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Abstract 
Coupling molecular biology to high throughput sequencing has revolutionized the study of biology. Molecular 
genomics techniques are continually refined to provide higher resolution mapping of nucleic acid interactions 
and structure. Sequence preferences of enzymes can interfere with the accurate interpretation of these data. 
We developed seqOutBias to characterize enzymatic sequence bias from experimental data and scale 
individual sequence reads to correct intrinsic enzymatic sequence biases. SeqOutBias efficiently corrects 
DNase-seq, TACh-seq, ATAC-seq, MNase-seq, and PRO-seq data. We show that seqOutBias correction 
facilitates identification of true molecular signatures resulting from transcription factors and RNA polymerase 
interacting with DNA. 
 
Introduction 

The field of molecular genomics emerged as classical molecular biology techniques were coupled to 
high throughput sequencing technology to provide unprecedented genome-wide measurements of molecular 
features. Molecular genomics assays, such as DNase-seq (1, 2), ChIP-exo (3), and PRO-seq (4, 5), are 
converging on single-nucleotide resolution measurements. The enzymes that are routinely used in molecular 
biology and cloning have inherent and often uncharacterized sequence preferences. These preferences 
manifest more prominently as the resolution of genomic assays increases. Therefore, we developed 
seqOutBias (https://github.com/guertinlab/seqOutBias) to characterize and correct enzymatic biases that can 
obscure proper interpretation of molecular genomics data. 

Enzymatic hypersensitivity assays, such as DNase-seq (1, 2), TACh-seq (6), and ATAC-seq (7), have 
the potential to measure transcription factor (TF) binding sites genome-wide in a single experiment. These 
assays strictly measure enzymatic (DNase, Tn5 transposase, Benzonase, or Cyanase) accessibility to DNA 
and not a specific biological event, making data challenging to deconvolve. Standard algorithms scan for 
footprints, which are depletions of signal in larger regions of hypersensitivity (8–12). Many transcription factors, 
however, do not exhibit composite footprints if enzymatic cut frequency is averaged at all ChIP-seq validated 
binding sites with strong consensus motifs (10–13). Moreover, the inability to detect a footprint at any individual 
TF binding site results in high false negative rates for footprinting algorithms (14). Accurate footprinting is also 
confounded by the artifactual molecular signatures that result from enzymatic sequence preference (10–12). 
DNase footprinting algorithms can incorporate DNase cut preference data to abrogate this bias (12, 15). 
However, no existing tools specialize in correcting intrinsic sequence bias for a diverse set of enzymes and 
experimental methodologies.  

We find that correcting for enzymatic sequence bias highlights true molecular signatures that result 
from TF/DNA interactions. Despite the limitations of enzymatic hypersensitivity footprinting and sequence bias 
signatures, hypersensitive regions reveal a near-comprehensive set of functional regulatory regions in the 
genome (16). Therefore, we present seqOutBias, which calculates sequence bias from an aligned BAM file 
and corrects individual reads accordingly. While this software does not directly infer transcription factor binding, 
correction of sequence bias provides a more accurate measurement of three key features of enzymatic 
hypersensitivity data: 1) raw peak height; 2) footprint depth; and 3) true molecular signatures. These 
measurements, taken together with DNA sequence, can be used to develop algorithms that infer TF binding 
genome-wide. Moreover, footprint depth and the presence of true molecular signatures are unique to each TF 
and these features should be characterized for each TF using corrected data in order to optimize TF-binding 
inference algorithms.   

Enzymatic sequence biases are most well-characterized for DNase-seq experiments (10–12), but 
nearly all molecular genomics experiments employ enzymatic treatments and these enzymes also have 
intrinsic biases. Herein, we show that DNase, Cyanase, Benzonase, MNase, Tn5 transposase, and T4 RNA 
ligase all exhibit sequence preferences that are effectively corrected with seqOutBias. We also characterize 
enzymatic bias that results from T4 DNA Polymerase, T4 Polynucleotide Kinase, and Klenow Fragment (3'→5' 
exo-) treatment of DNA in preparation of high throughput sequencing libraries. Lastly, we show that correction 
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of enzymatic sequence bias highlights true molecular signatures, such as sharp peaks of hypersensitivity and 
footprints, that result from protein/DNA interactions.   
 
Materials and Methods 
Sequence bias correction 

Enzymes that are commonly used in molecular biology have nucleic acid preferences for their 
substrates and the sequence at or near the active site of the enzyme typically dictates enzymatic preference. 
Let the sequence context be defined by a k-mer proximal to the start of the detected sequence read. A 
sequenced read corresponds to a k-mer observation if it occurs at a specific offset with respect to the edge of 
the k-mer (Figure 1A). Assuming a systematic k-mer dependent bias, the true read count will be a scaled 
version of the observed read count, that is:  

!!,! = !(!) !!,!  
where, for position i, !!,!  is the true read count, !!,!  is the observed read count and !(!) is the scale factor, or 
bias, corresponding to k-mer j. 
 
In an unbiased setting, the observed frequency of k-mers should be proportional to their genome-wide counts 
or a regional subset of the genome. For example, condensed chromatin may restrict enzyme access and these 
can be excluded from the genomic k-mer counts. Let !(!, !) be the indicator function that genome position m is 
assigned to k-mer j, then we have: 

!!,!  / !!
!

 ≈ !(!, !) / !
!

  

where M is the total number of observable genome positions and !! is the total read count. Further taking the 
observed total read count !! to be !! ≈ !!, then !(!) can be approximated by: 
 

!(!)  ≈ !(!, !) / !
!

 /  !!,! / !!
!

  

 
The seqOutBias software aims to correct sequence biases by scaling the aligned read counts by !(!), which is 
effectively the ratio of genome-wide expected read counts to the observed sequence counts for each k-mer. 
The seqOutBias software additionally takes into account mappability, which means that observable positions 
can differ per strand, thus we compute a separate value of !(!) on each strand. 
 
Computational workflow of seqOutBias 

The seqOutBias software uses a genome FASTA file and an aligned and sorted BAM file as inputs. 
Each intermediate step within seqOutBias corresponds to a seqOutBias subcommand, which permits them to 
be run individually or separately on different machines. Due to the large size of genomic datasets, seqOutBias 
can read compressed FASTA files.  

 
1) Computing genomic mappability 

In the implementation of seqOutBias, our algorithm first calculates the expected sequence detection 
frequency for each k-mer by determining the positions in the supplied reference genome that are uniquely 
mappable for a given sequence read length. It is important to compute mappability for a read length because 
the algorithm should only count k-mers that correspond to genomic positions that have the potential to be 
detected based on their unique genomic mappability when it calculates the expected k-mer detection 
frequency from the FASTA file. SeqOutBias invokes GenomeTools’ tallymer to compute mappability at each 
position in the genome (17, 18). First, the reference genome FASTA file is indexed using GenomeTools’ 
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Tallymer program (17, 18). Next, Tallymer computes unique mappability for each position in the genome for a 
given input read length. This step corresponds to a seqOutBias subcommand, tallymer, which can be run 
individually or on different machines. The tallymer subcommand computes the mappability information, parses 
the reference sequence to compute k-mer indexes, and creates a mappability file for a given read length 
(Figure 1B). This process consists of three parts: 1) creating a suffix tree; 2) creating a genome index; and 3) 
creating the mappability file. These processes are the most computationally intensive steps and seqOutBias 
will recognize the existence of intermediate files in the directory to avoid unnecessary recomputation. For 
instance, if the seqOutBias tallymer step is executed for different read lengths, but using the same FASTA file, 
then the first suffix-tree portion is re-used across invocations.   

 
2) Mapping k-mer indexes to the aligned read positions 

The next step, seqOutBias seqtable, creates an intermediate table that combines mappability 
information, read length, and plus/minus offsets (Figure 1A) to map k-mer indexes to the aligned read positions 
(Figure 1B). The seqtable subcommand parses the reference sequence (FASTA) together with the mappability 
information to compute the k-mer that corresponds to each possible read alignment position. The resulting 
binary file stores this information in a compressed form that can be easily used for subsequent computation 
steps, as well as storing the corresponding parameters (read length, k-mer size, and cut-site offsets). This 
intermediate file reduces the amount of computation needed when processing aligned read files and provides 
an intermediate TBL file that decouples the reference sequence processing from the remaining steps.  

 
3) Tallying the k-mer counts in the reference sequence and the aligned reads 

The resultant TBL file is an input for the seqOutBias tabulate subcommand, which tallies the k-mer 
counts across the selected regions (or full genome), as well as the k-mers corresponding to observed aligned 
reads from the BAM file. In contrast to other methods (10–12, 15), these numbers are used to scale the reads 
without the need for Naked DNA to calibrate. This subcommand produces a k-mer count table based on the 
TBL sequence information and the optional sorted BAM file. Counts correspond to the entire genome by 
default, but counts can be constrained to specific regions by supplying a BED file with the regions option. 
When no BAM file is supplied, the output will have four columns: k-mer index, k-mer string, plus strand count, 
and minus strand count. If a BAM file is supplied, the output will have two additional columns with the plus and 
minus strand counts of observed aligned reads.  
 
4) Scaling individual sequence reads  

The final subcommand, seqOutBias scale, computes the genome-wide aligned read pile-ups and 
scales them by the expected/observed k-mer detection frequency. This produces the corrected aligned read 
pile-ups, both as BED and bigWig files. This command provides flexibility in the output, including the --shift-
counts and --tail-edge options. The --shift-counts option shifts minus strand pile-up positions to align with the 
plus strand pile-up, making reads from both sides of a cleavage site pile up at the same position regardless of 
whether the upstream or downstream sequence was detected by sequencing (Figure 1A). This option is used 
when enzymatic cleavage of individual sites can result in a single base shift depending on whether the nicking 
event was detected by sequencing the upstream or downstream DNA (red nucleotides in Figure 1A). The tail-
edge option outputs the 3´ end of the reads; this option is used primarily for analysis of PRO-seq data (4, 5). 
Therefore, seqOutBias reads compressed files (FASTA, mappability information, and sorted BAM files), reuses 
intermediate results, and allows for flexibility in specifying sequence features for data correction. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2017. ; https://doi.org/10.1101/104364doi: bioRxiv preprint 

https://doi.org/10.1101/104364
http://creativecommons.org/licenses/by/4.0/


 

 

 

 
 
 
 

Figure 1. SeqOutBias overview and parameter definitions. A) An enzymatic cleavage event that results in 
a blunt end can be detected by sequencing the upstream or downstream DNA (red bases). The hexamer 
sequence centered (red block) on the nick sites (dotted vertical lines) confers specificity; this parameter is 
referred to as the k-mer. The plus-offset and minus-offset parameters specify the nick site relative to the first 
position and last position of the k-mer. As opposed to specifying the immediate upstream base for the minus 
strand, we shift the base position by +1 to match the first position of the plus aligned read. B) This panel 
illustrates the high-level overview of the inputs, intermediate files, and output of the seqOutBias program and 
the computation steps that the program performs. The tallymer step indexes the reference sequence (FASTA) 
and computes mappability for the given read length. The seqTable step parses the reference sequence 
together with the mappability information to compute the k-mer that corresponds to each possible read 
alignment position. The tabulate step tallies the k-mer counts across the selected regions (or the full genome), 
as well as the k-mers corresponding to observed aligned reads (if a BAM file is supplied). Lastly, scale 
computes the genome-wide aligned read pile-ups, scaling sequence reads by the expected/observed k-mer 
frequency. 
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K-mer mask optimization 
 In seqOutBias, the k-mer sequence that is recognized by the enzyme to confer specificity is 
characterized by three parameters: k-mer size and a pair of offsets for the plus and minus strands (Figure 1A). 
These parameters enable flexibility and seqOutBias works with enzymes that have a variety of recognition site 
lengths. The k-mer mask parameter of seqOutBias restricts which positions contribute to the bias correction. A 
gapped k-mer enables the user to capture bias due to distal contributions and ignore uninformative positions 
that are more proximal. Positions within the mask that are ignored are represented by an X and informative 
positions by an N. This parameter provides an alternative way to specify the position intervening between the 
first base sequenced and the base directly upstream by inserting a C in the mask string. For example, a 
possible 8-mer that spans 16 bp could be represented as NNXXNNXXCXXNNXXNN; likewise, NNNCNNN, 
would represent a recognition site with kmer-size = 6, plus-offset = 3 and minus-offset = 3 (Figure 1A). We 
developed two approaches to guide the choice of the k-mer mask. 

The first of these approaches, implemented in the Rust program kmer_mask_em 
(https://github.com/guertinlab/kmer_mask_em), is aimed at assays like DNase-seq, where an enzyme cuts with 
a preferred orientation and this cleavage event can be detected by sequencing the upstream or downstream 
sequence. The second approach, implemented in R 
(https://github.com/guertinlab/seqOutBias/tree/master/docs/R), aims to flatten the composite profiles of the 
input molecular genomics data at transcription factor position specific weight matrices (PSWM) and is offered 
as an alternative that imposes less constraints on the k-mer mask. 
 
1. k-mer mask optimization via enzyme cut-site model 

In the k-mer mask optimization via enzyme cut-site model method, we model the enzyme cut bias as a 
PSWM of length K, over the sequence surrounding the cut site. Each k-mer corresponds to a possible cut-site 
with unknown orientation. We apply expectation maximization (EM) to infer the PSWM from the table of k-mer 
counts. 

Let the PSWM be defined as ! = {!!,! ∶  1 ≤ ! ≤ ! ;  ! ∈ {!,!,!,!}}, where  !!,! be the probability of 
observing the nucleotide b at cut-site position j and ! to be the complement of nucleotide b (e.g., b = A, ! = T). 
Given a table of k-mer counts, let !! be the sequence of k-mer i occurring !! times, !! ∈ {!"#, !"#} be unknown 
orientation of !! and !(!!  =  !"#)  = !!. The full likelihood of the model is depicted in Figure S1, thus the full 
log-likelihood is given by: 

!(!, !|!,!)  =  !"# !(!,! | !, !) 
 

= !! !"# !(!! ,!!  | !! , !)
!

 

= !! !"# !(!!  | !!)  +  !! !"# !(!!,!|!! , !)
!

!!!!
 

= !! !"# !(!!  | !!)
!

+  !!!(!!,!  =  !) !(!!  =  !"#) !"# !!,!  +  !(!!  =  !"#) !"# !!!! !!,!
!

!

!!!!
 

Which results in the simple definitions for the EM steps: 
E-step: use Bayes rule to get the posterior of Z, i.e., compute !(!!  =  !"# | !! , !, !); 
M-step: update the model parameters: 
 

!!′ =  !(!!  =  !"# | !! , !, !)  

!!,!′ = !!(!) /  !! !
!
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with: 

!! ! = !!  !(!!  =  !"# | !! , !, !)!(!!,!  =  !)  +  !!  !(!!  =  !"# | !! , !, !) !(!!,! =  !) 
!

 

In practice, we add a pseudo-count to the values of !!(!) of 0.1. Furthermore, since EM does not guarantee a 
global optimum, the kmer_mask_em program computes the optimization from multiple random starting points, 
taking the best global result as the optimum. 
 The inferred PSWM is used to infer a sequence of k-mer masks of increasing complexity by making use 
of the Information Content score at each position. Positional Information Content refers to the relative 
difference in observed sequence at that position relative to what is expected, so high Information Content 
means that a position is likely to influence enzyme preference. Bases that have a value lower than a given 
Information Content threshold are excluded from the mask. Finally, the resulting “forward” mask is combined 
with it’s own “reverse” mask. Therefore, a position in k-mer mask is unmasked if it is unmasked in either the 
forward or the reversed mask. This is necessary since during the execution of the seqOutBias program we do 
not know the orientation of each specific site. 

This approach is ideal for assays where a single enzyme cuts with a preferred orientation, producing 
reads in both directions. The resulting matrix provides candidate positions that are influencing the enzyme 
specificity. This approach: 1) assumes that the mask is symmetric; 2) requires a full counts table (all positions 
unmasked) as input; and 3) requires multiple runs of the same computation with random starting sites, which 
are automatically done in parallel, to ensure a reasonably good global optimum for the PSWM. 

 
2) k-mer mask optimization using profiles at PSWMs and hill climbing optimization 

We implemented a hill climbing method to optimize the k-mer mask. This method takes a starting k-mer 
mask and a set of read count tables (one for each transcription factor) as inputs to guide a greedy search over 
the space of possible k-mer masks. The metric we use to evaluate k-mer masks aims to measure the effect 
these masks have on the TF composite profile at the binding sites.  

For k-mer mask m and a given TF t, let !!,! !,!  be the scaled read count at position j of the binding 
site i, then the TF profile is the vector !! ! = !! !,!  where: 

!! !,! = !!,! !,!
!

 

 
 Our metric is then defined as: 

!!(!)  = !! !,!  –  !! !  ! 
!!

!!!
/(!! − 1)

!
 

 
Let !(!) be the set of masks that differ from m by only one X being changed to N (i.e. by unmasking an 
additional position). The search procedure, given a starting mask !! (for example the mask of all X, indicating 
that all positions in the mask are excluded from the k-mer), is simply the iteration:  

    !!!! = !"#$%!! ∈ !(!!) !!(!) , 
stopping when there are no more masked X positions in the current mask.  

This empirical approach requires many k-mer mask evaluations, which correspond to complete runs of 
seqOutBias. Our implementation allows multiple instances of seqOutBias can be run in parallel (see mc.cores 
parameter in 
https://raw.githubusercontent.com/guertinlab/seqOutBias/master/docs/R/seqOutBias_hcsearch.R).  
 
SeqOutBias Application Programming Interface (API) 
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We structured the code into two parts: a main library (seqoutbiaslib) and the command line program 
(seqOutBias) implemented using the main library. This split allows the code to be reused to implement different 
interfaces with similar functionality or as a component in a larger program. The library is exposed as both a 
Rust library and a C library.  
 The Rust interface includes everything used to build the main program. The code is split into a series of 
modules which correspond to the subcommands of seqOutBias:  

-       tallyrun –  code to execute GenomeTools (17) to produce the mappability file 
-       tallyread – code to read and access the mappability information 
-       seqtable – code to read and write seqtable files to disk 
-       fasta – code to read in the FASTA file, combine it with the mappability information, and produce 
the  seqtable file (via calls to the seqtable module) 
-       filter – code to filter BAM records based on things like length, quality, etc. 
-       counts – code to tabulate kmer counts 
-       scale – code to compute read pile-ups and scale them appropriately 
-       bigwig – code to write the chromInfo and wiggle files and convert them to a bigWig file using the 
wigToBigWig program 
 
The C API exposes the ability to generate a seqtable file and query pile-ups in memory without the 

need to write them to disk. The C API exposes two query functions, one to query specific genomic coordinates 
and one that returns a full chromosome as an array. The C library and the corresponding header files are built 
as part of the main compilation process and can be linked as typical for C libraries. Functions can be grouped 
into four sets: 

1) Functions to manage the seqtable generation parameters. 
2) A function to create a default set of pile-up generation parameters. 
3) A function to generate the seqtable file. 
4) Functions to generate and query the pile-ups. 
 

Deproteinized DNA ATAC-seq 
The naked DNA ATAC-seq library was prepared as previously described (7) with several modifications: 

1) we used purified genomic DNA, as opposed to crude nuclei isolations; 2) we omitted IGEPAL CA-630 from 
all buffers; and 3) we performed PCR cleanup using AMPure XP beads to select DNA <600 bp. The naked 
DNA ATAC-seq data were deposited in the Gene Expression Omnibus (GEO) database, with accession 
number GSE92674.  
 
Installation and analyses 

The user guide and install instructions are available through GitHub: 
https://guertinlab.github.io/seqOutBias/seqOutBias_user_guide.pdf.   

 
The analyses presented herein are reproduced in full with rationale in the accompanying seqOutBias 

PDF vignette on GitHub: https://guertinlab.github.io/seqOutBias/seqOutBias_vignette.pdf. We also provide a 
website version of the vignette: https://guertinlab.github.io/seqOutBias_Vignette/.  
 
Results 
Correction of individual DNase-seq reads 
 DNase-seq measures the accessibility of the phosphodiester backbone of DNA at single-nucleotide 
resolution (1, 2, 9, 19). Composite DNase-seq profiles that are centered on sequence motifs of TF binding sites 
accentuate molecular features that inform on TF binding properties. For example, DNase footprints are defined 
as depletions of sensitivity within large regions of hypersensitivity; footprints align with TF recognition sites and 
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result from TF interactions with DNA (20, 21). High throughput DNase-seq experiments described a cleavage 
pattern at the footprint that was interpreted as a measure of TF/DNA interactions (9); however, subsequent 
work attributed these artifactual signatures to differential substrate specificity of DNase conferred by the 
presence of the TF motif (10–12). As a result, some footprint detection programs now incorporate sequence 
biases into their algorithms (12, 15, 22). SeqOutBias provides the option to correct enzymatic sequence bias 
prior to footprint detection and the output files can be used with existing footprinting algorithms that do not 
incorporate a correction step.  

Previous studies used a hexamer (11) and a tetramer (10) centered on the DNase cut site to account 
for the intrinsic sequence bias of DNase. We systematically explored how the individual bases within a 10-mer 
contribute to the preference of DNase (see Methods). We found that there was little Information Content 
beyond position 3 from the DNase cut site (Figure S2A&B). This expectation maximization method identifies 
candidate positions that contribute to enzyme specificity based on sequence content, so we sought to directly 
test how each position in the mask contributes to the smoothing of the composite profiles. For each TF PSWM, 
we computed the standard deviation for the profile obtained by summing the scaled reads across all sites at 
each position in the PSWM (see Methods). We summed these standard deviations across a set of PSWMs as 
a metric to determine the contribution of each position to DNase preference. We found only a modest 
improvement beyond tetramer correction (Figure S2C). 

  We scaled individual reads based on the preference of DNase using seqOutBias and a 6-mer 
correction factor (Figure 2). Figure 2A illustrates that DNase prefers to nick the sequence CCTTGC and the 
read associated with this window was reduced to an intensity of 0.15. DNase disfavors nicking of GGGGAA, 
thus the read associated with this hexamer was scaled to an intensity of 5.6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. SeqOutBias scales individual sequence reads and corrected DNase-seq data reveals 
footprints. A) The bottom track shows six nick positions from naked DNA DNase-seq data; each position was 
found once in the data. The top track reports corrected read intensities, which scale inversely with DNase 
sequence preference. B) The GATA3 binding site (transparent pink) contains sharp peaks within the binding 
site in uncorrected DNase-seq profiles; a footprint is present only in the corrected data. 
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DNase sequence preferences are most apparent in composite profiles of DNase cut frequency 
surrounding TF motifs. We tested the efficacy of 6-mer correction on DNase-digested naked DNA (23); 
corrected profiles of naked DNA digestion should not exhibit footprints or molecular signatures that result from 
protein/DNA interactions. We observe that sharp peaks and troughs are smoothed in the corrected composite 
profiles for ELF1, GATA3, and MAX motifs (Figure 3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
True signatures that result from TF/DNA interactions are not smoothed by seqOutBias. For instance, 

ChIP-seq validated CCCTC-binding factor (CTCF) binding sites exhibit strong footprints and composite profiles 
at CTCF motifs highlight a sharp signature upstream of CTCF binding (24). This CTCF signature is unaffected 
after correcting for DNase intrinsic sequence preference (12). We plotted DNase-seq profiles at GATA3 and 
MAX binding sites to determine whether true molecular signatures are apparent after intrinsic bias correction 
(Figure 4). We observe a clear composite footprint at MAX binding sites in chromatin, as expected, this 
footprint is not present in the naked DNA digestion (Figure 4A). The MAX footprint is obscured by sharp peaks 
of hypersensitivity (sequence artifact signatures) in the raw uncorrected traces (Figure 4A). Individual footprints 
also exhibit these sharp peaks at the site of TF binding in raw data. At a ChIP-seq validated MAX binding site 
we observe a footprint only after correcting for DNase sequence bias (Figure S3). We observe a sharp DNase 
signature upstream of GATA3 binding sites, which is present only in the chromatin digested samples (Figure 
4B). We conclude that this molecular signature is a result of GATA3/DNA interactions, because this peak is 
neither smoothed following seqOutBias correction nor present in the naked DNA DNase digested sample. Note 
that GATA3 does not have an appreciable composite footprint, but TF inference algorithms may use TF-
specific signatures, as we observe for GATA3, to inform on TF occupancy and binding intensity. The sharp 
peak with raw DNase-seq data within the GATA3 motif obscures footprints at individual GATA3 binding sites 
(Figure 2B and Figure S4). Bias correction enhances both the footprint and the signature upstream of the 
GATA motif (Figure S4). Therefore, correction of intrinsic DNase sequence bias highlights true molecular 
features: footprints and sharp hypersensitivity peaks. We propose that these features can be systematically 
characterized for all TFs and used as informative priors when inferring TF binding profiles genome-wide from 
enzymatic hypersensitivity data.   

 
 

Figure 3. DNase nick bias is corrected in a naked DNA DNase experiment. Each composite profile 
illustrates the average cut frequency at each position between nucleotides. The blue trace is the raw data and 
the black trace is the corrected data; the opaque boundaries represent the 75% confidence interval. A 
seqLogo representation for each TF’s binding site is shown at the top of each plot and vertical dashed lines 
show the boundaries of sequence information content. 
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Correction of TACh-seq, MNase-seq, ATAC-seq, and PRO-seq data 
 We characterized and corrected the biases of Benzonase and Cyanase using Tissue Accessible 
Chromatin (TACh-seq) data (6). TACh-seq is a variant of traditional enzymatic hypersensitivity assays whereby 
frozen tissue samples are treated with either Benzonase or Cyanase endonuclease. Benzonase is an 
endonuclease cloned from Serratia marcescens that functions as a dimer and Cyanase is a non-Serratia 
monomeric enzyme. These enzymes are more highly active under high salt and high detergent conditions, so 
these enzymes are more suited for digestion of solid tissue sample, which requires harsh dissociation 
treatments. We corrected TACh-seq data generated from frozen mouse liver tissue (6). Composite profiles 
from CEBP-beta, FOXA2, and CTCF binding sites (25–27) in mouse liver indicate that an eight base pair mask 
centered on the nick site is sufficient to correct both Cyanase and Benzonase biases (Figure S5 and Figure 
S6). Next, we applied seqOutBias correction to MNase-seq data generated from MCF-7 cells (28). An eight 
base pair mask abrogates the intrinsic sequence bias of MNase-seq data (Figure S7).  

ATAC-seq is unique among enzymatic accessibility assays because each transposition event inserts 
two sequencing adapters into the chromatin. Each Tn5 molecule can be pre-loaded with any combination of 
the paired-end 1 and paired-end 2 adapter. Reads that align to the plus and minus strand are processed 
separately because the Tn5 recognition site is distinct for plus and minus reads. We applied seqOutBias 
correction to published ATAC-seq data from GM12878 cells (7). We generated and analyzed naked DNA 
libraries using the ATAC-seq work flow to measure Tn5 specificity in the absence of chromatin (GEO 
accession: GSE92674). We optimized the k-mer mask for ATAC-seq data by starting with a k-mer mask of 12 
X bases flanking each side of the Tn5 insertion site, then we systematically changed each X position into a 

Figure 4. True molecular signatures resulting from TF/DNA interactions are visible in corrected 
composite profiles. A) A true footprint is highlighted in corrected composite profile (right panel) of DNase 
cleavage at ChIP-seq confirmed MAX binding sites (29) compared to raw frequency counts (left panel). The 
black trace is DNase-digested chromatin and the green trace is DNase-digested naked DNA. As expected, the 
composite footprint is not detected in the naked DNA composite. B) A true molecular signature is highlighted in 
the corrected composite profile (right panel) of GATA3 binding sites (29). The signature is exclusively detected 
in the chromatin digested experiment and may result from GATA3/DNA interaction. 
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masked N using a hill climbing mask optimization method (see Methods). We chose the position that results in 
the lowest summed standard deviations across a set of PSWMs and iterated until we found the top 11 
positions that contribute to Tn5 sequence bias (Figure S8). We used the N positions of the 8-mer 
NXNXXXCXXNNXNNNXXN for the ATAC mask because these are the most influential for Tn5 recognition of 
plus strand reads (Figure S8). The reciprocal mask, NXXNNNXNNXXCXXXNXN, is the optimal 8-mer mask for 
minus strand reads. The sharp ATAC-seq spikes at the sites of TF binding for SP1, REST, and EBF1 (29) are 
reduced in the corrected data (Figure S9 and Figure S10). The complex nature of Tn5 recognition and dual 
loading of adapters, taken together with the incomplete smoothing of ATAC composite profiles, suggests that a 
simple spaced k-mer correction may not be sufficient to fully correct Tn5 bias.  

PRO-seq couples terminating nuclear run-on assays with high throughput sequencing to quantify 
engaged RNA polymerase molecules genome-wide at nucleotide resolution (4). Sequence composition of 
transcripts may affect run on efficiency, therefore, the sequence immediately downstream of RNA polymerase 
may influence detection of RNA molecules. The sequence upstream of RNA polymerase could affect ligation 
efficiency because T4 RNA ligase treatment may exhibit sequence preference. We used seqOutBias to scale 
published PRO-seq data from K562 cells (30). We specifically used annotated transcripts to calculate expected 
k-mer frequency, as opposed to genomic k-mer frequency, because the vast majority of transcription occurs 
within gene annotations (31). We found that a k-mer mask that spans the last three bases of the ligated RNA 
molecule and the three bases downstream from RNA polymerase is sufficient to correct the PRO-seq data 
(Figure 5 and Figure 6). RNA polymerase density decreases at the polypyrimidine tract upstream of the 3´ 
splice site, which suggests an increased RNA Polymerase elongation rate at this tract (Figure 6). These data 
indicate that in addition to U2AF (32, 33) recognizing the pyrimidine residues in the pre-mRNA polypyrimidine 
tract, this tract increases RNA polymerase elongation rate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. SeqOutBias corrects sequence bias at CTCF binding sites associated with DNase (9, 23), Tn5 
Transposase (ATAC) (7), Benzonase (TACh) (6), Cyanase (TACh) (6), MNase (28), and T4 RNA ligase 
(PRO) (4). Upon correcting for enzymatic sequence bias, the artifactual spikes at the CTCF binding site are 
abrogated in each molecular genomics dataset we tested. However, in cases of CTCF binding to chromatin, 
we observe protection that results in a footprint; note that MNase is not expected to result in a composite 
footprint. We observe the previously characterized sharp peak upstream of the CTCF motif and this molecular 
signature is likely caused by CTCF-mediated enhancement of cleavage activity. 
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We also observe a sharp peak at position -3 from the 5´ end of exon. This sharp peak is absent using 
seqOutBias-corrected reads (Figure 6), therefore we hypothesized that this peak results from either inefficient 
adenine incorporation during the nuclear run-on or a preference for cytosine or uracil during either the run-on 
or ligation reaction. We classified 3´ splice acceptor sequences into AAG, CAG, and TAG to generate 
composite RNA polymerase profiles--note that very few splice acceptor sequences are GAG, so they were 
excluded. The sharp peak at position -3 is exclusively found in the CAG splice acceptor profile (Figure S11), 
which indicates that cytosine is preferentially incorporated during the run-on or preferentially ligated. We 
examined the composite profiles at corrected CAG and TAG splice acceptor sites and we observed that RNA 
polymerase density is higher following CAG splice acceptor sites (Figure S12). This result indicates that the 
consensus splice acceptor site, CAG, decreases RNA polymerase elongation rate in the 5´ region of the exon.  

Genome-wide binding data for CTCF is available for K562, GM12878, mouse liver, and MCF-7 cells 
(27, 29). Upon correcting for enzymatic sequence bias, the sharp signature artifacts at CTCF motifs are 
abrogated in each molecular genomics dataset we tested (Figure 5). The naked DNA profiles for ATAC-seq 
and DNase-seq are not restricted to CTCF-bound sites; all genomic CTCF motifs are included in these 
composites (Figure 5). In the chromatin TACh, DNase, and ATAC experiments, we observed protection 
resulting in a footprint and a sharp peak upstream of the CTCF motif. Taken together, we show that 
seqOutBias effectively corrects enzymatic sequence bias resulting from a diverse set of molecular genomics 
experiments.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enzymatic DNA end repair and ligation bias 

We found that the bases upstream and downstream of a DNase nick site are not equally likely to be 
detected by sequencing (red nucleotides in Figure 1A). In Figure 1A, for GATGTC we would expect the ratio of 
reads that begin with GACCAGATGACA (plus strand) and ATCATATCCCGT (minus strand) to be 
approximately equal to one if this site was nicked repeatedly and there was no enzymatic end repair and 
ligation bias. We performed this analysis for all instances of each NNNGAC-mer in the genome (Figure 7A) 
and all 4096 pairwise combinations of 3-mers (Figure 7B). Palindromic 6-mers are balanced (Figure S13), but 
for most 3-mer combinations we identified a preference for which 3-mer is detected by sequencing, we term 
this “detection bias.”  We took the top 5% most skewed 6-mers and generated a composite motif. This motif  

 

Figure 6. SeqOutBias corrects sequence bias associated with the 3´ splice site recognition motif. Upon 
correcting for enzymatic sequence bias, the artifactual signature at the 3´ splice site is abrogated. The first 
base of the exon spans position 0-1 on the x-axis and the sequence bias peak is at position -3. 
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Figure 7. Detection biases are highly correlated between enzymes with similar cut specificities, 
suggesting that ssDNA overhangs drive enzymatic specificity. A) For all sequence-detected DNase-
nicked 6-mers that end in GAC we compare the ratio of sequence reads that start with GAC to the oppositely 
oriented 3-mer. This bias results from enzymatic end repair and ligation sequence preference during the library 
preparation. B) The relative bias of all 3-mers sequenced (the ratio of x-axis 3-mer to y-axis 3-mer). Note that 
these k-mers are not clustered. C) This figure plots the values from panel B. The post-nick sequence 
preferences are highly correlated between DNase-seq experiments and between Benzonase and Cyanase 
experiments, but not between DNase and Benzonase.  
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indicates that an Adenine in position 4 of the 6-mer is preferentially sequenced compared to the oppositely 
oriented nucleotide in position 3 (Figure S14). 

Preparing digested DNA for Illumina high throughput sequencing requires several enzymatic 
treatments. T4 DNA Polymerase treatment removes 3´ overhangs and fills in 3´ recessed (5´ overhang) ends. 
T4 Polynucleotide kinase phosphorylates the 5´ end and Klenow Fragment (3´ to 5´ exo-) adds a single 3´ 
adenine overhang. We hypothesized that the overhanging sequences dictate the detection bias, because the 
detection bias is distinct for Benzonase and DNase (Figure 7C top panel). Although four nick events are 
necessary to sequence a DNA molecule, enzymatic hypersensitivity assays only detect one nick on each end 
of the molecule and it is impossible to determine the precise location of the other nicks. By assuming that two 
enzymes with similar nick specificity (Figure S15) will have comparable distribution of sequence overhangs, we 
can test the hypothesis that the overhang sequences contribute to post-nicking enzymatic treatment biases. 
We compared this post-nicking bias using DNase-seq data from two different labs and two different organisms 
(Figure S15). We also compared the detection bias of Cyanase and Benzonase, which have similar sequence 
preferences (Figure S15). Indeed, digestions with enzymes that have similar nick preferences, which results in 
comparable distributions of overhanging sequences, have highly correlated detection biases (Figure 7C bottom 
two panels and Figure S16). Importantly, seqOutBias calculates the ratio of genomic k-mers and 
experimentally observed k-mers to scale individual reads and this calculation inherently corrects for the 
convolution of biases resulting from multiple enzymatic steps, including these end repair and ligation biases.    
 
Discussion 
 We previously described the challenge of interpreting single-nucleotide resolution DNase-seq data (10, 
11). Subsequently, groups have developed algorithms that consider this bias for DNase-seq footprinting 
detection (12, 22). However, this is the first report of stand-alone software that specializes in correcting 
sequence bias for a diverse set of molecular genomics datasets. SeqOutBias is a command line tool and 
designed for a UNIX environment, making the software compatible for seamless integration into existing high 
throughput sequencing analysis pipelines. SeqOutBias is conceptually and mathematically simple, effectively 
counting k-mer occurrences and scaling data accordingly. This calculation sufficiently corrects biases 
associated with many different assays. However, we anticipate that subsequent software may incorporate 
more complex calculations and models into data correction. For instance, RNA hairpins may affect the 
efficiency of ligating adapter to RNA using T4 RNA ligase. Due to the complexity of secondary and post-
secondary RNA structure predictions (34), we suspect that more sophisticated models are necessary for 
correction of datasets such as PRO-seq.  
 Enzymatic hypersensitivity assays have the potential to identify regulatory elements genome-wide and 
infer TF binding intensity at each regulatory element. Four features of enzymatic hypersensitivity assays can 
aid in TF binding inference: 1) the presence of a TF’s recognition motif; 2) the raw enzyme cleavage frequency 
in the region surrounding the motif; 3) a depletion in sensitivity at the motif (footprint); and 4) the presence of 
TF-mediated molecular signatures (sharp peaks and valleys) that surround the motif. Correction of enzymatic 
sequence bias provides a more accurate measurement of all these features except sequence composition. 
Correction of intrinsic experimental biases will prove important as the field continues to refine experiments and 
algorithms to more accurately infer TF binding intensity genome-wide from enzymatic hypersensitivity data. 
 In conclusion, we and others have previously shown that enzymatic sequence preferences can be 
misinterpreted as biologically important phenomena (10–12). Sequence bias correction is an important step in 
analyzing high resolution molecular genomics data and we introduce seqOutBias as flexible and novel 
software that efficiently characterizes biases and appropriately scales individual sequence reads. 
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Figure S1. Graphical representation of k-mer mask optimization via enzyme cut-site model. We model 
the enzyme cut bias as a PSWM, of length K and parameterized by !, shared among across all N possible k-
mers. Here !!,! represents the observed j-th base of the i-th k-mer sequence. Each k-mer has an unknown 
orientation, represented by the random variable !! and parameterized by !!. Furthermore, each k-mer is 
observed !! times in the data. Thus, the full likelihood of the model is:  

ℒ(!, !| !,!)  = !(!,! | !, !) =  !(!! ,!!  | !! , !)!!
!

= !(!!|!) !(!!,!| !! , !)
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Figure S2. DNase k-mer mask optimization.  (A) The PSWM resulting from the expectation maximization k-
mer optimization method shows that the information content of the positions gradually decreases with 
increasing distance from the DNase nick site. (B) The plot of cumulative information content of the positions 
begins to level off at the tetramer. (C) We plot the decrease in the summed standard deviations across a set of 
PSWMs as we successively increase the k-mer size relative to the centered DNase nick site. 
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Figure S3. Corrected DNase-seq data reveals footprints at a MAX binding site. (A) The precise location of 
MAX binding (transparent pink) is inferred from the presence of a MAX recognition motif within a MAX ChIP-
seq peak. This binding site shows sharp peaks within the binding site in uncorrected DNase-seq profiles; a 
footprint is present only in the corrected data. (B) A zoom in of the panel (A) reveals that the composite MAX 
trace from Figure 4A (shown here as a blue trace) is observed at the MAX binding sites.  
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Figure S4. Corrected DNase-seq data reveals footprints at a GATA3 binding site. (A) A 10x zoom in of 
Figure 2B. (B) The single nucleotide resolution profile reveals that the composite GATA3 trace from Figure 4B 
(shown here as a blue trace) is observed at the GATA3 binding sites. The molecular signature upstream of 
GATA3 binding in Figure 4B is observed and enhanced at this binding site at position chr12:64625486.  
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Figure S5. SeqOutBias corrects cyanase endonuclease bias. Each composite profile illustrates the 
average cut frequency at each position between nucleotides. The blue trace is the raw data and the black trace 
is the 8-mer corrected data.  
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Figure S6. SeqOutBias corrects benzonase endonuclease bias. The composite profiles for FOXA2, CTCF, 
and CEBP-beta binding sites illustrate the average cut frequency at each position between nucleotides. The 
blue trace is the raw data and the black trace is the 8-mer corrected data. 
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Figure S7. SeqOutBias corrects MNase sequence bias. The composite profiles for MAX, GATA3, and ELF1 
indicate that sequence correction abrogates the sharp peaks in the traces. The blue trace is the raw data and 
the black trace is the 8-mer corrected data.  
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Figure S8. ATAC-seq k-mer mask optimization. We started with a k-mer mask of 12 X bases flanking each 
side of the Tn5 insertion site and we systematically changed each X position into a masked N. We plot the 
decrease in the summed standard deviations across a set of PSWMs for the top 11 positions that contribute to 
Tn5 sequence bias.  
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Figure S9. Tn5 insertion bias is corrected in a ATAC-seq experiment from GM12878 cells. The 
composite profiles for SP1, EBF1, and REST indicate that sequence correction dampens the sharp peaks in 
the traces.  
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Figure S10. Tn5 insertion bias is corrected in a ATAC-seq experiment from naked DNA. We generated 
ATAC-seq data with naked DNA and we find that the composite profiles for TFs exhibit dampened sharp peaks 
in the corrected traces.  
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Figure S11. Sequence bias drives a sharp peak of PRO-seq signal upstream of exons. The sharp peak at 
position -3 found in the CAG splice acceptor profile indicates that cytosine is preferentially incorporated during 
the nuclear run-on or preferentially ligated during the library preparation. 
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Figure S12. SeqOutBias corrects PRO-seq sequence bias. Corrected PRO-seq profiles abrogate the sharp 
peak at position -3 at CAG consensus exons and the modest difference in intensity in the 5´end of the exon 
indicates that RNA Polymerase may proceed faster at TAG exons relative to CAG. 
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Figure S13. Reverse palindromic hexamers do not exhibit enzymatic DNA end repair and ligation bias. 
The DNA end substrates are identical in reverse palindromic nick sites, accounting for the absence of bias. 
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Figure S14. DNA sequence drives DNA end repair and ligation preference. Motif analysis of the 5% most 
enzymatic DNA end repair and ligation biased 6-mers indicates that an Adenine in position 4 of the 6-mer is 
preferentially sequenced compared to the oppositely oriented nucleotide in position 3. 
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Figure S15. Enzymatic nick biases are correlated between DNase-seq experiments and correlated 
between Cyanase and Benzonase digestion experiments. These scatter plots show that the enzymatic nick 
biases, as measured by the seqOutBias scale factor, are correlated between DNase experiments and 
correlated between Cyanase and Benzonase.  
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Figure S16. Post-nick enzymatic processing biases of DNase are correlated between experiments and 
the post nick biases of Cyanase and Benzonase are similar. The relative bias of all 3-mers sequenced (the 
ratio of x-axis 3-mer to y-axis 3-mer) for four separate experiments.   
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