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Abstract

Summary: Post-mortem damage (PMD) obstructs the proper analysis of ancient DNA samples and can
currently only be addressed by removing or down-weighting potentially damaged data. Here we present
ATLAS, a suite of methods to accurately genotype and estimate genetic diversity from ancient samples,
while accounting for PMD. It works directly from raw BAM files and enables the building of complete and
customized pipelines for the analysis of ancient and other low-depth samples in a very user-friendly way.
Based on simulations we show that, in the presence of PMD, a dedicated pipeline of ATLAS calls genotypes
more accurately than the state-of-the-art pipeline of GATK combined with mapDamage 2.0.

Availability: ATLAS is an open-source C++ program freely available at https://bitbucket.org/phaentu/atlas.

Contact: Daniel. Wegmann@unifr.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ancient genomes provide unique insights into past populations and
substantially enhance the inference of demographic and selective events
that shaped modern genetic diversity. However, there are two main
challenges when genotyping ancient DNA (aDNA): first, only low numbers
of unique aDNA fragments remain for sequencing and second, these
fragments can be subject to post-mortem DNA damage (PMD). The most
common form of PMD is the deamination of cytosin (C), which leads to a
C — T transition on the affected and a G — A on the opposite strand after
amplification and sequencing (Briggs and Stenzel, 2007). The probability
of a C deamination is highest at the ends of the DNA fragments, as these
are often single-stranded, and then decays roughly exponentially towards
their center (Jonsson et al., 2013). As these transitions are artifacts not
reflective of the original genome, they must not be considered as variants.

The presence of PMD in the data can be reduced by an enzymatic
treatment that cleaves fragments at C’s affected by PMD. However, this
technique is restricted to PMD at unmethylated C’s (Briggs et al., 2010) and
removes precious material. Alternatively, the false calling of variants can
be reduced bioinformatically, for instance by trimming reads of their first
few nucleotides (e.g. Gamba et al., 2014). This leads to a problematically
high loss of data, however, if done conservatively. Data loss is much smaller
when using mapDamage 2.0 (Jénsson et al., 2013), which incorporates the

effect of PMD into genotyping pipelines such as Paleomix (Schubert ez al.,
2014) by rescaling base quality scores to additionally reflect the probability
of being damaged. But this also leads to a loss of information since PMD
is only accounted for indirectly.

We here present the Analysis Tools for Low-depth and Ancient
Samples (ATLAS), a collection of statistical methods built upon a
dedicated genotyping model that comprehensively accounts for PMD
(Hofmanovd et al., 2016; Kousathanas et al., 2017). ATLAS works directly
from raw BAM files (Li et al., 2009) and contains all necessary methods to
accurately genotype and estimate genetic diversity from ancient samples.
ATLAS further includes many auxiliary tools to build complete and
customized pipelines to work with aDNA or other low-depth samples.

2 Methods
2.1 Recommended pipeline for single-end data

ATLAS is written in C++, uses the BamTools library (Barnett et al.,
2011) to parse and write BAM files, and implements many tools, listed in
supplementary section 1. Here we present some highlights by outlining the
recommended pipeline for single-end sequencing data of ancient samples.

Step 1: Classify reads by length. Since PMD rates depend on the
distance from fragment ends, ATLAS distinguishes reads spanning the
entire fragment, for which these distances are known, from those shorter
than their fragment.
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Fig. 1. A) Fraction of alleles not (dashed) or wrongly (solid) called at sites with sequencing depth >0 in a simulated chromosome of 10Mbp. The calls are classified according to the

underlying true genotype (Ref=reference allele, Alt=alternative allele). B) Fraction of alleles that were not correctly called (either no or a wrong call) with a sequencing depth >0.

Step 2: Inferring PMD patterns. ATLAS either infers position-
specific PMD patterns, as in MapDamage 2.0 (Jénsson et al., 2013), or
fits a generalized model of exponential decay (Kousathanas et al., 2017),
which reduces estimation noise at positions with few PMD observations.

Step 3: Recalibrating base quality scores. Base quality scores given
by sequencing machines are typically distorted and must be recalibrated.
ATLAS offers two recalibration methods we recently developed: a direct
extension of Base Quality Score Recalibration (BQSR, DePristo et al.,
2011) to aDNA (Hofmanova et al., 2016) applicable to populations with
well characterized polymorphisms, and a reference-free method exploiting
haploid or ultra-conserved genomic regions (Kousathanas et al., 2017).

Step 4: Variant Calling. ATLAS offers three variant callers: a
Maximum-Likelihood (MLE) caller similar to GATK (DePristo et al.,
2011), a Bayesian caller that forms a prior from local diversity and
nucleotide composition, and a Bayesian haploid-level caller for very low
sequencing depth that identifies the allele with the most evidence to be
present using the same prior. For population-level samples, ATLAS further
produces individual-specific gVCF files to be analyzed jointly by GATK.

2.2 Additional functionalities

For paired-end data ATLAS requires a slightly different pipeline
(Supplementary Section 2). Aside from genotype calling, ATLAS also
estimates region-specific heterozygosity while accounting for genotype
uncertainty (Kousathanas et al., 2017), offers tools to reduce modern
contamination (similar to PMDS Skoglund et al., 2014), and generates
input files for PSMC (Li and Durbin, 2011) and BEAGLE (Ayres et al.,
2012), all of which while accounting for PMD.

3 Results

Following Kousathanas et al. (2017), we simulated a random diploid
chromosome of ten Mbp with heterozygosity & = 0.01 and corresponding
ancient single-end sequencing data with errors and PMD at rates commonly
observed. We used ATLAS and GATK with comparable parameters
(supplementary section 3) to recalibrate base quality scores with BQSR and
produce MLE genotype calls. Our GATK pipeline additionally included
PMD correction with mapDamage 2.0.

As previously reported (Hwang et al., 2015), GATK has an inherent
reference bias, resulting in about ten times less genotyping errors at true
homozygous reference (Ref/Ref) than homozygous alternative (Alt/Alt)
sites, depending on sequencing depth (Fig. 1A). This bias is further
accentuated since GATK also less frequently emitted calls at Alt/Alt
sites, particularly a low depth, and could not be removed with alternative

parameterizations (supplementary section 4). In contrast, ATLAS does not
show any such bias (Fig. 1A), and will thus result in higher power to detect
true differences between ancient and modern samples.

The two methods also implement different strategies to deal with
uncertain genotypes. While ATLAS is designed to emit calls for all sites
with data, albeit with low quality scores reflecting that uncertainty, GATK
ignores many sites where data is limited. This resulted in slightly higher
error rates of ATLAS at lower depth (Fig. 1A), but in a larger fraction of
the total genome being called correctly (Fig. 1B). At higher depths, and by
accounting for PMD, ATLAS made increasingly less errors than GATK.
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