Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Working memory and decision making in a fronto-parietal circuit model

John D. Murray, Jorge Jaramillo, Xiao-Jing Wang
doi: https://doi.org/10.1101/104802
John D. Murray
1Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jorge Jaramillo
2Center for Neural Science, New York University, New York, NY 10003, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiao-Jing Wang
2Center for Neural Science, New York University, New York, NY 10003, USA
3NYU-ECNU Joint Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Working memory (WM) and decision making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal and prefrontal cortices (PPC and PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically-based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multi-regional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of fronto-parietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but in response to intervening distractors, PPC transiently encodes distractors, while PFC filters distractors and supports WM robustness. With regards to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function, and provide a framework for extension to multi-regional models.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted February 06, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Working memory and decision making in a fronto-parietal circuit model
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Working memory and decision making in a fronto-parietal circuit model
John D. Murray, Jorge Jaramillo, Xiao-Jing Wang
bioRxiv 104802; doi: https://doi.org/10.1101/104802
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Working memory and decision making in a fronto-parietal circuit model
John D. Murray, Jorge Jaramillo, Xiao-Jing Wang
bioRxiv 104802; doi: https://doi.org/10.1101/104802

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (2517)
  • Biochemistry (4964)
  • Bioengineering (3469)
  • Bioinformatics (15181)
  • Biophysics (6885)
  • Cancer Biology (5380)
  • Cell Biology (7711)
  • Clinical Trials (138)
  • Developmental Biology (4518)
  • Ecology (7135)
  • Epidemiology (2059)
  • Evolutionary Biology (10210)
  • Genetics (7497)
  • Genomics (9767)
  • Immunology (4822)
  • Microbiology (13179)
  • Molecular Biology (5129)
  • Neuroscience (29367)
  • Paleontology (203)
  • Pathology (835)
  • Pharmacology and Toxicology (1460)
  • Physiology (2129)
  • Plant Biology (4734)
  • Scientific Communication and Education (1008)
  • Synthetic Biology (1337)
  • Systems Biology (4002)
  • Zoology (768)