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ABSTRACT Genome-wide association studies (GWAS) with plant species have employed inbred 14 

lines panels. Our objectives were to present additional quantitative genetics theory for GWAS, 15 

evaluate the relative efficiency of GWAS in non-inbred and inbred populations and in an inbred 16 

lines panel, and assess factors affecting GWAS. Fifty samples of 400 individuals from populations 17 

with linkage disequilibrium were simulated. Individuals were genotyped for 10,000 single 18 

nucleotide polymorphisms (SNPs) and phenotyped for traits controlled by 10 quantitative trait loci 19 

(QTLs) and 90 minor genes, assuming different degrees of dominance and heritabilities of 40 and 20 

80%. The average SNP density was 0.1 centiMorgan and the QTL heritabilities ranged from 3.2 to 21 

11.8%. To increase the QTL detection power, the additive-dominance model must be fitted for traits 22 

controlled by dominance effects but must not be fitted for traits showing no dominance. The power 23 

of detection was maximized increasing the sample size to 400 and the false discovery rate (FDR) to 24 

5%. The average power of detection for the low, intermediate, and high heritability QTLs were 9.7, 25 

32.7, and 87.7%, respectively. Under sample size of 400 the observed FDR was equal to or lower 26 

than the specified level of significance. The association mapping was highly precise. The analysis 27 

of the inbred random cross population provided essentially the same results from the non-inbred 28 

population. The inbred lines panel provided the best results concerning the low and intermediate 29 

heritability QTL detection power, FDR, and mapping precision. The FDR is mainly affected by 30 

population structure, compared to relationship information. 31 
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INTRODUCTION 32 

Association mapping is a high-resolution method for mapping quantitative trait locus (QTL) 33 

based on linkage disequilibrium (LD) (Yu and Buckler 2006). Linkage disequilibrium is commonly 34 

defined as the non-random association of alleles at two loci carried on the same gamete, caused by 35 

their shared history of mutation and recombination (Weir 2008). Association mapping has been 36 

successful in detecting genes controlling human diseases and quantitative traits in humans and plant 37 

and animal species (Pearson and Manolio 2008; Zhu et al. 2008; Barendse et al. 2007). There are 38 

two main association mapping strategies: the candidate gene approach, which focuses on 39 

polymorphisms in specific genes that control the traits of interest, and the genome-wide association 40 

study (GWAS), which surveys the entire genome for polymorphisms associated with complex traits 41 

(Rafalski 2010). 42 

With the advent of high-throughput genotyping and sequencing technologies, breeders have 43 

used GWAS to identify genes underlying quantitative trait variation. Compared to QTL mapping, 44 

which has precision in the range of 105 to 107 base pairs (Yu and Buckley 2006), the main 45 

advantage of GWAS is a more precise identification of candidate genes (Zhu et al. 2008). Another 46 

advantage is the use of a breeding population instead of one derived by crossing two inbred or pure 47 

lines (Flint-Garcia et al. 2005). However, as highlighted by Weir (2010), the efficiency of GWAS is 48 

considerably affected by relatedness and population structure, which can generate spurious 49 

association between unlinked marker and QTL. Rafalski (2010) emphasized that the choices of 50 

population (due to the degree of LD and genotypic variation), marker density, and sample size are 51 

crucial decisions for achieving greater power of QTL detection. Ingvarsson and Street (2011) 52 

discussed the influence of population size, extent of LD, trait heritability (precision of 53 

phenotyping), and population structure on GWAS efficiency, highlighting that studies with plant 54 

species should greatly increase population size to detect QTLs with lower effect (heritability of 55 

1−2%). 56 
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Yu et al. (2006) proposed a mixed model approach for GWAS analysis called the Q + K (or 57 

QK) method, where Q and K are the population structure and kinship matrices, respectively. This 58 

method has provided the best results and greatly has improved the control of both type I and type II 59 

error rates compared with other methods. Stich and Melchinger (2009) and Yang et al. (2010) 60 

compared GWAS methods based on simulated and field data. Based on type I error control and 61 

power of QTL detection, they concluded that the mixed model approach using only the kinship 62 

matrix (K model) to correct for relatedness was more efficient than the approaches controlling only 63 

population structure (Q model) and both population structure and relatedness because the spurious 64 

associations could not be completely controlled by population structure. Based on simulated inbred 65 

lines panel, Bernardo (2013) demonstrated that his models G and QG were superior to the K and 66 

QK, respectively, where G indicates a model that uses genome-wide markers to account for QTLs 67 

on background chromosomes. The new approach showed a better balance between power of QTL 68 

detection and false discovery rate (FDR). Frąszczak and Szyda (2016) also compared GWAS 69 

methods. The genomic selection model was the best method compared to the single SNP, the single 70 

SNP with a random polygenic effect (K model), and the CAR score regression. 71 

Recently, many instances of GWAS have been published with plant species, including barley, 72 

sorghum, wheat, rice, sugarcane, soybean and particularly maize (Ingvarsson and Street 2011). 73 

From the analysis of 271 inbreds genotyped for 28,626 single nucleotide polymorphisms (SNPs), 74 

Bernardo and Thompson (2016) calculated chromosomal effects from the effects of SNP alleles 75 

carried on the chromosomes. Many chromosome-inbred combinations showed large chromosome x 76 

inbred effects. Pace et al. (2015) carried out a GWAS with 384 maize inbred lines evaluated for 22 77 

seedling root architecture traits and genotyped with 681,257 SNPs. They identified 268 marker-trait 78 

associations. Some of these SNPs were located within or near (less than one kilo base pairs) to 79 

candidate genes involved in root development at the seedling stage. Thirunavukkarasu et al. (2014) 80 

evaluated 240 elite inbred lines of subtropical maize under water stress and used a set of 29,619 81 
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high-quality SNPs. The GWAS identified 50 SNPs consistently associated with agronomic traits 82 

related to functional traits that could lead to drought tolerance. Thirty-one of the significant SNPs 83 

were situated near drought-tolerance genes. Schaefer and Bernardo (2013) used GWAS on a 84 

collection of 284 historical maize inbred lines and 39,166 SNPs and identified 19 QTLs for 85 

flowering time, 13 for kernel composition, and 22 for disease resistance. However, only two 86 

candidate genes were suggested: one regulating days to anthesis and one regulating oil 87 

concentration. 88 

Genome-wide association studies with plant species have employed inbred lines panels. Thus, 89 

to our knowledge, no information is available on efficiency of GWAS in open-pollinated 90 

populations. Because association mapping has been primarily developed for mapping human genes, 91 

the available quantitative genetics theory, as that presented by Weir (2008), based on LD and 92 

analysis of case-control, is adequate for non-inbred populations. However, there is a lack of 93 

quantitative genetics theory for GWAS in inbred populations and inbred lines panels. In this paper 94 

we also evidenced the importance of fitting the additive-dominance model for traits showing 95 

unidirectional or bidirectional dominance and the additive model when there is no dominance, to 96 

achieve high power of QTL detection. We also highlighted the power of QTL detection, the false 97 

discovery rate (FDR), and the precision of GWAS. In summary, our objectives were to present 98 

additional quantitative genetics theory for GWAS, evaluate the relative efficiency of GWAS in non-99 

inbred and inbred populations and in an inbred lines panel, and assess factors affecting GWAS, 100 

such as sample size and QTL heritability, effect of substitution, and dominance deviation. 101 

Importantly, the results for open-pollinated populations are directly applied to human populations. 102 

MATERIALS AND METHODS 103 

The following theory aims to prove that a significant association between a SNP and a 104 

quantitative trait in an open-pollinated population, in a sample of recombinant inbred lines (RILs), 105 

and in an inbred lines panel, after correcting for population structure, depends on the LD between 106 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 3, 2017. ; https://doi.org/10.1101/105833doi: bioRxiv preprint 

https://doi.org/10.1101/105833


6 

 

the SNP and at least one of the QTLs that affect the trait. Further, we present the parametric values 107 

of the average effect of a SNP substitution and LD measure in these association mapping 108 

populations, increasing the quantitative genetics knowledge on GWAS previously provided by 109 

human geneticists in the context of random population samples, case-control, and family-based 110 

studies. 111 

Quantitative genetics theory for GWAS in random cross populations 112 

Consider a biallelic QTL (alleles B/b) and a SNP (alleles C/c) located in the same 113 

chromosome, and a population (generation 0) of a random cross species. Assuming LD, the joint 114 

gamete and joint genotype probabilities in the population are presented by Weir (2008). The QTL 115 

genotypic values are babmG +=BB , bdbmG +=Bb , and babmG −=bb , where bm  is the 116 

mean of the genotypic values of the homozygotes, ba  is the deviation between the genotypic value 117 

of the homozygote of higher expression and bm , and bd  is the dominance deviation (the deviation 118 

between the genotypic value of the heterozygote and bm ). The average genotypic values of 119 

individuals with the SNP genotypes CC, Cc, and cc are  120 
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where p  is the frequency of the major allele (B or C), p1q −=  is the frequency of the minor allele 124 

(b or c), ijf  is the probability of the individual with i and j copies of the allele B of the QTL and the 125 

allele C of the SNP (i, j = 2, 1, or 0) (for simplicity, we omitted the superscript (0) - for generation 0 126 

- in all parameters that depend on the LD measure of generation −1), 127 

( ) bdbqbp2babqbpbmM +−+=  is the population mean, 

⎥
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( ) bdbpbqbab −+=α  is the average effect of a gene substitution, bbccq ακ=αC  and 129 

bbccp ακ−=αc  are the average effects of the SNP alleles, and A and D are the SNP additive and 130 

dominance values. )1(P)1(P)1(P)1(P)1(
bc

−−−−−=−Δ bCBcbcBC  is the measure of LD in the gametic pool of 131 

generation −1 (Kempthorne 1957), where )1(P − indicates a joint gamete probability. Another 132 

common measure of LD is the square of the correlation between the values of the alleles at the two 133 

loci ( )1(
bcr − ) in the gametic pool of generation −1 (Hill and Robertson 1968). Note that 134 

cqcpbqbp)1(
bcr)1(

bc
−=−Δ . The average effect of substituting the allele C for c is 135 

bbcSNP ακ=α−α=α cC . The dominance deviation for the SNP is bd2
bcSNPd κ= . The other 136 

SNP parameters are ( ) ( ) SNPdcqcp21SNPcpcqMcm −−α−+= , ( ) SNPdcpcqSNPca −−α= , 137 

and SNPdcd = . The GWAS and genomic selection models commonly fit the SNP parameters a 138 

(values 1, 0, and −1 for SNP genotypes CC, Cc, and cc, respectively) and d (values 0, 1, and 0 for 139 

SNP genotypes CC, Cc, and cc, respectively). 140 

Assuming no QTL in LD with the SNP ( 0)1(
bc =−Δ ), MGGG === ccCcCC . Thus, the 141 

identification of the QTL can be based on testing the hypothesis that there is no difference between 142 

these genotypic means. Assuming thousands of SNPs, it is necessary to employ a Bonferroni-type 143 
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procedure to control the type I error when there are multiple-comparisons, as that proposed by 144 

Benjamini and Hochberg (1995). Note that ( ) SNPdcpcqcaSNP −+=α , where cmGca −= CC , 145 

cmGSNPd −= Cc , and ( ) 2/GGcm ccCC += . 146 

Quantitative genetics theory for GWAS with inbred lines panel 147 

In general, the inbred lines in a panel represent the genetic variability for the traits being 148 

assessed. Therefore, an inbred lines panel includes inbreds from distinct populations or heterotic 149 

groups. Consider again a QTL (alleles B/b) and a SNP (alleles C/c) located in the same 150 

chromosome, and that they are in LD in a population (generation 0). Assuming n (n→∞) 151 

generations of selfing, the (limits of the) probabilities of the inbreds are (for simplicity, we omitted 152 

again the superscript (0) - for generation 0 - in all parameters that depend on the LD measure of 153 

generation −1) 154 
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where bcθ  is the frequency of recombinant gametes. The haplotypes are )n(
bccpbp)n(P Δ+=BC , 159 

)n(
bccqbp)n(P Δ−=Bc , )n(

bccpbq)n(P Δ−=bC , and )n(
bccqbq)n(P Δ+=bc , where 160 
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=Δ . Thus, if there is crossing over (0 < bcθ  ≤ 0.5), the LD in this inbred 161 

population is lower than the LD in generation −1. If the SNP and QTL are completely linked ( bcθ  162 
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= 0), the LD in the inbred population is the same LD in generation −1. The maximum decrease is 163 

50%, achieved with bcθ  = 0.5. Compared with the LD in generation 0, the LD in generation n is 164 

( ) ( )
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=Δ . Thus, the maximum decrease is approximately 10%, achieved 165 

with bcθ  = 0.25. In contrast, after n generations of random crosses 166 
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bc Δθ−=−Δ+θ−=Δ . Thus, if 0 < bcθ  ≤ 0.5, the maximum decrease is 100% 167 

since )n(
bclim

n
Δ
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 = 0. 168 

If the panel includes double haploid (DH) lines, the LD for the DH lines sampled from a 169 

population is ( ) )1(
bcbc1)0(

bcbc
−Δθ−=Δ=Δ . Thus, the LD in a sample of DH lines is greater than the 170 

LD in a sample of inbred lines (up to 12.5% greater when bcθ  = 0.25). 171 

For the inbreds sampled from a population, we have 172 
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SNP average effect of allele substitution in the inbred population, and A is the SNP additive value 176 

for an inbred line. Assuming no QTL in LD with the SNP, ILM(n)G(n)G == ccCC . Notice that 177 
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The haplotypes of an inbred lines panel including inbreds from N populations are 181 
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probability of an inbred line belonging to population i. Our simulated data showed that the LD 184 

value in an inbred lines panel tends to be lower than the LD in each group of inbreds (that are lower 185 

than the LD in the base populations) because it is an admixture of positive and negative LD values. 186 

Simulation 187 

We simulated 50 samples of populations with LD using the software REALbreeding (Viana et 188 

al. 2017, 2016, 2013; Azevedo et al. 2015). This software has been developed by the first author 189 

using the program REALbasic 2009. Population 1, generation 0, is a composite of two populations 190 

in linkage equilibrium. Population 1, generations 10s and 10r10s, were obtained from Population 1, 191 

generation 0, assuming 10 generations of selfing and 10 generations of random crosses followed by 192 

10 generations of selfing, respectively, assuming sample sizes of 100 and 400, respectively. 193 

Populations 2, 3, and 4, generation 10s, are also inbred populations (10 generations of selfing) 194 

derived from composites of two populations, also assuming a sample size of 100. The parents of 195 

populations 2 and 3 were assumed to be non-improved and improved populations, respectively. An 196 

improved population was defined as having frequencies of favorable genes greater than 0.5, while a 197 

non-improved population was defined as having frequencies less than 0.5. A composite is a Hardy-198 

Weinberg equilibrium population with LD for only linked markers and genes. In the case of a 199 

composite of two populations in linkage equilibrium, ⎟
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where the indices 1 and 2 refer to the parental populations. Under random crosses, we instructed 201 

REALbreeding to generate two descendents by plant (one as male and one as female) and to allow 202 

selfing. Under selfing, REALbreeding used the single seed descent process. Thus, the individuals in 203 
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generations 0 and the derived inbred lines are non-related and the individuals in generation 10r10s 204 

can be related. 205 

Based on our input, REALbreeding randomly distributed 10,000 SNPs, 10 QTLs and 90 minor 206 

genes (QTLs of lower effect) in 10 chromosomes (1,000 SNPs and 10 genes by chromosome). The 207 

average SNP density was 0.1 cM. The genes were distributed in the regions covered by the SNPs. 208 

Four, three, two, and one QTLs were inserted in chromosomes 1, 5, 9, and 10, respectively. We also 209 

specified one SNP within each QTL (with same frequency) and a minimum distance between linked 210 

QTLs of 10 cM. To allow REALbreeding to compute the phenotypic value for each genotyped 211 

individual, we informed the minimum and maximum genotypic values for homozygotes, proportion 212 

between the parameter a for a QTL and the parameter a for a minor gene (aQTL/amg), degree of 213 

dominance ((d/a)i, i = 1, ..., 100), direction of dominance, and broad sense heritability. 214 

REALbreeding saves two main files, one with the marker genotypes and another with the additive, 215 

dominance, and phenotypic values (non-inbred populations) or the genotypic and phenotypic values 216 

(inbred populations). The true additive and dominance genetic values or genotypic values are 217 

computed from the population gene frequencies (random values), LD values, average effects of 218 

gene substitution or a deviations, and dominance deviations. The phenotypic values are computed 219 

from the true population mean, additive and dominance values or genotypic values, and from error 220 

effects sampled from a normal distribution. The error variance is computed from the broad sense 221 

heritability. 222 

We simulated three popcorn traits. The minimum and maximum genotypic values of 223 

homozygotes for grain yield, expansion volume, and days to maturity were 30 and 180 g per plant, 224 

15 and 65 mL/g, and 100 and 170 days, respectively. We defined positive dominance for grain yield 225 

(0 < (d/a)i ≤ 1.2), bidirectional dominance for expansion volume (−1.2 ≤ (d/a)i ≤ 1.2), and no 226 

dominance for days to maturity ((d/a)i = 0). The broad sense heritabilities were 40 and 80%. These 227 

values can be associated with individual and progeny assessment, respectively. Assuming aQTL/amg 228 
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= 10, the QTL heritabilities ranged from 3.2 to 11.8%. The GWAS was performed in population 1, 229 

generations 0 and 10r10s, and in the inbred lines panel obtained from inbreds of the populations 1 230 

through 4, generation 0 (generations 10s). To assess the influence of the sample size on the GWAS 231 

efficiency, we considered sample sizes of 400 and 200. Thus, we used 100 or 50 inbreds from 232 

populations 1 through 4 to generate the inbred lines panel. 233 

Statistical analyses 234 

The analysis of the Q + K linear mixed model was performed with the software GWASpoly 235 

(Rosyara et al. 2016) fitting the additive and additive-dominance models for the open-pollinated 236 

population and the additive model for the RILs and inbred lines panel. For the population structure 237 

analysis, we used Structure software (Falush et al. 2003) and fitted the admixture model with 238 

correlated allelic frequencies and the no admixture model with independent allelic frequencies. The 239 

number of SNPs, sample size, burn-in period, and number of MCMC (Markov chain Monte Carlo) 240 

replications were 100 (10 random SNPs by chromosome), 400 (simulation 1), 10,000, and 40,000, 241 

respectively. The number of populations assumed (K) ranged from 1 to 7, and the most probable K 242 

value was determined based on the inferred plateau method (Viana et al. 2013). The population 243 

structure analysis evidenced four subpopulations (data not shown). 244 

To classify each significant association as true or false, we used a program developed in 245 

REALbasic 2009 by the first author. The classification criterion was based on the difference 246 

between the position of the SNP and the position of a true QTL (candidate gene). If the difference 247 

was less than or equal to 2.5 cM (Yu et al. 2008), the association was classified as true. The GWAS 248 

efficiency was assessed based on the power of QTL detection (probability of rejecting H0 when H0 249 

is false; control of the type II error), FDR (control of the type I error), and bias in the estimated 250 

QTL position (precision of mapping) (Li et al. 2010). We used Benjamini-Hochberg FDR of 5 and 251 

1% to control the type I error (Benjamini and Hochberg 1995). 252 

Data availability 253 
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REALbreeding is available upon request. The data set is available at 254 

https://dx.doi.org/10.6084/m9.figshare.3201838.version3. Supplemental file S1 contains detailed 255 

description of all data files (SNP and QTL positions, SNP genotypes, and phenotypic values). Data 256 

citation: 257 

Viana, José Marcelo Soriano; Mundim, Gabriel Borges; Pereira, Hélcio Duarte; Andrade, Andréa 258 

Carla Bastos; Fonseca e Silva, Fabyano (2017): Efficiency of genome-wide association study in 259 

random cross populations. figshare. https://dx.doi.org/10.6084/m9.figshare.3201838.version3 260 

RESULTS 261 

Our first result from the open-pollinated population, assuming sample size of 400 and FDR of 262 

1%, was disappointing since most grain yield QTLs of high heritability showed low power of 263 

detection. For example, the power of detection for the QTLs with heritabilities of 8.4, 9.4, and 264 

11.6% were 4.2, 8.3, and 10.4%, respectively (Figure 1a). We realized that the problem was the 265 

high dominance deviation for these QTLs (the greatest values among the 10 QTLs). This explained 266 

the relatively low coefficients of determination for the linear regression models relating QTL 267 

detection power and heritability, especially with sample size of 200 and FDR of 5% (45, 55, and 268 

19%) (Figure1a, c, and Figure 2a). The solution to this problem was to fit the additive-dominance 269 

model for grain yield and expansion volume. Regardless of the sample size and FDR, for 76% of 270 

the grain yield and expansion volume QTLs the detection power was increased (Figures 1b, d, and 271 

Figure 2b). Previously undetected QTLs showed detection power ranging from 2.3 to 52.3%. The 272 

increase in the detection power for previously detected QTLs ranged from 0.8 to 2,300% (244.6% 273 

on average), mainly with sample size of 400 and FDR of 1%. A consequence of fitting the additive-274 

dominance model for grain yield and expansion volume was an increase in the coefficients of 275 

determination for the linear regression models relating QTL detection power and heritability, 276 

especially with lower sample size (R2 of 79, 81, and 46%) (Figure1b, d, and Figure 2b). Unlike, the 277 

additive-dominance model should not be fitted for traits showing no dominance. Fitting the 278 
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additive-dominance model for days to maturity, for 82% of the QTLs the detection power decreased 279 

from 6.6 to 100.0% (48.4% on average), regardless of sample size and FDR. 280 

Defining low, intermediate, and high heritability QTLs as those with heritability values less 281 

than or equal to 3.5%, between 3.6 and 7.5%, and greater than 7.5%, respectively, the power of 282 

detection was maximized increasing the sample size from 200 to 400 and the FDR from 1% to 5% 283 

(Table 1). It is important to highlight that under sample size of 400 the observed FDR was equal to 284 

or lower than the specified level of significance. Assuming sample size of 400 and FDR of 5%, the 285 

average power of detection for the low, intermediate, and high heritability QTLs were 9.7, 32.7, and 286 

87.7%, respectively. The minimum and maximum values were 2 and 29.5%, 5.5 and 94%, and 62.0 287 

and 100.0%. The observed FDR was 3.8%. Decreasing the sample size to 200 decreased the QTL 288 

detection power (28, 67 and 62% for the low, intermediate and high heritability QTLs, respectively) 289 

and increased the observed FDR to 9.4%. Concerning the bias in the QTL (candidate gene) position, 290 

it should be also highlighted that at least 97% (assuming sample size of 200 and FDR of 5%) of the 291 

QTLs were declared by the SNP within it, and that the number of significant SNPs within the range 292 

of 2.5 cM was very low, regardless of sample size and FDR. The average number of significant 293 

SNPs within the range of 2.5 cM varied from 0.1 to 1.0. The average bias in the QTL position from 294 

a significant SNP within the range of 2.5 cM varied from approximately 0.2 to 0.4 cM. 295 

Furthermore, we also observed that the QTL detection power has low correlation with the QTL 296 

average effect of substitution (0.1) and QTL dominance deviation (0.2). The correlation between 297 

QTL detection power and QTL heritability ranged from 0.68 to 0.90, proportional to the sample 298 

size. 299 

The analysis of the RILs from the open-pollinated population provided essentially the same 300 

results (similar magnitude of the statistics) concerning QTL detection power, control of the type I 301 

error, and mapping precision (Figure 2c, d, and Table 1). The only significant difference was the 302 

absence of low heritability QTLs. We can highlight a slightly better control of the type I error also. 303 
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Thus, the QTL detection power was also maximized assuming sample size of 400 and FDR of 5% 304 

and the observed FDR was 1.8% in this scenario. The decrease in the sample size significantly 305 

decreased the power of QTL detection (54 and 65% for the intermediate and high heritability QTLs, 306 

respectively) and increased the FDR (to 7.3%) too. Regarding of the inbred lines panel, it is 307 

impressive to realize that this population provided an improvement in the outstanding results 308 

offered by the non-inbred and inbred open-pollinated populations, concerning low and intermediate 309 

heritability QTL detection power, control of the type I error, and mapping precision (Figure 3a, b, 310 

and Table 1). The increase in the low heritability QTL detection power ranged from 74 to 177%. 311 

For the intermediate heritability QTLs the increase ranged from 39 to 64%. The observed FDR was 312 

reduced in up to 72% and the bias in the QTL position decreased between 80 and 87%. The QTL 313 

detection power was also maximized assuming sample size of 400 and FDR of 5%, combined with 314 

an observed FDR of 2.7%. Similarly to non-inbred and inbred open-pollinated populations, the 315 

decrease in the sample size significantly decreased the power of QTL detection (54, 61 and 61% for 316 

the low, intermediate, and high heritability QTLs, respectively) but the FDR was unaffected. 317 

Finally, it is important to highlight that the FDR is mainly affected by population structure, 318 

compared to relationship information. Assuming non-inbred population, sample size of 400 and 319 

FDR of 1%, ignoring the relationship information (by ignoring the polygenic effect), the observed 320 

FDR was unaffected (1.1 vs. 1.4%) but the number of significant associations outside the 2.5 cM 321 

interval was drastically increased (from practically zero to 28; Table 1). As will be discussed 322 

further, these are not all false-positive associations but due to LD between the SNPs and one or 323 

more QTLs in the chromosome. With RILs, because the level of LD is lower than in the non-inbred 324 

population, the observed FDR was 1.2% but the number of significant associations outside the 2.5 325 

cM interval achieved approximately 7. For inbred lines panel, ignoring only the relationship 326 

information the FDR was 0.8% but ignoring only population structure increased the FDR to 29.5% 327 

Ignoring the relationship information and population structure in the analysis of the inbred lines 328 
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panel determined thousands of significant associations in all chromosomes, increasing drastically 329 

the FDR (to approximately 60%; data not shown). In these scenarios it was not possible to detect 330 

QTLs because many significant associations were observed along the length of a chromosome or in 331 

one or more large chromosome regions, especially for chromosomes 1 (four QTLs) and 5 (three 332 

QTLs) (data not shown). 333 

DISCUSSION 334 

The presented theory proves that a significant association from a GWAS in a non-inbred or 335 

inbred random cross population and in an inbred lines panel, correcting for population structure and 336 

relatedness, is due to LD between the SNP and one or more linked QTLs. The theory also shows 337 

that GWAS provides estimation of the average effect of a SNP substitution (and consequently the 338 

estimation of SNP effects). Using SNP effects to measure chromosome and chromosome x inbred 339 

effects, Bernardo and Thompson (2016) showed that GWAS also provide dissection of the 340 

germplasm architecture for quantitative traits. Schaefer and Bernardo (2013) estimated SNP effects 341 

and identified candidate genes and QTL hot spots (chromosome regions with previously mapped 342 

QTLs) for days to flowering, kernel composition, and disease resistance. Based on the theory 343 

presented, only if there is a single QTL in LD with a significant SNP, if the SNP is within the QTL, 344 

and if QTL and SNP alleles have the same frequency it is adequate to consider the SNP average 345 

effect of substitution as the QTL average effect of substitution. We additionally provided the 346 

parametric values of SNP effects commonly fitted in the GWAS and genomic selection models, and 347 

the genotype and gametic probabilities and the parametric LD values in a completely inbred 348 

population and in an inbred lines panel. The LD in a group of RILs are lower than the LD in the 349 

non-inbred population and the LD value in an inbred lines panel tends to be lower than the LD in 350 

each group of inbreds (that are lower than the LD in the base populations) because it is an 351 

admixture of positive and negative LD values. 352 
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To our knowledge, this is the first study on GWAS efficiency in open-pollinated population. 353 

The results are impressive and show that the identification of candidate genes can be highly 354 

efficient, depending on sample size and QTL heritability. LD is for sure another important factor 355 

affecting GWAS (Weir 2008). Thus, based on a sample of 400 individuals and defining a level of 356 

significance of 5%, the power of detection of low (≤ 3.5%), intermediate (3.6-7.5%), and high (≥ 357 

7.6) heritability QTLs can achieve approximately 30, 90, and 100%, respectively (10, 30, and 90% 358 

on average). This result is achieved keeping the FDR bellow 5% and is associated with a very low 359 

number of significant associations close to the QTL (highly precise mapping), besides the 360 

significant SNP within the QTL. This means that GWAS efficiency is maximized when there is at 361 

least one SNP within each QTL, with the same allelic frequency. This seems very restrictive and, 362 

unfortunately, is. To achieve high efficiency when there is not a SNP within each QTL, high LD 363 

between a SNP close to the QTL and greater sample size are required, especially for low heritability 364 

QTLs. In a random cross population the LD measure depends also on the SNP and QTL allele 365 

frequencies. Thus, significant associations involving few SNPs with the same QTL can be observed, 366 

including SNPs that are tens of mega base pairs (or centiMorgans) from the QTL. In reality, a 367 

closely linked QTL and SNP can have a lower LD value compared to a more distant QTL and SNP 368 

pair. In populations with low level of LD, significant associations are expected to occur for only 369 

SNPs within the QTL or located very close to the QTL (within a few hundred base pairs), which 370 

favors the identification of a candidate gene for the QTL. In this scenario, a QTL would be declared 371 

based on one to a small number of significant associations spanning a chromosome region of a few 372 

kilo base pairs (not mega base pairs or centiMorgans). 373 

Field results have demonstrated that GWAS are best carried out with a large sample size (Yu 374 

and Buckler 2006). According to Flint-Garcia et al. (2005), increasing the population size increases 375 

the number of individuals with rare alleles, thus improving the power to test the association between 376 

these rare alleles and the trait of interest. Yu et al. (2008) showed that the gain in the GWAS 377 
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efficiency by increasing sample size was evidenced by increased power of QTL detection and 378 

smaller FDR, mainly with heritability of 0.7 in comparison with a heritability of 0.4. Based on a 379 

simulation study, Long and Langley (1999) demonstrated that approximately 500 individuals 380 

should be genotyped for 20 SNP loci within the candidate gene region to detect marker-trait 381 

associations for QTLs that account for as little as 5% of the phenotypic variation. They observed 382 

that more power was achieved by increasing the population size than by increasing the SNP density 383 

within the candidate gene region. 384 

Our most significant contribution to the knowledge on GWAS is the empirical proof that the 385 

additive-dominance model must be fitted for traits controlled by dominance (uni- or bidirectional), 386 

to increase the QTL power of detection. We additionally evidenced that the additive-dominance 387 

model must not be fitted for traits determined only by additive gene effects, to avoid a decrease in 388 

the QTL detection power. This is probably due to over fitting. Further, we provided results for 389 

comparing GWAS in non-inbred and inbred random cross populations, and in an inbred lines panel. 390 

The inbreeding did not affect the GWAS efficiency, but RILs, if available, can be interesting to 391 

maximize the QTL heritabilities, since they allow standard experimental procedures (local control 392 

and replication) and the assessment of SNP x environment interaction. Compared to GWAS in an 393 

inbred lines panel, GWAS in random cross population was less efficient, i.e., showed lower power 394 

of QTL detection for the low and intermediate heritability QTLs, slightly inferior control of false-395 

positive associations, and higher bias in QTL position. This is due to higher genetic variability in 396 

the inbred lines panel since the average LD in the population 1, generation 0, is higher than the 397 

average LD in the inbred lines panel (average absolute Δ equal to 0.0403 and 0.0249, respectively). 398 

The genetic variability in the inbred lines panel is 9 to 13 times greater, depending on the trait (data 399 

not shown). 400 

According to Flint-Garcia et al. (2005), the inbred lines panel exploits the rapid breakdown of 401 

LD in diverse maize lines, enabling very high resolution for QTL mapping. Population structure 402 
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results from constructing a panel with inbreds from various breeding programs and distinct heterotic 403 

groups, which can cause false-positive marker-trait associations if the data is not corrected (Yan et 404 

al. 2009). The lowest parametric LD values for the inbred lines panel occurred in published studies 405 

(Yan et al. 2009, Remington et al. 2001). Moreover, with the inbred lines panel, generally, only 406 

SNP loci within the QTL showed significant association, which is a highlighted result from GWAS 407 

that can serve as a basis for a fine mapping strategy for marker-assisted selection and map-based 408 

cloning genes (Gupta et al. 2005). 409 

Our results are comparable to previous GWAS with field and simulated data. Concerning the 410 

QK model, Bernardo (2013) observed that the power of QTL detection and number of false-positive 411 

associations were proportional to the sample size. Assuming FDR of approximately 1% and an 412 

average QTL heritability of approximately 5%, the power of detection increased from 13 to 45% 413 

when the sample size increased from 384 to 1,536. In the study of Yang et al. (2010) the QTL 414 

detection power was relatively low for QTLs with heritability lower than 10% but increased 415 

significantly with the increase in the population size. Assuming sample size of 155, the power of 416 

detection was 16.5, 59.2, and 87.6% for the low (1%), intermediate (5%) and high (≥ 10%) 417 

heritability QTLs, respectively. Yu et al. (2008) investigated the genetic and statistical properties 418 

(power of QTL detection and FDR) of the nested association mapping (NAM) design. With 5,000 419 

genotypes, they achieved an average power of QTL detection of 57% (with a range of 30 to 85%) 420 

when considering two trait heritabilities (0.4 and 0.7) and two different numbers of QTL controlling 421 

the trait (20 and 50). They also observed that a higher heritability always gave higher QTL 422 

detection power, particularly for QTL with moderate to small effect. However, the FDR values 423 

were high, ranging from 9 to 23%. 424 

Concerning the relevance of relatedness, even if due to identity by state, and population 425 

structure correction, our findings agreed with previous knowledge that the best GWAS model must 426 

include a polygenic effect - to eliminate significant associations outside of the QTL interval 427 
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(including false-positive associations) - and a population structure effect - to control the type I error, 428 

as highlighted by Yu et al (2006) and Bernardo (2013), among others. Stich and Melchinger (2009) 429 

and Yang et al. (2010) observed best control of spurious associations by the K model. In the study 430 

of Flint-Garcia (2005) the population structure effect was significant, explaining 9.3% of the 431 

phenotypic variation, on average. 432 

The GWAS in plant breeding has been effective for identifying candidate genes for 433 

quantitative traits such as plant architecture, kernel composition, root development, flowering time, 434 

drought tolerance, pathogen resistance, and metabolic processes (Zhu et al. 2008). Our study 435 

provided the following additional knowledge: 1) the additive-dominance model must be fitted for 436 

traits controlled by dominance effects but must not be fitted for traits controlled only by additive 437 

effects, to achieve high power of QTL detection; 2) with sample size of 400 and level of 438 

significance of 5%, the power of detection for the low, intermediate, and high heritability QTLs can 439 

achieve approximately 30, 90, and 100%, respectively; 3) under sample size of 400, the observed 440 

FDR was equal to or lower than the specified level of significance; 4) GWAS in random cross 441 

populations is highly precise, since at least 97% of the QTLs were detected by the SNP inside it and 442 

the number of significant associations outside of the QTL interval (2.5 cM) is very low; 5) 443 

inbreeding does not affect the GWAS efficiency; 6) identity by state is important to control 444 

significant associations outside of the QTL interval; and 7) in random cross populations, FDR is 445 

mainly affected by population structure, compared to relationship information. Based on our 446 

evidence, breeders can employ non-inbred and inbred populations for GWAS while taking into 447 

account that the level of LD should be high, the sample size should be higher than that necessary for 448 

QTL mapping, and the QTL heritability should be intermediate to high to achieve greater power of 449 

QTL detection and precise mapping of candidate genes. 450 
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Table 1 Average power of detection (%) for the low (≤ 3.5%), intermediate (3.6-7.5%), and high (≥ 7.6%) heritability QTLs, false discovery rate (%), 530 

correlations between power and QTL effect of substitution, dominance deviation, and heritability, bias in the QTL position for significant associations 531 

outside the QTL (cM), and number of significant SNPs outside the 2.5 cM  interval, regarding population 1, generations 0 (open-pollinated) and 10r10s 532 

(RILs), and an inbred lines panel, five models, two sample sizes, and two levels of significance 533 

Population Model Sample Sig.  Power of detection  FDR  Correlation with power  Bias  Sig. 
  size level  Low Int. High    Eff. sub. Dom. dev. Herit.    assoc. 

Open-pollinated Add.-Dom.a (K model) 400 1%  4.4 23.6 79.0  1.13  0.093 0.213 0.886  0.16  0.1 
   5%  9.7 32.7 87.7  3.76  0.140 0.234 0.901  0.37  1.0 
  200 5%  7.0 10.8 33.2  9.44  0.097 0.227 0.680  0.20  0.6 

 Add. (K model) 400 1%  9.3 18.8 51.9  0.25  -0.106 -0.285 0.672  0.07  0.1 
   5%  8.2 24.2 62.7  1.57  -0.079 -0.245 0.740  0.13  0.2 
  200 5%  10.7 7.8 19.8  8.64  -0.114 -0.252 0.438  0.06  0.2 

 Add. -Dom.a (K = I model) 400 1%  7.1 36.9 81.0  1.42  0.074 0.164 0.686  0.91  28.3 
RILs Add. (K model) 400 1%  - 22.4 80.9  0.12  0.008 - 0.940  0.17  0.0 

   5%  - 30.3 89.3  1.83  -0.022 - 0.954  0.33  0.2 
  200 5%  - 13.9 31.3  7.30  -0.007 - 0.697  0.24  0.3 

 Add. (K = I model) 400 1%  - 33.1 82.4  1.16  0.022 - 0.871  0.82  6.7 
Inbred lines panel Add. (Q + K model) 400 1%  12.2 35.4 85.2  0.36  0.030 - 0.977  0.02  0.1 
   5%  26.5 45.6 93.6  2.73  0.021 - 0.985  0.05  0.2 

  200 5%  12.2 17.7 36.4  2.61  -0.029 - 0.793  0.04  0.2 
 Add. (Q + K = I model) 400 1%  15.3 37.4 87.9  0.80  0.029 - 0.974  0.18  0.4 
 Add. (K model) 400 1%  24.7 41.4 91.0  29.5  0.002 - 0.979  0.01  0.1 
aFor grain yield and expansion volume. 
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(a) 
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(d) 

Figure 1 Relationship between QTL heritability (X axe) and power of detection (Y axe) concerning population 1, generation 0, and QTLs determining 534 
grain yield, expansion volume, and days to maturity, assuming additive (a, c) and additive-dominance models (b, d), sample size of 400, and levels of 535 
significance of 1 (a, b) and 5% (c, d). 536 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2 Relationship between QTL heritability (X axe) and power of detection (Y axe) concerning population 1, generations 0 (a, b) and 10r10s (c, 537 
d), and QTLs determining grain yield, expansion volume, and days to maturity, assuming additive (a, c, d) and additive-dominance models (b), sample 538 
sizes of 400 (c, d) and 200 (a, b), and levels of significance of 1 (c) and 5% (a, b, d). 539 
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(a) 

 
(b) 

Figure 3 Relationship between QTL heritability (X axe) and power of detection (Y axe) concerning the inbred lines panel and QTLs determining grain 540 
yield, expansion volume, and days to maturity, assuming sample size of 400 and levels of significance of 1 (a) and 5% (b). 541 
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