results with the ESC data set, more central genes displaying reduced

gene  expression  noise  (Figure  S6B-N,  Table  S1).  Quantitative  differences  consists  of  PPI

betweenness,  as  well  as pathway closeness  and betweenness  are highly significantly  negatively

correlated with F* while they were only weakly or non-significant with the ESC data set. The only

discrepancies that we report between the two data sets relate to pathway level statistics. Pathway

size  appears  to  be  significantly  positively  correlated  with  mean  F*,  while  it  was  negatively

correlated on the ESC data set, yet with a comparatively higher p-value. Similarly pathway diameter

is  significantly  positively  correlated  with  mean  F*  in  the  BMDC  data  set,  while  it  was  not

significant  with  the  ESC  data.  We  currently  have  no  hypothesis  to  explain  this  particular

discrepancy. While these results support the generality of our observations, they also illustrate that

in details, the fine structure of translational noise may vary in a cell type-specific manner.

We fitted linear models as for the embryonic stem cell (ESC) data set, with the exception

that no epigenomic data was available for this cell  type. Data reduction was performed using a

principal component analysis, with the eight first principal components explaining 81% of the total

deviance (Figure S8A). We report consistent results with the ESC analysis, with all major effects

similar  in  direction  and  intensity,  highlighting  the  impact  of  network  centrality  measures  on

expression noise (Table S2). With the BMDC data, however, the second principal component PC2

which  is  associated  with  PPI  centrality  measures  (Figure  S8B)  appears  to  have  a  significant

negative impact on F*, while it was not significant with the ESC dataset. As the loading of the PPI

centrality  measures  are  positive  on  PC2,  this  is  consistent  with  central  genes  having  a  lower

transcriptional noise as for the pathway network metrics (Figure S8C). When taking 3D genome

correlations into account, we estimated a low correlation coefficient as for the ESC dataset (lambda

= 0.0004), and the AIC favored the model without correlation in this case. Relative importance

analysis revealed that network centrality measures contributed most to the explained variance (48%
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and 21% for PC1 and PC2 respectively), while the contribution of protein constraints and gene age

(PC3) was 24%.  

Biological, not technical noise is responsible for the observed patterns

The variance in gene expression measured from single-cell transcriptomics is a combination

of biological and technical variance. While the two sources of variance are a priori independent,

gene-specific technical variance has been observed in micro-array experiments  (Pozhitkov et al.

2007) making a correlation of the two types of variance plausible.  If similar effects  also affect

RNA-Seq experiments, technical variance could be correlated to gene function and therefore act as

a covariate in our analyses. In order to assess whether this is the case, we used the dataset of Shalek

et al (Shalek et al. 2013), which contains both single-cell transcriptomics and 3 replicates of 10,000

pooled-cell  RNA sequencing.  In  traditional  RNA sequencing,  which  is  typically  performed  on

pooled populations of several thousands of cells, biological variance is averaged out so that the

resulting  measured  variance  between  replicates  is  essentially  the  result  of  technical  noise.  We

computed the mean and variance in expression of each gene across the three populations of cells.

By plotting the variance versus the mean in log-space, we were able to compute a “technical” F* (

Ft

*
) value for each gene (see Methods). We fitted linear models as for the single cell data, using

Ft

*
instead of F*. We report  that  no variable  had a significant  effect  on Ft

*
(Table S3).  In

addition, there was no enrichment of the lower 10
th Ft

*
 percentile for any particular pathway or

GO term. The upper 90
th
 percentile showed no GO term enrichment, but four pathways appeared to

be significant: “Chromosome maintenance” (adjusted p-value = 0.0043), “Polymerase switching on

the C-strand of the telomere” (adjusted p-value = 0.0062), “Polymerase switching” (adjusted p-

value = 0.0062) and “Leading strand synthesis” (adjusted p-value = 0.0062), which relate to DNA

replication.  While  it  is  unclear  why  genes  involved  in  these  pathways  would  display  higher

technical variance in RNA sequencing, these results strikingly differ from our analyses of single

cell RNA sequencing and therefore suggest that technical variance does not act as a confounding

factor in our analyses.

Because only three replicates  were available in the pooled RNA-Seq data set,  we asked

whether  the resulting estimate  of mean and variance in expression is  accurate enough to allow

proper  inference  of  noise  and  its  correlation  with  other  variables.  We  conducted  a  jackknife

procedure where we sampled the original cells from the ESC data set and re-estimated F* for each

sample. We tested combinations of 3, 5, 10 and 15 cells, with 1,000 samples in each case. In each

sample, we computed F* with the same procedure as for the complete data set, and fitted a linear

model  with  all  13  synthetic  variables.  For  computational  efficiency,  we  did  not  include  3D
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correlation in this analysis. We compute for each variable the number of samples where the effect is

significant at the 5% level and has the same sign as in the model fitted on the full data set. We find

that the model coefficients are very robust to the number of cells used (Figure S9A) and that 3 cells

are enough to infer the effect of the PC1 and PC3 variables, the most significant in our analyses.

Two main conclusions can be drawn from this jackknife analysis: (1) that the lack of significant

effect of our explanatory variables on technical noise is not due to the low number of replicates

used to compute the mean and variance in expression and (2) that our conclusions are very robust to

the actual cells used in the analysis, ruling out drop-out and amplification biases as possible source

of errors (Kharchenko et al. 2014).

Discussion

Throughout this work, we provided the first genome-wide evolutionary and systemic study

of transcriptional noise, using mouse cells as a model. We have shown that transcriptional noise

correlates with functional constraints both at the level of the gene itself via the protein it encodes,

but  also at  the  level  of  the  pathway(s)  the  gene belongs to.  We further  discuss  here  potential

confounding factors in our analyses and argue that our results are compatible with selection acting

to reduce noise-propagation at the network level. 

In this study, we exhibited several factors explaining the variation in transcriptional noise

between genes. While highly significant, the effects we report are of small size, and a complex

model  accounting  for  all  tested  sources  of  variation  only  explains  a  few  percent  of  the  total

observed variance. There are several possible explanations for this reduced explanatory power: (1)

transcriptional noise is a proxy for noise in gene expression, at which selection occurs (Figure 1).

As  transcriptional  noise  is  not  randomly  distributed  across  the  genome,  it  must  constitute  a

significant component of expression noise, in agreement with previous observations  (Blake et al.

2003; Newman et al. 2006). Translational noise, however, might constitute an important part of the

expression noise and was not assessed in this study. (2) Gene expression levels were assessed on

embryonic stem cells in culture. Such an experimental system may result in gene expression that

differs  from  that  in  natural  conditions  under  which  natural  selection  acted.  (3)  Functional

annotations,  in  particular  pathways  and  gene  interactions  are  incomplete,  and  network-based

measures have most likely large error rates. (4) While the newly introduced F* measure allowed us

to assess the distribution of transcriptional noise independently of the average mean expression, it

does not capture the full complexity of SGE. Explicit modeling, for instance based in the Beta-

Poisson model  (Vu et al. 2016) is a promising avenue for the development of more sophisticated

quantitative measures.
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In a pioneering study, Fraser et al (Fraser et al. 2004), followed by Shalek et al (Shalek et al.

2013), demonstrated that essential genes whose deletion is deleterious, and genes encoding subunits

of molecular complexes as well as housekeeping genes display reduced gene expression noise. Our

findings go beyond these early observations by providing a statistical assessment of the joint effect

of  multiple  explanatory  factors.  Our  analyses  reveal  that  network  centrality  measures  are  the

explanatory factors that explained the most significant  part  of the distribution of transcriptional

noise in the genome. Network-based statistics were first tested by Li et al (Li et al. 2010) using PPI

data in Yeast. While we are able to extend these results to mouse cells, we show that more detailed

annotation as provided by the Reactome database lead to new insights into the selective forces

acting on expression noise. Our results suggest that “pathways” constitute a relevant systemic level

of organisation, at which selection can act and drive the evolution of SGE at the gene level. This

multi-level  selection  mechanism,  we  propose,  can  be  explained  by  selection  against  noise

propagation within networks. It has been experimentally demonstrated that expression noise can be

transmitted  from  one  gene  to  another  gene  with  which  it  is  interacting  (Pedraza  and  van

Oudenaarden 2005). Large noise at the network level is deleterious (Barkai and Leibler 1999) but

each gene does not contribute equally to it,  thus the strength of selective pressure against noise

varies among genes in a given network. We have shown that highly connected, “central” proteins

typically display reduced transcriptional noise. Such nodes are likely to constitute key players in the

flow  of  noise  in  intra-cellular  networks  as  they  are  more  likely  to  transmit  noise  to  other

components.  In  accordance  with  this  hypothesis,  we  find  genes  with  the  lowest  amount  of

transcriptional noise to be enriched for top-level functions, in particular involved in the regulation

of other genes. 

These results have several implications for the evolution of gene networks. First, this means

that new connections in a network can potentially be deleterious if they link genes with highly

stochastic  expression.  Second,  distinct  selective  pressures  at  the  “regulome”  and “interactome”

levels  (Figure 1)  might  act  in  opposite  direction.  We expect  genes  encoding highly  connected

proteins to have more complex regulation schemes, in particular if their proteins are involved in

several biological pathways. In accordance, several studies demonstrated that expression noise of a

gene positively correlates with the number of transcription factors controlling its regulation (Sharon

et al. 2014), a correlation that we also find significant in the data set analyzed in this work. Central

genes, while being under negative selection against stochastic behavior, are then more likely to be

controlled  by  numerous  transcription  factors  which  increase  transcriptional  noise.  As  a

consequence, if the number of connections at the interactome level is correlated with the number of

connections  at  the  regulome  level,  we  predict  the  existence  of  a  trade-off  in  the  number  of

connections a gene can make in a network. Alternatively,  highly connected genes might evolve
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regulatory mechanisms allowing them to uncouple these two levels: negative feedback loops, for

instance,  where  the  product  of  a  gene down-regulates  its  own production  have been shown to

stabilize expression and significantly reduce stochasticity (Becskei and Serrano 2000; Dublanche et

al. 2006; Tao et al. 2007). We therefore predict that negative feedback loops are more likely to

occur  at  genes  that  are more  central  in  protein networks,  as they will  confer  greater  resilience

against high SGE, which is advantageous for this class of genes.

Our results enabled the identification of possible selective pressures acting on the level of

stochasticity  in gene expression.  The mechanisms by which the amount of stochasticity  can be

controlled remain however to be elucidated. We evoked the existence of negative feedback loops

which reduce stochasticity and the multiplicity of upstream regulator which increase it. Recent work

by Wolf et al (Wolf et al. 2015) and Metzger et al (Metzger et al. 2015) add further perspective to

this scheme. Wolf and colleagues found that in  Escherichia coli noise is higher for natural than

experimentally evolved promoters selected for their mean expression level. They hypothesized that

higher noise is  selectively advantageous in case of changing environments.  On the other hand,

Metzger and colleagues performed mutagenesis experiments and found signature of selection for

reduced noise in natural populations of Saccharomyces cerevisae. These seemingly opposing results

combined with our observations provide additional evidence that the amount of stochasticity in the

expression  of  single  genes  has  an  optimum,  as  high  values  are  deleterious  because  of  noise

propagation in the network, whilst lower values, which result in reduced phenotypic plasticity, are

suboptimal in case of dynamic environment. 

Conclusion

Using a new measure of transcriptional noise, our results demonstrate that the position of the

protein in the interactome is a major driver of selection against stochastic gene expression. As such,

transcriptional noise is an essential component of the phenotype, in addition to the mean expression

level and the actual sequence and structure of the encoded proteins. This is currently an under-

appreciated phenomenon, and gene expression studies that focus only on the mean expression of

genes may be missing key information about expression diversity. The study of gene expression

must  consider  changes  in  noise  in  addition  to  change  in  mean  expression  level  as  a  putative

explanation for adaptation. Further work aiming to unravel the exact structure of the regulome is

however needed in order to fully understand how transcriptional noise is generated or inhibited.
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Material and Methods

Single-cell gene expression data set

We used the dataset generated by Sasagawa et al. (Sasagawa et al. 2013) retrieved from the

Gene Expression Omnibus repository (accession number GSE42268). We analyzed expression data

corresponding  to  embryonic  stem  cells  in  G1  phase,  for  which  more  individual  cells  were

sequenced. A total of 17,063 genes had non-zero expression in at least one of the 20 single cells.

Similar to Shalek et al (Shalek et al. 2014), a filtering procedure was performed where only genes

whose expression level satisfied log(FPKM+1) > 1.5 in at least one single cell were kept for further

analyses. This filtering step resulted in a total  of 13,660 appreciably expressed genes for which

transcriptional noise was evaluated.

Measure of transcriptional noise

The expression mean ( μ ) and variance ( σ
2

) of each gene over all single cells were 

computed. We measured stochastic gene expression as the ratio F
*= σ2

^σ2(μ)
, where 

^σ2(μ) is 

the expected variance given the mean expression. In order to compute 
^σ2(μ) , we performed 

several polynomial regressions with log(σ 2) as a function of log(μ) , with degrees between 1 

and 5. We then tested the resulting F* measures for residual correlation with mean expression using

Kendall’s rank correlation test. We find that a degree-3 polynomial regression was sufficient to 

remove any residual correlation with F* (Kendall’s tau = 0.0037, p-value = 0.5217). F* can be seen 

as a general expression for the Fano factor and noise measure: when using a polynome of degree 1, 

the expression of F* becomes F
*= σ2

exp(a+b. log(μ))
= σ2

exp(a) .μb
, and is therefore equivalent to

the Fano factor when a = 0 and b = 1, and equivalent to noise when a = 0 and b = 2.

Genome architecture

The  mouse  proteome  from Ensembl  (genome  version:  mm9)  was  used  in  order  to  get

coordinates of all genes. The Hi-C dataset for embryonic stem cells (ES) from Dixon et al (Dixon et

al. 2012) was used to get three-dimensional domain information. Two genes were considered in

proximity in one dimension (1D) if they are on the same chromosome and no protein-coding gene

was found between them. The primary distance (in number of nucleotides) between their midpoint

coordinates  was  also  recorded  as  1D a  distance  measure  between  the  genes.  Two genes  were
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considered in proximity in three dimensions (3D) if the normalized contact number between the two

windows  the  genes  belong  was  non-null.  Two  genes  belonging  to  the  same  window  were

considered in proximity. We further computed the relative difference of stochastic gene expression

between  two  genes  by  computing  the  ratio (F2

*−F1

*)/(F2

*+F1

*) .  For  each  chromosome,  we

independently  tested  if  there  was  a  correlation  between  the  primary  distance  and  the  relative

difference in stochastic gene expression with a Mantel test, as implemented in the ade4 package

(Dray and Dufour 2007). In order to test whether genes in proximity (1D and 3D) had more similar

transcriptional noise than distant genes, we contrasted the relative differences in transcription noise

between pairs of genes in proximity and pairs of distant genes. As we test all pairs of genes, we

performed a randomization procedure in order to assess the significance of the observed differences

by  permuting  the  rows  and  columns  in  the  proximity  matrices  10,000  times.  Linear  models

accounting for spatial interactions with genes were fitted using the generalized least squares (GLS)

procedure as implemented in the “nlme” package for R. A correlation matrix between all tested

genes was defined as G={gi , j} , where gi , j is the correlation between genes i and j. We defined

gi , j=1−exp(−λ δi , j) , where δi , j  takes 1 if genes i and j are in proximity, 0 otherwise (binary

model). Alternatively, δi , j can be defined as the actual number of contacts between the two 20 kb

regions (as defined by Dixon et al) the genes belong to (proportional model). Parameter λ was

estimated jointly with other model parameters,  it measures the strength of the genome “spatial”

correlation. Models were compared using Akaike’s information criterion (AIC). We find that the

proportional correlation model fitted the data better and therefore selected it for further analyses.

Transcription factors and histone marks

Transcription factor (TF) mapping data from the Ensembl regulatory build  (Zerbino et al.

2015) were obtained via the biomaRt package for R. We used the Grch37 build as it contained data

for stem cells epigenomes. Genes were considered to be associated with a given TF when at least

one  binding  evidence  was  present  in  the  3  kb  upstream flanking  region.  Transcription  factors

associated  with  less  than  5 genes  for  which  transcriptional  noise  could  be  computed  were  not

considered further. A similar mapping was performed for histone marks by counting the evidence of

histone  modification  in  the  3  kb  upstream  and  downstream  regions  of  each  gene.  A  logistic

principal component analysis was conducted on the resulting binary contingency tables using the

logisticPCA package for R (Landgraf and Lee 2015), for TF and histone marks separately. Principal

components were used to define synthetic variables for further analyses.
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Biological pathways, protein-protein interactions and network 

topology

We defined  genes  either  in  the  top  10% least  noisy  or  in  the  top  10% most  noisy  as

candidate sets and used the Reactome PA package (Yu and He 2016) to search the mouse Reactome

database for overrepresented pathways with a 1% false discovery rate. 

Centrality measures were computed using a combination of the “igraph” (Csardi and Nepusz

2006) and “graphite” (Sales et al. 2012) packages for R. As the calculation of assortativity does not

handle missing data (that is, nodes of the pathway for which no value could be computed), we

computed assortativity on the sub-network with nodes for which data were available.  Reactome

centrality measures could be computed for a total of 4,454 genes with expression data.

Protein-protein interactions (PPI) were retrieved from the iRefIndex database (Razick et al.

2008) using the iRefR package for R (Mora and Donaldson 2011). Interactions were converted to a

graph using the dedicated R functions in the package, and the same methods were used to compute

centrality measures as for the pathway analysis. Because the PPI-based graph was not oriented,

authority  scores  were not computed  for  this  data  (as this  gave identical  results  to  hub scores).

Furthermore,  as most genes are part of a single graph structure in the case of PPI interactions,

closeness values were not further analysed as they were virtually identical for all genes.

Gene Ontology Enrichment

Eight thousand three hundreds and twenty five out of the 13,660 genes were associated with

Gene Ontology (GO) terms. We tested genes for GO terms enrichment at  both ends of the F*

spectrum using the same threshold percentile of 10% low / high noise genes as we did for the

Reactome  analysis.  We  carried  out  GO  enrichment  analyses  using  two  different  algorithms:

“Parent-child” (Grossmann et al. 2007) and “Weight01”, a mixture of two algorithms developed by

Alexa et  al  (Alexa et  al.  2006).  We kept  only the terms that  appeared  simultaneously  on both

Parent-child and Weight01 under 1% significance level, controlling for multiple testing using the

FDR method (Benjamini and Hochberg 1995).

Sequence divergence

The Ensembl's Biomart interface was used to retrieve the proportion of non-synonymous 

(Ka) and synonymous (Ks) divergence estimates for each mouse gene relative to the human 

ortholog. This information was available for 13,136 genes.
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Gene Age

The relative taxonomic ages of the mouse genes have been computed and is available in the

form of 20 Phylostrata  (Neme and Tautz 2013). Each Phylostratum corresponds to a node in the

phylogenetic  tree  of  life.  Phylostratum  1  corresponds  to  “All  cellular  organisms”  whereas

Phylostratum 20  corresponds  to  “Mus  musculus”,  with  other  levels  in  between.  We  used  this

published information to assign each of our genes to a specific Phylostratum and used this as a

relative measure of gene age: Age = 21 - Phylostratum, so that an age of 1 corresponds to genes

specific to M. musculus and genes with an age of 20 are found in all cellular organisms. 

Linear modeling

We simultaneously assessed the effect of different factors on transcriptional noise by fitting

linear  models  to  the  gene-specific  F*  estimates.  To  avoid  colinearity  issues  of  intrinsically

correlated  explanatory  variables,  we  conducted  a  data  reduction  procedure  using  multivariate

analysis. We used variants of principal component analysis (PCA) on explanatory variables in three

groups: network centrality measures, Ka / Ks and gene age with standard PCA, transcription factor

binding evidence and histone methylation patterns using logistic PCA, a generalization of PCA for

binary  variables  (Landgraf  and  Lee  2015).  In  each  case,  we  used the  most  representative

components (totaling at least 75% of the total deviance) as synthetic variables. PCA analysis was

conducted  using the ade4 package for R  (Dray and Dufour 2007), logistic PCA was performed

using the logisticPCA package (Landgraf and Lee 2015).

We built a linear model with F* as a response variable and thirteen synthetic variables as

explanatory variables. As the synthetic variables are principal components, they are orthogonal by

construction.  The  fitted  model  displayed  significant  departure  to  normality  and  was  further

transformed  using  the  Box-Cox procedure  (“boxcox”  function  from the  MASS package  for  R

(Venables  and Ripley  2002)).  Residues  of  the  selected  model  had  normal,  independent  residue

distributions (Shapiro-Wilk test of normality, p-value = 0.121, Ljung-Box test of independence, p-

value = 0.2061) but still displayed significant heteroscedasticity (Harrison-McCabe test, p-value =

0.003). In order to ensure that this departure from the Gauss-Markov assumptions does not bias our

inference, we used the “robcov” function of the “rms” package in order to get robust estimates of

the  effect  significativity  (Harrell  2015).  Relative  importance  of  each  explanatory  factor  was

assessed using the method of Lindeman, Merenda and Gold (Lindeman et al. 1979) as implemented

is the R package “relaimpo”. The significance of the level of variance explained by each factor was

computed using standard ANOVA procedure.

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2017. ; https://doi.org/10.1101/104216doi: bioRxiv preprint 

https://doi.org/10.1101/104216
http://creativecommons.org/licenses/by-nc-nd/4.0/


Additional data sets

The  aforementioned  analyses  were  additionally  conducted  on  the  bone  marrow-derived

dendritic  cells  data  set  of  Shalek  et  al  (Shalek  et  al.  2014).  Following the  filtering  procedure

established by the authors in the original paper, genes which did not satisfied the condition of being

expressed by an amount such that log(TPM+1) > 1 in at least one of the 95 single cells were further

discarded, where TPM stands for transcripts per million. This cut-off threshold resulted in 11,640

genes being kept for investigation. The rest of the analyses was conducted in the same way as for

the ESM data set.

Jackknife procedure

A jackknife procedure was conducted in order to assess (1) the robustness of our results to

the choice of actual cells used to estimate mean and variance in gene expression and (2) the power

of the pooled RNA-seq analysis for which only three replicates were available. This analysis was

conducted by sampling 3, 5, 10 and 15 of the original 20 single cells of the ESM data set (Sasagawa

et al.  2013), 1,000 times in each case. The exact same analysis was conducted on each random

sample as for the complete  data set,  and model  coefficients  and their  associated p-values were

recorded. 

Data and program availability

All datasets and scripts to reproduce the results of this study are available under the DOI 

10.6084/m9.figshare.4587169.
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Tables

Table 1: GO terms significantly enriched in the 10% genes with lowest transcriptional noise.

Ontology GO ID GO term FDR Fisher "parent−child" FDR Fisher "weight01"

MF GO:0003735 structural constituent of ribosome 2.28E-07 6.81E-20

MF GO:0003676 nucleic acid binding 8.16E-06 6.06E-04

BP GO:0006412 translation 4.08E-08 7.15E-12

BP GO:0002227 innate immune response in mucosa 6.49E-04 6.22E-03

CC GO:0022625 cytosolic large ribosomal subunit 4.48E-03 1.40E-12

Note: FDR: False Discovery Rate. MF: Molecular Function. BP: Biological Process. CC: Cellular

Compartment. 

Table 2:  Correlation  of  transcriptional  noise with  genes  centrality  measures  and pleiotropy,  as

estimated from pathway annotations and protein-protein interactions networks.

Data Measure Correlation with F* p-value

Pathways

Degree -0.0745 1.14E-13 ***

Hub score -0.0808 6.61E-16 ***

Authority score -0.0666 2.72E-11 ***

Clustering coefficient -0.0794 4.55E-15 ***

Closeness -0.0254 1.09E-02 *

Betweenness -0.0175 8.65E-02 .

Pleiotropy -0.0514 8.31E-07 ***

Size -0.0514 3.91E-03 ***

Diameter 0.0061 7.55E-01 NS

Global transitivity -0.1532 3.06E-17 ***

PPI

Degree -0.0249 8.20E-03 **

Hub score -0.0942 < 2.2E-16 ***

Transitivity -0.0338 6.24E-04 ***

Betweenness -0.0140 1.31E-01 NS

Note:  All  correlations  are  computed  using  Kendall’s  rank  correlation  test,  with  p-value  codes

defined as *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1. NS = non-significant. PPI: protein-protein

interactions.
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Table 3: Linear models of transcriptional noise with genomic and epigenomic factors. 

OLS GLS

Coefficient SE p-value Coefficient SE p-value

(Intercept) 0.1612 0.0781 0.0392 * 0.1665 0.0663 0.0121 *

PC1 0.0390 0.0065 <0.0001 *** 0.0396 0.0065 0.0000 ***

PC2 -0.0048 0.0069 0.4854 -0.0048 0.0069 0.4838

PC3 -0.0526 0.0091 <0.0001 *** -0.0518 0.0092 0.0000 ***

PC4 -0.0102 0.0097 0.2905 -0.0109 0.0100 0.2773

PC5 0.0117 0.0106 0.2713 0.0123 0.0106 0.2456

PC6 -0.0152 0.0107 0.1536 -0.0152 0.0109 0.1623

PC7 0.0210 0.0102 0.0384 * 0.0211 0.0110 0.0561 .

PC8 0.0100 0.0113 0.3778 0.0073 0.0114 0.5250

TFPC1 0.0028 0.0041 0.4912 0.0025 0.0034 0.4658

TFPC2 0.0025 0.0027 0.3664 0.0024 0.0026 0.3585

TFPC3 0.0032 0.0042 0.4513 0.0032 0.0037 0.3825

HistPC1 -0.0031 0.001 0.0015 ** -0.0033 0.0010 0.0007 ***

HistPC2 -0.0027 0.0016 0.0846 . -0.0029 0.0015 0.0566 .

Note: OLS: Ordinary Least Squares. GLS: Generalized Least Squares. SE: standard error. Pathway

PC1-8: principal components on centrality measures, protein conservation and gene age. TFPC1-3:

principal components of the logistic PCA on transcription factors binding evidences. HistPC1 and

2: principal components of the logistic PCA on histone modification marks.
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Figures

Figure 1: A systemic view of gene expression.

Figure 2: Transcriptional noise and mean gene expression. A) Measures of noise plotted against the

mean gene expression for each gene, in logarithmic scales: Variance, Fano factor (variance / mean),

noise (square of the coefficient of variation, variance / mean^2) and F* (this study). Lines represent

quantile regression fits (median, first and third quartiles). Point and bars represent median, first and

third quartiles for each category of mean expression obtained by discretization of the x axis. B)

Distribution of F* over all genes in this study. Vertical line corresponds to F* = 1.

Figure 3: Enriched pathways in the low-noise gene set. Depicted pathways are the fifteen most

significant  in the 10% genes with lowest transcriptional noise.

Figure 4:  Factors  driving  stochastic  gene expression.  Correlation  of  F* and all  tested  network

centrality measures, as well as protein conservation (Ka / Ks ratio) and gene age. Point and bars

represent  median,  first  and  third  quartiles  for  each  category  of  mean  expression  obtained  by

discretization of the x axis, together with the quantile regression lines estimated on the full data set.

Figure 5: Relative importance of explanatory factors on mean gene expression and F*. Significance

codes refer to ANOVA test of variance, *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1.

Supplementary material:

Table S1: Correlation of transcriptional noise with genes centrality measures and pleiotropy for the

bone marrow-derived dendritic cells data set. Legends as in Table 2. 

Table S2: Linear models of transcriptional noise with genomic factors for the bone marrow-derived

dendritic cells data set. Legend as in Table 4.

Table S3: Linear model of transcriptional noise with genomic factors with pooled RNA-Seq data.

Legend as in Table 4.

Figure S1: Impact of genome organization on the distribution of transcriptional noise. The x-axis

shows the mean relative difference in transcriptional noise. Vertical lines show observed values and

histograms the distribution over 10,000 permutations (see Methods). Left  panel:  distribution for

neighbor  genes  along  the  genome.  Right  panel:  distribution  for  genes  in  contact  in  three-

dimensions.

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2017. ; https://doi.org/10.1101/104216doi: bioRxiv preprint 

https://doi.org/10.1101/104216
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure  S2:  Principal  component  analysis  of  pathways  centrality  measures.  A)  Proportion  of

deviance explained by models with 1, 2, etc. principal components. B) Contributions, computed as

proportion of deviance, of each input variable to each principal component. C) Loadings of each

variable on the 2 first  components.  D) Loadings  of each variable on the 3rd and 4th principal

components.  

Figure S3:  Logistic  principal  component  analysis  of  transcription  factor  binding evidences.  A)

Proportion of deviance explained by models with 1, 2, etc. principal components. B) Contributions,

computed  as  proportion  of  deviance,  of  each  input  variable  to  each  principal  component.  C)

Loadings of each variable on the 2 first components. D) Loadings of each variable on the 2nd and

3rd principal components. 

Figure S4:  Logistic  principal  component  analysis  of  histone marks.  A) Proportion of  deviance

explained by models with 1, 2, etc. principal components. B) Contributions, computed as proportion

of deviance, of each input variable to each principal component. C) Loadings of each variable on

the 2 first components.

Figure S5:  Assortativity  in networks. A) Distribution of assortativity  values for hub scores.  B)

Distribution of assortativity values for F*. C) Assortativity for F* and hub scores are plotted against

each other. Solid lines represent linear regressions fitted on pathways with negative or positive hub

score assortativity, respectively. Dashed line represents a linear regression fitted on all data.

Figure S6: Factors driving stochastic gene expression in the bone marrow-derived dendritic cells

data set. Legends as in Figure 4.

Figure S7: Enriched pathways in the low-noise gene set of the bone marrow-derived dendritic cells

data set.

Figure S8:  Principal  component  analysis  of pathways centrality  measures of the bone marrow-

derived dendritic cells data set. Legends as in Figure S2.

Figure S9: Robustness and power analysis. A jackknife procedure was conducted by fitted linear

models with all explanatory variables on a subset of cells taken randomly (x-axis). A) estimated

coefficient of each effect. B) proportion of simulations where the coefficient is significant at the 5%

level. Filled bars correspond to significant effect when the complete data set is used. PC: principal

component. PPI: protein-protein interactions. TF: transcription factors.

Supplementary Data 1: All scripts and data set necessary to reproduce the analyses and figures in

this manuscript.
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