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Abstract

Motivation:

Although high-content image cytometry is becoming increasingly routine, processing the large amount
of data acquired during time-lapse experiments remains a challenge. The majority of approaches for
automated single-cell segmentation focus on flat, uniform fields of view covered with a single layer of cells.
In the increasingly popular microfluidic devices that trap individual cells for long term imaging, these
conditions are not met. Consequently, most segmentation techniques perform poorly. Incorporating
information about the microfluidic features, media flow and morphology of the cells can substantially
improve performance, though it may constrain the generalizability of software.

Results:

Here we present DISCO (Data Informed Segmentation of Cell Objects), a framework for using the
physical constraints imposed by microfluidic traps, the shape based morphological constraints of budding
yeast and temporal information about cell growth and motion, to allow tracking and segmentation of cells
in microfluidic devices. Using manually curated data sets, we demonstrate substantial improvements in
both tracking and segmentation for this approach when compared with existing software.

Availability:

The MATLAB®) code for the algorithm and for measuring performance is available at
https://github.com/pswain/segmentation-software. The test images and the curated ground truth re-
sults used for comparing the algorithms are available at http://swainlab.bio.ed.ac.uk/.

Introduction

One of the primary methods through which information is acquired from biological samples is by optical
imaging. Imaging by both transmitted and fluorescent methods is essential to the modern biological
research laboratory, and the proliferation of innovative imaging techniques continues to increase its
importance (|Meijering et al.(2016)Meijering, Carpenter, Peng, Hamprecht, and Olivo-Marin]). The
automated application of these imaging methodologies, often in time-lapse microscopy experiments, has
left biomedical researchers with a deluge of image data, and a common bottleneck to scientific analysis
is the necessary segmentation into cells or regions of interest.

This challenge has been widely recognized for nearly fifty years, and has been the subject of in-
tense research efforts ([Meijering(2012)]). The most widely used and most generalizable methods rely
on thresholding images into a foreground and background (|Kamentsky et al.(2011)Kamentsky, Jones,
Fraser, Bray, Logan, Madden, Ljosa, Rueden, Eliceiri, and Carpenter]). Although useful, these meth-
ods have several problems that warrant the development of tools tailored to specific uses (|Sommer
and Gerlich(2013)]). Most importantly, to achieve an acceptable accuracy a fluorescent marker is
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typically used to label part of the cell ([Schiegg et al.(2015)Schiegg, Hanslovsky, Haubold, Koethe,
Hufnagel, and Hamprecht| [Federici et al.(2012)Federici, Dupuy, Laplaze, Heisler, and Haseloff] |Zhong
et al.(2012)Zhong, Busetto, Fededa, Buhmann, and Gerlich, [Kamentsky et al.(2011)Kamentsky, Jones,
Fraser, Bray, Logan, Madden, Ljosa, Rueden, Eliceiri, and Carpenter, |Conrad et al.(2011)Conrad,
Wiinsche, Tan, Bulkescher, Sieckmann, Verissimo, Edelstein, Walter, Liebel, Pepperkok, and Ellen-
berg, Held et al.(2010)Held, Schmitz, Fischer, Walter, Neumann, Olma, Peter, Ellenberg, and Ger-
lich,, [Pelet et al.(2012)Pelet, Dechant, Lee, van Drogen, and Peter|), which both increases the workload
of constructing strains and occupies a fluorescent channel: limiting the amount of data that can be ac-
quired. For example, a large proportion of the ORF-GFP library in budding yeast ([Huh et al.(2003)Huh,|
[Falvo, Gerke, and Carroll]), over four thousand cell lines, were tagged with red fluorescent protein purely
to facilitate automated segmentation ([Chong et al.(2015)Chong, Koh, Friesen, Duffy, Cox, Moses, Mof-|
[fat, Boone, and Andrews|). There is thus an urgent need for a reliable segmentation method based on
the readily obtainable bright field or DIC images that would prevent this additional work.

Image segmentation methods, and computer vision in general, have to balance trade-offs between gener-
alizability and precision. This requirement is especially acute in imaging in the life sciences, where a wide
range of model organisms and imaging environments are employed ([Kamentsky et al.(2011)Kamentsky,
Jones, Fraser, Bray, Logan, Madden, Ljosa, Rueden, Eliceiri, and Carpenter} [Zhan et al.(2015)Zhan,
Crane, Entchev, Caballero, Fernandes de Abreu, Ch’ng, and Lu, (Crane et al.(2012)Crane, Stirman, Ou,
Kurshan, Rehg, Shen, and Lul, [Federici et al.(2012)Federici, Dupuy, Laplaze, Heisler, and Haseloff]).
Methodologies that apply to all these diverse organisms and experimental conditions are necessarily ag-
nostic about the constraints that are specific to a particular case. With this limitation in mind, we here
confined our interest to the automated segmentation of S. cerevisiae cells in microfluidic experiments:
specifically long-term imaging using devices containing individual cell traps (Fig. [1)). The microfluidic
device we use for this work, ALCATRAS, is from [Crane et al.(2014)Crane, Clark, Bakker, Smith, and|
Swai.

Budding yeast itself is a popular model organism, being a eukaryote that is easily cultivated and
genetically manipulated. Widespread interest in the replicative aging of single S. cerevisiae cells has
resulted in an explosion in the number of microfluidic devices that can trap mother cells for their entire
lifespan ([Ryley and Pereira-Smith(2006), [Sik et al.(2012)Sik, Avalos, Huberts, Lee, and Heinemann,
Zhang et al.(2012)Zhang, Luo, Zou, Xie, Brandman, Ouyang, and Li, [Xie et al.(2012)Xie, Zhang,
Zou, Brandman, Luo, Ouyang, and Li, [Crane et al.(2014)Crane, Clark, Bakker, Smith, and Swain, [Jo
et al.(2015)Jo, Liu, Gu, Dang, and Qin]). Budding yeast divide rapidly — growing exponentially with
a doubling period of 80-90 minutes. To image the same cells over a long period of time, newborn
cells (daughters) must be removed to prevent the device from becoming overcrowded. In contrast to
typical cell tracking, where there is only a small probability of losing a tracked cell if it either dies or
moves outside the field of view ([Li and Kanade(2007)]), this removal means that cells regularly appear,
disappear, and replace each other. In addition, there is a stringent constraint on the speed required of
any automated algorithm because experiments are long, with hundreds of cells imaged, often every five
minutes, for days.

Here we present a comprehensive framework to segment and track budding yeast cells. By focusing on
budding yeast in microfluidic traps, we can leverage prior knowledge about shape, motion and appear-
ance to improve accuracy and performance. This approach, employing both fitted probabilistic models
and supervised machine learning, is generally applicable and can provide substantial improvements in
accuracy.

Approach

Our framework is structured into four stages for integrated identification, segmentation and tracking of
cells:

1. the microfluidic features of the traps are located and used to define regions of interest and to
register images

2. probable cell seeds are identified using a supervised learning classifier applied to each pixel
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Figure 1. Microfluidic devices for long term imaging of cells impose physical constraints. A) A
microfluidic device for budding yeast where cells are held in place by media flow and imaged over long
periods of time. B) An image of a single trap containing multiple cells. The cells and traps share many
similarities in shape and optical properties. C) The trap design imposes specific physical constraints on
where cells can be located and where they are likely to move. Arrows represent fluid flow in the device.
D) Time-lapse images of a single trap shows the appearance of new cells washed in from above, and the
disappearance of daughters that are washed away after birth. Cells are individually labelled to show
the continuity between time points and the appearance of new cells (bold). Scale bar is 5u m.

3. the location of cells at previous time points is used to improve the predicted cell seed locations

4. a shape based active contour model is iteratively applied to proposed seeds until the image is
segmented.

Methods

Identifying physical features of the microfluidic device

The widely used microfluidic devices with traps have floor to ceiling pillars that hold cells and create reg-
ular optical features (|[Chen et al.(2016)Chen, Crane, and Kaeberlein|). These microfluidic features are
not only consistent, stable landmarks, but they constrain cell motion in a predicable manner. We there-
fore use these physical landmarks at all stages of processing to inform and constrain the segmentation
to increase precision.

To locate the microfluidic features, the software predicts the locations of traps by performing normal-
ized cross-correlation between the initial time point of the experiment and a canonical image of the
microfluidic features. Following this prediction, user feedback is required to correct (add or remove) any
features that were not accurately detected. The importance of identifying trap locations mandates input
from the user, but this input is only performed at the initial time point and as such is not laborious.
Following this identification, the microfluidic traps are tracked through time to correct for any motion
or drift from the stage of the microscope.

Supervised classification to identify cell centres

Accurately determining cell centres is an important part of the segmentation because accurate cell
seeding removes the need to both eliminate aberrant seeds and fuse multiple seeds into a single cell.
Previous methods for budding yeast have largely used thresholding. Most commonly, a threshold is ap-
plied to either the image itself (|Gordon et al.(2007)Gordon, Colman-Lerner, Chin, Benjamin, Yu, and|
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Figure 2. A support vector machine approach allows the use of sixty features to robustly determine
probable cell centres. Two bright field images, one above and one below the plane of focus, are captured
at each time point. A large range of transformations are applied to these images to generate a high
dimensional feature set for each pixel. A linear SVM, trained on a curated set of images, provides a
decision boundary. The signed distance of each pixel from the the decision boundary is used as a score
for the cell centre. These pixel scores are reconstituted into a decision image and used to seed probable
cell centres. In the image, low values (blue) indicates a better cell centreness score.

[Brent| [Pelet et al.(2012)Pelet, Dechant, Lee, van Drogen, and Peter]) or to the accumulation array of
a circular Hough transform (|[Kvarnstrom et al.(2008b)Kvarnstrom, Logg, Diez, Bodvard, and Kall,
[mopoulos et al.(2014)Dimopoulos, Mayer, Rudolf, and Stelling]). Alternative approaches identify fore-
ground objects and then separate these objects with a watershed transform ([Doncic et al.(2013)Doncic,|
[Eser, Atay, and Skotheim]|). Although such methods can work well, they rely on a single feature to de-
termine whether locations are probable cell centres and consequently can be prone to biases and under-
or over-seeding. To increase the confidence in cell seeds, we designed a predictor based on a high di-
mensional feature space for each pixel, a common approach in computer vision (|Grys et al.(2016)Grys,|
[Lo, Sahin, Kraus, Morris, Boone, and Andrews]).

We found that the most consistent imaging conditions were generated acquiring an out of focus bright-
field image ([Gordon et al.(2007)Gordon, Colman-Lerner, Chin, Benjamin, Yu, and Brent|). Although
differential interference contrast (DIC) provides high contrast images, the gradient is dependent on the
orientation relative to the centre of the cell which complicates segmentation ([Ning et al.(2005)Ning,|
[Delhomme, LeCun, Piano, Bottou, and Barbano|). We acquired images both 2 y mabove and below the
central focal plane because the brightfield image is different depending on whether the image is acquired
above or below the plane of focus (a bright cell with dark edges or the reverse). Both images were used
in the generation of cell seeds.

To determine whether an individual pixel is likely to be the centre of a cell, transforms are run on
the whole image to extract different information about the pixel and its locale. These features are
then fed into a support vector machine (SVM) classifier trained on example pixels. By employing a
large number of features, the classifier is better able to predict cell centres. A complete list of all sixty
features used can be viewed in SOM, but include the radial Hough transform, image smoothing and
sharpening features, and relational features to incorporate proximity to the microfluidic traps. Using a
manually curated ground-truth data set, we trained a linear-SVM using the publicly available liblinear
library ([en Fan et al.(2008)en Fan, wei Chang, jui Hsieh, rui Wang, and jen Lin]). Both polynomial
and RBF-kernel SVMs (using the 1ibSVM library) were tested, but offered negligible improvements in
accuracy despite dramatically increasing run-time. To determine the decision boundary, we define A to
be a slack variable that constrains the cost of misclassification, the training set as the set of vector-label
pairs {(X1,41), ..., (Xn,yn)}, then the support vector, (w,b), is selected to minimize

N
AW+ " maz(0, (1 — yi(W - %; — b))
=1

Where w is the vector containing the weight for each image feature used in the classification and b is
an offset. The score of each pixel is determined with the function, g(x), given by:

g®) =W -%—b
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We use a five-fold cross-validation approach to determine the cost parameter, \.

For a given image to be segmented, the features are calculated and passed to the trained SVM to
generate a score for ‘cell-centreness’ for each pixel. The scores are reconstituted into an image of the
same size as the original where low values indicate pixels likely to be cell centres (Fig. . We refer to
this image as the decision image.

Segmentation using a morphologically constrained cell-shape model

Although many cell types have a highly constrained morphology, most segmentation algorithms do not
use this information to preserve generalizability ([Dimopoulos et al.(2014)Dimopoulos, Mayer, Rudolf,|
and Stelling]), but this choice can result in a low accuracy when imaging conditions are challenging
([Delgado-Gonzalo et al.(2015)Delgado-Gonzalo, Schmitter, Uhlmann, and Unser|). Here we employ a
cell-shape model based on the morphological constraints of budding yeast, which typically have round to
elliptical morphologies. Although the morphological shape space is confined for young cells, it diverges
as cells age and become irregular.

Active contour methods provide a straightforward and physically motivated means of encoding shape
information. They have been used extensively for image segmentation ([McInerney et al.(1996)McInerneyl,
McInerney, Terzopoulos, and Terzopoulos, |Garner(2011), Delgado-Gonzalo and Unser(2013)]), includ-
ing the microscopy of S. cerevisiae (|Bredies and Wolinski(2011), [Kvarnstrom et al.(2008a) Kvarnstrom,|
[Logg, Diez, Bodvard, and Kall]). The boundary of a cell is defined by a deformable contour param-
eterised by a small number of shape parameters (|[McInerney et al.(1996)McInerney, McInerney, Ter-|
[zopoulos, and Terzopoulos, Blake and Isard(2012)]). The image to be segmented is processed to give a
forcing image in which pixels that are likely to be part of an edge have low values. The ‘best’ contour is
then found by minimising a cost function that depends on both this forcing image and the shape of the
contour. If the same object is seen in multiple frames of a time-lapse, the cost function can also include
terms spanning time points to punish physically improbable changes in the object’s outline. Ideally,
by integrating both prior knowledge about the physiological shape space and the acquired image data,
active contour methods are capable of providing increased segmentation accuracy.

We generated our forcing image from an out of focus brightfield image by taking the gradient along
radial vectors from the putative centre of the newly identified cell (|Gordon et al.(2007)Gordon, Colman-
Lerner, Chin, Benjamin, Yu, and Brent| [Kvarnstrom et al.(2008b)Kvarnstrom, Logg, Diez, Bodvard,
and Kalll Dimopoulos et al.(2014)Dimopoulos, Mayer, Rudolf, and Stelling]). This procedure highlights
the edge of the cell, which appears as a white object with a black halo, but not the nearest edges of
adjacent cells. To this image we add the normalised and inverted decision image so as to force the
contour away from cell centres (Fig. and SOM).

Given that S. cerevisiae cells have ovoid, concave shapes, and letting r and 6 be the usual polar
coordinates, s be a periodic cubic B spline with six evenly spaced knots, r, in the range 0 to 2w, we
defined our contour as all pixels intersected by the curve (Figure [3Aii):

r=s(0,r) (1)

This definition allows a range of physically reasonable cell shapes with only six parameters — the six
elements of the vector r — and balances the competing interests of complexity and flexibility ([Delgado-|
|Gonzalo and Unser(2013)]).

We used a dataset of manually curated cell shapes to determine the empirical distribution of the
parameters of the morphological shape space. Specifically, a multivariate normal distribution was fitted
for the parameter vector r and added to the cost function for new cells to punish unphysical cell shapes.
If F is the forcing image and N is the probability density function of the normal distribution with
parameters p and X fitted to the curated data, then the cost function becomes

Cvnew cells(rt) = F(S(ea rt)) - IOg (N(rt) H, 2)) (2)

For tracked cells, we find that it is advantageous to punish unphysical changes in shape and to include
cell growth. Cells are more likely to grow than shrink, although often stay the same shape. To capture
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Figure 3. Using a morphological model for cell segmentation allows prior information about cell shape
to be exploited. A) Definition of cell contour: The contour is defined by a periodic cubic B spline in
polar coordinates (blue line in Aii) centred on the cell seed, and is completely defined by the six knots
of the spline (red circles in Aii). This spline is mapped back to the image coordinates to produce a cell
contour (Ai). B) Identification: To identify the correct contour for a particular cell a forcing image is
generated by taking the gradient of the image in the radial direction from the cell seed (B, left). The
contour is found by optimising a cost function that combines the value of the pixels in the forcing image
along the cell contour with the probability of the contour according to a fitted probability distribution
of cell shapes.

these effects we use a log-normal distribution because of its positive skewness. Fitting the distribution
to the element wise division of the parameter vector for the cell at the current time point (r;) by the
parameter vector for the same cell at the previous time point (r;—1) punishes the relative change in shape,
rather than the absolute, which improves the outline identification for large cells. We curated a time-
lapse data set to fit the multivariate log-normal distribution to the element wise division. Writing this
element-wise division as rt‘"—il and InN as the probability density function of the log-normal distribution

with parameters p/ and ¥/ fitted to the curated time-lapse data, the final cost function is:

Ctracked cells(rt) = F(5(97 rt)) - IOg (th(rr_tla :u/a El)) (3)

The JarqueBera test ([Jarque and Bera(1980)|) was applied to data fitted to a normal distribution to
ensure the distribution appropriately modelled the data; details can be found in the SOM.
The boundary of the cell is found by globally optimising this cost function for r; using a particle swarm

(|Birge(2003)], Fig. [3B).

Incorporating temporal information to refine cell centre prediction

Budding yeast are constantly growing and dividing, and coupling temporal tracking information with
knowledge about fluid flow can increase the accuracy of cell identification. Fluid flow on the small length
scales of microfluidic devices has a low Reynolds number and so is predictable and consistent. The cell
traps and predictable flow profile affects both where cells are initially located and where cells are likely
to move to as they grow.

For time points after the first, we developed a method that incorporates this prior knowledge about
the physical imaging platform. We generate a prior image m(x,y) for the motion of each cell at the
previous time point, which encodes the probability that the the centre of cell has moved to the point
(z,y) at the current time point.


https://doi.org/10.1101/105106

bioRxiv preprint doi: https://doi.org/10.1101/105106; this version posted February 6, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

SVM decision image generation

[
time point t

active contour

seed selection ) outline identification ’
A

updated cell location predictions
are used to identify new seeds
in an iterative prodcedure

generation of probable location updated probable location
images from cell motion prior images and decision image

Figure 4. Greedy optimisation prioritises cells identified at previous time points to ensure reliable
tracking. To segment cells at current time point (¢), a decision image and probable location images are
generated as described in the main text and subjected to a greedy optimisation algorithm. The probable
location images are used to propose a seed: the highest scoring pixel in the image set. If it is above a
threshold value, the seed is used to generate a cell contour as described in Figure 3| If the contour meets
criteria for its shape and its overall score, it is stored, and the decision and probable location images
updated to prevent new cells being found in the region it occupies. If it is a tracked cell, the probable
location image for this cell is no longer considered during seed generation. The procedure is repeated
until no pixels above the threshold criteria remain. From this point on new cell seeds are proposed from
the decision image.

The motion prior is indexed by a cell’s size and location in the trap and is generated from empirical
measurements: the curated pairs of cells used to train the distribution of tracked cell shapes (equation
. When a motion prior is calculated for a particular cell, two probability density functions are retrieved
— one indexed by its size and one indexed by its location — and the average returned as the motion prior
for that particular cell.

To combine this motion prior with the likely cell locations at the current time point, a probable
location image is calculated for each cell as:

probable location image,(z,y) = log(m;(x,y)) — decision image(z, y) (4)

An example set of probable location images is shown in figure

Iterative greedy optimization of cell contours

To try to maximize the performance of the segmentation, we use a greedy optimization that integrates
information about cell centres (decision image) and cell shape (active contour algorithm). For the first
time point, the decision image is calculated and the first seed selected as the pixel in the decision image
with the lowest value (i.e. the pixel most likely to be a cell centre). Provided the value of this pixel is
below a user-defined ‘new cell identification’ threshold, the active contour algorithm is applied using the
cost function given by equation [2| and returns the outline of the putative cell and its score: the value of
the cost function. If the cost is below a user-defined threshold, the cell is deemed to be a true cell and
assigned a unique label for tracking. The cell is then blotted out of the decision image so that no new
cell seeds will be identified within the area of the previously identified cells. The procedure is repeated
until no pixels remain that are below the user-defined threshold.

At subsequent time points, the set of probable location images is used to generate cell seeds. A similar
greedy optimisation is applied to these images: identifying the highest scoring pixel in the image set,
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applying the active contour algorithm with the tracked cell cost function (equation 7 and storing
the cell if its score and change in shape meet appropriate threshold criteria. With each successful
identification, the probable location and decision images are modified to include the newly identified
cell. Once all previously identified cells have been tracked, new cells are identified by applying the first
time point iterative procedure to the modified decision image.

This division into tracked cells and new cells has a number of advantages:

1. it improves consistency in the location and shape of the cells across time by using shape and
location information of cells at previous time points to identify and segment cells at the current
time point

2. it reduces false positives in new cells and false negatives for cells present over multiple time point
by allowing both a more lenient criteria to be applied to cells identified at the previous time point
and a more stringent one to be applied to new cells

3. it helps prevent large and irregularly shaped older mothers from being confused for multiple smaller
new cells by allowing us to delineate the new-cell and existing cell shape models.

This procedure is applied iteratively over all time points, segmenting the time-lapse images and tracking
the cells. The algorithm is shown schematically in figure [ further details, with pseudo code, can be
found in the SOM.

Methods comparison

To evaluate the performance of our framework, we generated and manually curated several data sets for
shape and tracking of individual cells. To maintain independence and prevent biasing of the measures
of performance, we used strains in which a fluorescent reporter was strongly expressed in the cytoplasm.
This fluorescent reporter was used for segmentation by applying a circular Hough transform and Chan-
Vese active contour algorithm: reducing the overall workload and ensuring the initial segmentation was
independent of any one method to be tested. Following segmentation of the fluorescent channel, we
manually curated all outlines using brightfield images. To ensure the datasets were representative of the
variability seen in experiments, images were acquired over multiple months in different conditions and
by different individuals (see SOM). These datasets are separate from those used for training DISCO.
The curation was done in two parts: one for cell shape and size error rates and a second for tracking
error rates between time points. The final data sets used for error determination contained >1,000
manually curated cell outlines and >1,200 curated cell trajectories.

The performance statistics for segmentation and tracking were taken from the ISBI cell tracking chal-
lenge ([Maska et al.(2014)Maska, Ulman, Svoboda, Matula, Matula, Ederra, Urbiola, Espana, Venkate-
[san, Balak, Karas, Bolckova, Streitova, Carthel, Coraluppi, Harder, Rohr, Magnusson, Jaldén, Blau,
Dzyubachyk, Kizek, Hagen, Pastor-Escuredo, Jimenez-Carretero, Ledesma-Carbayo, Munoz-Barrutia,|
Meijering, Kozubek, and Ortiz-de Solorzano|). These performance measurements result in a single com-
prehensive score for tracking and segmentation, which makes it possible to compare methods directly.
The metric for segmentation accuracy is the Jaccard index and is given by:

|AN B|
|AU B|

Where A is the ground truth segmentation for that cell and B is the cell outline identified by the test
algorithm. The inclusion of the intersect and union means that this score punishes over-segmentation
and under-segmentation to the same degree. Cells that are either false positive or false negatives receive
a score of 0; cells that are perfectly segmented receive a score of 1.

For estimating the accuracy of tracking, the measurement is based on transformations applied to
an acyclic oriented graph ([Maska et al.(2014)Maska, Ulman, Svoboda, Matula, Matula, Ederra, Ur-
|biola, Espana, Venkatesan, Balak, Karas, Bolckova, Streitova, Carthel, Coraluppi, Harder, Rohr,
Magnusson, Jaldén, Blau, Dzyubachyk, Kizek, Hagen, Pastor-Escuredo, Jimenez-Carretero, Ledesma-
Carbayo, Munoz-Barrutia, Meijering, Kozubek, and Ortiz-de Solorzanol Matula et al.(2015)Matula,

SEG = (5)
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Figure 5. Segmentation and tracking performance comparison for DISCO, CellX and CellSerpent. A)
Segmentation accuracy comparisons. Each of the three software packages were analyzed on all cells in the
ground-truth data set and the Jacccard index was used for scoring. B) Tracking accuracy comparisons.
DISCO and CellX were run using the native tracking algorithms, and CellSerpent was run using an
overlap tracking approach. The significant performance differences illustrates the confusing nature of
these images to current segmentation approaches.

[Maska, Sorokin, Matula, Ortiz-de Solérzano, and Kozubek]). Each node in the graph is a detected cell
at a specific time point, and the edges connect cells identified to be the same at different time points.
The error for an individual cell is determined by the number of operations that must be performed to
make the acyclic oriented graph for the test data set match the ground truth. Operations are weighted
by the time required to perform them manually (i.e. more mouse clicks incur a higher cost). The track-
ing cost for each individual cell is normalized by the number of time points for which it is present to
give a score between 0 and 1.

For comparison, we selected the CellX (|[Dimopoulos et al.(2014)Dimopoulos, Mayer, Rudolf, and|
Stelling]) and CellSerpent (|Bredies and Wolinski(2011)]) software. Although CellSerpent has a similar
structure to our algorithm with the proposal of cell seeds followed by an active contour procedure to
identify cell boundaries, it is different in that a single heuristic feature (the circular Hough transform)
is used to identify seeds, no time information is employed, cell shape is enforced simply by punishing
deviations from circularity, and the contour is optimised locally, not globally, to identify the cell outline.
CellX, in contrast, is substantially different from our software. Although CellX uses a Hough-based
seeding too, the cell outline is found by a graph cut algorithm applied to an edge image generated using
a membrane profile and the proposed seed. This approach imposes little shape constraint on the cell.
Both CellX and CellSerpent were designed for single layers of cells, tightly confined in the vertical axis.

For comparing tracking, we modified CellSerpent to enable a common tracking methodology because
tracking is not enabled by default. We use the overlap between cells at adjacent time points and assign
the same cell labels if the overlap is > 0.5. For CellX, the tracking provided with their GUI was used.

Prior to comparison, we attempted to optimize the performance of both packages on each of the
test data sets according to the instructions provided and, for CellX, with input from the authors. To
ensure fair comparison, the results of the CellX and CellSerpent segmentation for each experiment were
uniformly dilated or eroded over a range of sizes and scored. We use the best performing segmentation
score for each test data set in the comparison.

Both alternatives perform worse than our approach (Fig. . The performance of the three algorithms
illustrates how different the images from the microfluidic system are from those of single layers of cells
for which CellX and CellSerpent were designed. The slight freedom in z motion makes a consistent
membrane profile difficult to define, complicating detecting cell centres and increasing the importance
of the time and morphology information we incorporate. In addition, both alternatives were slightly
slower than DISCO (SOM).
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Discussion

Image segmentation and tracking has been widely recognized as a pressing problem that must be ad-
dressed to enable high-throughput, high content image cytometry. Many previous approaches assume
a uniform field of view and fail to incorporate prior information. With the increasing popularity of
microfluidic methods, there is a need for approaches that are able to use the a priori information of
physical constraints imposed by the microfluidic systems to improve segmentation and tracking. We be-
lieve that this work, which combines aspects of supervised classification with model driven segmentation,
contributes to this aim.

Moving from a single-feature threshold for determining cell centres and seeds to a multi-feature super-
vised classifier offers several advantages. Although single-feature heuristic approaches are appealingly
simple, they result in substantially lower performance and require a high degree of user intervention to
optimize performance for separate experiments. Furthermore, by increasing the accuracy of predicting
cell seeds, we were able to rely more heavily on image features during segmentation and better exploit
shape information. Taking advantage of this information can provide significant improvements (Fig. [5)).

Rather than relying solely on optical features, we employ the substantial prior knowledge available
about our imaging system and biological samples to increase performance. The inclusion of temporal
and morphological models provides reliable segmentation and tracking, even in difficult conditions.
While shape and model based segmentation approaches are widely used, our algorithm fits generative
models to empirically curated datasets: improving robustness and reducing the need for parameter
tuning. Given that they are fitted to curated data sets, we expect that the same methods can be
straightforwardly applied to other devices and experimental setups.

Microfluidic devices have the potential to provide unprecedented quantities of high content data, espe-
cially for aging research: an area that been low throughput because of the effort in performing manual
micro-dissection (|[Kaeberlein(2010)]). Nevertheless, the widespread adoption of these systems will de-
pend on having the capability to robustly and consistently process the information in the acquired
images, using frameworks such as the one we present here.
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