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Abstract 

The geographic pattern of croplands is an important risk factor for the invasion of crop-specific 

pathogens and arthropods, and saturation by endemic pests. Understanding the structure of 

cropland networks supports sampling and mitigation strategies. We evaluated global networks of 

key vegetatively-propagated crops (banana, cassava, potato, sweetpotato, and yam) of particular 

importance to food security in the tropics. The risk of damage from diseases transmitted through 

vegetative propagation is a particular concern. We analyzed the structure of cropland networks 

for each crop, where the existence of a link between geographic location pairs was determined 

using a gravity model, as a function of the distance between the pair of locations and the product 

of the harvested crop area in the two locations. Networks were evaluated using a novel index of 

pathogen or arthropod invasion and saturation risk, based on the role of locations in bridging 

cropland areas and the degree of connectedness of a location and its neighbors.  For example, in 

addition to locations with high risk due to high cropping density, locations with high risk because 

of their role as bridges for cassava include South-Central Nigeria, Central Ghana, and 

Southwestern Democratic Republic of Congo. For potato, bridges include Central and Southern 

Poland and Northern Ukraine. The highly-linked hub and bridge locations we identified are 

likely priorities for surveillance and management, and for tracing intra-region movement of 

pathogens and pests. Integrated analyses of invasion and saturation risk can simultaneously 

evaluate risk due to cropland connectivity along with other risk factors such as climate and trade 

routes.  
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Introduction 

Plant diseases and pests are major threats to food security (Aguayo et al. 2014;  Anderson et al. 

2004;  Fisher et al. 2012;  Gonthier and Garbelotto 2013;  Woolhouse et al. 2005).  

Understanding which geographic areas have a high risk of pathogen and arthropod pest invasion 

is an important first step to designing sampling and mitigation strategies (Fears et al. 2014).  

Climate effects are one component of this risk, and commonly addressed in species distribution 

models (Anderson et al. 2004;  Bebber et al. 2013;  Elith and Leathwick 2009;  Garrett et al. 

2006;  Garrett et al. 2014;  Hernandez Nopsa et al. 2014;  Jeger and Pautasso 2008;  Kroschel et 

al. 2016;  Rodoni 2009;  Rosenzweig et al. 2001).  Another important risk component is the 

structure of trade routes, through which pathogens and pests may also move (Anderson et al. 

2004;  Bebber et al. 2014).  Habitat connectivity represents a third component that, integrated 

with other risk factors, can provide a more complete invasion risk assessment.  The connectivity 

of cropland regions helps to determine whether invasive species dependent on crops will become 

established before effective actions can be taken to mitigate them (Margosian et al. 2009;  

Sutherst 2014).  Incorporating cropland connectivity risk with other risk factors for invasion 

supports a number of integrated pest management (IPM) strategies, from improved methods for 

detecting and mitigating new invasives, to ongoing improvements in policy (Margosian et al. 

2009;  With 2004).  

The invasion of species into new regions is a common research focus, but less attention is 

given to the process of saturation (Cornell and Lawton 1992;  Fox et al. 2000;  Lion and Gandon 

2009). Bebber et al. (2014) consider saturation in terms of the fraction of potentially habitable 

regions that are already occupied by a pest species.  Similarly, here we define saturation as the 

process by which a species “fills in” a region, to occupy more and more of the potential habitat.  
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Defining the difference between invasion and saturation is often a question of the spatial 

resolution and extent being considered (Fig. 1).  From the standpoint of pathogen and arthropod 

management, a pest may have already invaded a region and be considered endemic, while at the 

same time there may be some fields it has never reached, and its population may frequently be 

suppressed by factors such as extreme weather conditions so that it must “re-saturate”.  Some 

pathogens continue to “re-emerge” at different time points (Rugalema et al. 2009;  Vurro et al. 

2010), such as Phytophthora infestans (Fry et al. 2015)  For pathogens such as P. infestans, 

initial inoculum can be limiting.  For example, abundant initial inoculum probably played a key 

role in the devastating 2009-2010 epidemic in tomato in the Northeastern US (Fry et al. 2013), 

while high inoculum associated with synergistic virus species interactions was a key driving 

factor behind the rapid spread of the cassava mosaic disease pandemic in Africa in the 1990s 

(Harrison et al. 1997;  Legg et al. 2006).  High cropland connectivity is a risk factor for 

saturation, as pathogens and arthropods spread from refugia after limiting weather conditions. 

 Network analysis offers a number of tools for understanding the strengths and 

vulnerabilities of network structures.  In a geographic network analysis of species invasion or 

saturation, nodes are geographic locations and the links between nodes represent functions such 

as the probability of movement of a pathogen or pest between the nodes.  Characterizing the 

network structure of cropland areas acting as sinks or sources can inform the selection of key 

nodes for surveillance, mitigation, and management improvement. Nodes that are linked to many 

other nodes (nodes that have high degree) and nodes acting as bridges between cropland regions 

(nodes with high betweenness centrality) may be particularly important for the spread of 

pathogens and pests and are important for identifying invasion risk (Hernandez Nopsa et al. 

2015;  Margosian et al. 2009).  Network traits such as centrality (how important a particular node 
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or link is (Newman 2010)), local cohesiveness (how well connected a subset of nodes is 

compared to their connection to other subsets of nodes (Kolaczyk 2009)), and affinity (degree of 

tendency for nodes to be linked with other nodes of similar centrality (Barrat et al. 2004)) can 

help to identify locations in networks that may be priorities for attention.  

 One problem for evaluating the effect of cropland connectivity, in general or for a 

particular pathogen or pest, is lack of information to parameterize dispersal risk models.  More 

general risk evaluations can draw on models that have proven useful across multiple systems.  

Gravity models are frequently used to describe the risk of movement between two locations, in 

applications including zoology, ecology, and epidemiology (Jongejans et al. 2014). In dispersal 

events, the risk of movement between two locations is often a function of the product of the 

amount of inoculum potentially produced at the source location and the amount of potential host 

material at the sink location (Jongejans et al. 2014;  Sutrave et al. 2012b;  Xia et al. 2004). Here, 

we use a gravity model to approximate the dispersal risk associated with a pair of locations 

(nodes).   

 Here we evaluate the global cropland connectivity risk associated with five crops of 

particular importance to food security for smallholder farmers in the tropics.  These crops are 

vegetatively-propagated, with the associated high risk of transmission of disease through seed.  

Cropland connectivity captures some elements of the risk of transmission through movement of 

pathogens and pests independent of crop plants (through flight or passive dispersal in wind, for 

example), as well as risk due to movement of planting materials.  The objectives of this analysis 

are to i) characterize the network structure of global cropland for banana and plantain, cassava, 

potato, sweetpotato, and yam, ii) evaluate the network structure in terms of its potential impact 

on pest and disease risk due to dispersal, and develop an index for cropland connectivity risk, 
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and iii) use the network structure to identify geographic priorities for surveillance and 

management of emerging pests and diseases and saturation of endemic species.   

 

Materials and Methods 

Study system cropland area 

We analyzed global cropland area data representing conditions circa 2000 from Monfreda et al. 

(2008), a standard reference for the geographic distribution of individual crops. We evaluated the 

harvested cropland area of five crops: banana, cassava, potato, sweetpotato, and yam (Dioscorea 

spp.). Here we use the term “banana” to refer to bananas and plantains (Beed et al. 2012).  Data 

were spatially aggregated by finding the mean harvested area for each crop across 24 x 24 units 

of the original 5 min x 5 min units, for a resolution of 120 min x 120 min (2o x 2o). We used two 

methods to calculate the mean of the crop harvested area per grid: the “land mean” (the sum of 

the harvested area fractions within an aggregated 2o x 2o unit divided by the number of 5 min x 5 

min units within the aggregated unit that contain only land) and the “total mean” (the same sum 

divided by the total number of 5 min x 5 min units within an aggregated 2o x 2o unit).  These two 

formulations of the mean are different primarily on coastlines and for islands; the sensitivity 

analysis below includes both formulations.  To focus on more important production areas, we 

considered three threshold values for inclusion of nodes in the analysis: 0.0015, 0.002, and 

0.0025 mean proportion cropland harvested area.  We described the risk for pathogen and pest 

movement between each pair of nodes as a function of the distance between the nodes and the 

cropping density associated with the nodes.  
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Model of risk of movement between geographic nodes 

We constructed adjacency matrices where the entry for each pair of nodes was a function of the 

distance between the two nodes and the cropping density at the two nodes. The distance effect on 

the risk was calculated as a function of the Euclidean distance between nodes i and j (dij) as 

either a power law function dij
-β, or an exponential function exp(-γdij) (Campbell and Madden 

1990;  Gregory 1968;  Madden et al. 2007;  Mundt et al. 1999;  Mundt et al. 2009;  Severns et al. 

2014). Thus higher values of the parameters β and γ reflect lower likelihood of long-distance 

dispersal. The risk due to greater cropland area for any two nodes i and j was accounted for using 

a gravity model (Jongejans et al. 2014), by multiplying together the mean cropland area (c) 

associated with each of the nodes (ci cj). Thus in the first step the weights in the adjacency matrix 

indicating the overall risk of movement between two geographic nodes were ci cj dij
-β

 and  

ci cj exp -γdij for the power law and exponential functions, respectively. We then applied three 

threshold minimum values (0.001, 0.0001, and 0.00001) for entries in the matrix and set weights 

below that to be zero. Network models and metrics for the cropland connectivity for each of the 

five crops were analyzed for the Eastern and Western Hemispheres. We used the igraph package 

(Csárdi and Nepusz 2006) in the R programming environment (R Core Team 2016) to evaluate 

the networks. We used the geographic data analysis and modeling raster package (Hijmans et al. 

2015b). Other packages used were rgdal (Bivand et al. 2014b), dismo (Hijmans et al. 2015a), 

expm (Goulet et al. 2013), maptools (Bivand et al. 2015), rrcov (Todorov 2014),  rworldmap 

(South et al. 2013), mapdata (Becker and Wilks 2014a), sp (Pebesma et al. 2014), maps (Becker 

and Wilks 2014b), rgeos (Bivand et al. 2014a), and RColorBrewer (Neuwirth 2014).  
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Index of invasion risk based on network metrics 

We propose a new index to represent the component of invasion and saturation risk based on 

cropland connectivity. This cropland connectivity risk index (CCRI) is constructed as a weighted 

mean of the components below, giving half the weight to a measure of the importance of the 

node as a bridge (betweenness centrality), and half the weight to other metrics that measure how 

well connected a node and its neighbors are. The choice of weighting was determined to 

emphasize betweenness, because it will capture a role as bridge that is not obvious when 

individual cropland area is considered alone, and also to include connectedness of a node at 

different scales.  The index was calculated as 

• 1/2 Betweenness centrality (the number of shortest paths crossing a node), scaled by the 

maximum betweenness. 

• 1/6 Node strength (the sum of a node's link weights), scaled by the maximum node 

degree. 

• 1/6 Sum of nearest neighbors’ node degrees (sum of the number of links associated with 

nearest neighbors), scaled by the maximum sum of nearest neighbors’ node degrees. 

• 1/6 Eigenvector centrality (gives each node a score proportional to the sum of the scores 

of its neighbors) scaled by maximum. 

As an overall measure of cropland connectivity risk for pathogen and pest invasion and 

saturation for these crops, we also evaluated a general index by adding the individual risk 

indices. This might be useful for evaluating general purpose surveillance and management 

strategies to control emerging pests and diseases affecting the set of crops, or for special cases 

where a pathogen or pest uses multiple host species. 
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Sensitivity analysis and data quality 

We performed an analysis of model sensitivity to parameter shifts, to i) evaluate how consistent 

results were under changes in model parameters, and ii) determine which nodes had high 

cropland connectivity risk across all sets of assumptions, and which nodes had high risk only for 

some model scenarios.  Based on the combinations of functions, thresholds and parameters used, 

144 cropland connectivity risk index maps were generated for each crop (Table 1).  For each cell 

in the maps, we calculated the mean, max, min, and variance across the 144 maps. For reference, 

Monfreda et al. (2008) summarize the quality of the data available for their analysis.  

Illustration of features captured by the cropland connectivity risk index 

In this example, we illustrate the cropland connectivity risk index calculation, and the features of 

a cropland density map that it captures.  A hypothetical map of cropland density is presented for 

a given crop species (Fig. 2A).  In this example, most of the cropland units have a low crop 

proportion (indicated by yellow shading) while one unit has a high crop proportion (indicated by 

blue shading). A network (Fig. 2B) is constructed using the gravity model described above, from 

the corresponding data from the cropland map (Fig 2A), where for this particular illustration an 

exponential function with γ = 0.7 was used to calculate the link weight, and a threshold of 0.001 

was used to determine whether a link exists. The high crop-density location on the map is 

represented by the blue node in the network while the other nodes represent the other land units 

where the crop was present.  The sum of nearest neighbors’ degrees (Fig. 2C) captures how well 

connected the nodes’ neighbors are.  Node strength (Fig. 2D) indicates a node’s importance in 

terms of how connected it is to its neighbors.  Betweenness centrality values identify nodes 

acting as bridges in the network (Fig. 2E).  Eigenvector centrality (Fig. 2F) shows how well 

connected a node is through immediate neighbors, their neighbors, and beyond. Finally, the 
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cropland connectivity risk index (Fig. 2G) is the weighted mean of these metrics. In addition to 

the high- risk locations with high crop density, other locations with high risk because of their 

role as bridges were identified.  The results of a sensitivity analysis for the CCRI in this 

hypothetical map are also illustrated (Fig. 2H, 2J-L), along with an illustration of the land units 

where the CCRI rank is higher than the rank based on crop density along (Fig. 2I).  

 

Results 

In addition to summaries of which regions have particularly high cropland connectivity risk, the 

summaries here also indicate the locations where the CCRI rank is substantially higher than the 

harvested crop fraction.  These latter cases are ones where looking at harvest crop fraction alone 

might not identify areas that have higher risk based on their position in the full network. 

Banana and plantain.  The combination of high mean CCRI and low variance in CCRI 

was observed for Central, North Central and Southwest Uganda, Northwest Tanzania, Western 

Rwanda, and Northern Burundi, and for the Inter-Andean valleys in Colombia and all of Central 

and Western Ecuador (Fig. 3A).  The combination of high mean and low variance indicates that 

these locations have a high risk across all model assumptions.  The CCRI rank was substantially 

higher than the rank based on cropland density alone in multiple locations in Africa, particularly 

in Tanzania  (Fig. 4A). 

 Cassava. The CCRI was high in South and Southwest Nigeria and South Central Ghana, 

Eastern Brazil (states of Bahia and Rio Grande do Norte), Southern Brazil (Parana, Mato Grosso, 

Rio Grande do Sul States) and Southwest Paraguay (Fig. 3B).  The CCRI rank was substantially 

higher than the rank based on cropland density alone in Nigeria and Cameroon (Fig. 4B). 
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 Potato. The CCRI was high in North Central Europe, including Northern Ukraine, 

Central Poland, and Central and Southern Belarus, the United States (Idaho, Washington, 

Colorado, and the Northern Great Lakes region), Southeastern Brazil (Bahia and Sao Paulo 

states) and the Andes region in South America (Central and Eastern Andes in Colombia, 

Ecuadorian Andes, Peruvian and Bolivian Andes, as well as Southern Chile and Eastern 

Argentina) (Fig. 3C).  The CCRI rank was substantially higher than the rank based on cropland 

density alone in multiple locations in Eastern Europe (Fig. 4C). 

 Sweetpotato. The CCRI was high in Central China and in the Caribbean (Haiti and the 

Dominican Republic) (Fig. 3D).  Medium risk levels were observed in Tanzania and Uganda.  

The CCRI rank was substantially higher than the rank based on cropland density alone in 

multiple locations in China, as well as Tanzania (Fig. 4D). 

 Yam. The highest CCRI observed for yam was in South Central Nigeria, Benin, Togo, 

Ghana, and the Ivory Coast, along with the Caribbean Islands (Fig. 3E).  The CCRI rank was 

substantially higher than the rank based on cropland density alone in Eastern Nigeria, Togo, 

Western Ivory Coast, and the Dominican Republic (Fig. 4E). 

 

Discussion 

We have identified areas with high risk for dispersal of pathogens or pests of banana and 

plantain, cassava, potato, sweetpotato, and yam, based on cropland connectivity. Cropland 

connectivity is a risk factor for movement though wind, seed exchange, farm tools, or trade. 

These locations are candidates for prioritizing surveillance and mitigation programs (Smolinski 

et al. 2003;  Woolhouse et al. 2005), especially if information about weather conduciveness to 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 10, 2017. ; https://doi.org/10.1101/106542doi: bioRxiv preprint 

https://doi.org/10.1101/106542


Xing, Hernandez Nopsa et al. - 12 
 

invasion, and other risk factors such as documented trade patterns, also support the high risk 

designation.   

 It might seem as if the cropland connectivity risk index would simply identify as high 

risk those land units which have high crop fraction.  That is, why go to the extra effort to 

evaluate cropland connectivity if simply evaluating cropland density gives the same result?  

Land units with high crop fraction will tend to be identified as high risk, unless they are 

particularly isolated.  However, the cropland connectivity risk index also identifies locations that 

have an important role as bridges between cropping regions (pink regions in Figs 2I and 4), even 

if the cropping density within the bridge land units is not particularly high.  Thus, analysis of 

cropland connectivity can identify additional risk areas based on the larger landscape, beyond 

those identified through a simple unit-by-unit scan for high cropping density. 

 Some caveats related to this analysis, which are also potentially useful points for future 

research, include the following.  The analysis is based on data (Monfreda et al. 2008) 

summarized across global data sets that vary widely in quality from region to region.  The 

resolution we selected for our analyses was intended to represent a compromise – avoiding too 

high a spatial resolution because it might have little data to back it up, and also avoiding too 

coarse a resolution that might obscure the roles of different regions.  Where more complete data 

are available or can be collected, more detailed and higher resolution analyses can be performed.  

Likewise, the current analysis does not take into account geographic features that could have 

important effects on the likelihood of active or passive movement of pathogens and pests, 

including wind (Sutrave et al. 2012).  Roads and rivers may increase pathogen movement, while 

other water bodies, deserts, and mountains may isolate nodes (Meentemeyer et al. 2012).  And 

the distribution of individual crop species captures only some aspects of risk for many pathogens 
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and pests that can use multiple host species.  Conversely, if resistance genes are widely 

deployed, pathogens and pests may only be able to use a subset of the planted fraction (Brown 

and Hovmoller 2002;  Garrett et al. 2017).  Extreme weather patterns may be responsible for 

many important regional or global introductions of pathogens and pests, such as the potential 

introduction of soybean rust to the US in hurricane Ivan (Schneider et al. 2005).  Flooding may 

move some soilborne pathogens to new locations.  Finally, heterogeneity in time may alter 

patterns of cropland connectivity.  Markets may drive longer term trends in planting patterns, and 

for shorter season crops such as potato and sweetpotato, geographic heterogeneity in planting 

seasons may disrupt cropland connectivity observed when seasons are aggregated. 

 These analyses illustrate general cropland connectivity risk across a large spatial extent 

and for a fairly coarse spatial resolution.  Follow-up analyses for specific locations and particular 

pathogen or arthropod species may be useful, when more detailed data are available for mapping 

cropland fraction and for selecting appropriate functions to describe dispersal kernels, and 

potentially other factors.  The results presented here have a greater confidence for certain crops 

such as potato, and certain regions, based on the quality and quantity of the original data 

available for assembly by Monfreda et al (2008).  Examples of the application of network 

analysis to invasions of particular species include Phytophthora ramorum (Harwood et al. 2009) 

and Phakopsora pachyrhizi (Sanatkar et al. 2015;  Sutrave et al. 2012).  The role of a land unit 

(node) will depend on the species of pathogen or pest being considered, and its dispersal kernel.  

A land unit evaluated for species that tend to only move short distances might be isolated, while 

for species that tend to move longer distances it might be an important bridge node (Calabrese 

and Fagan 2004).  Individual pathogen or pest analyses can also support Pest Risk Analysis 

working documents, aiding the elaboration of procedures set up by IPPC and implemented by 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 10, 2017. ; https://doi.org/10.1101/106542doi: bioRxiv preprint 

https://doi.org/10.1101/106542


Xing, Hernandez Nopsa et al. - 14 
 

NPPOs – particularly if produced on a regional basis to share information, in addition to the 

trade implications. (Beed et al. 2013;  Miller et al. 2009).  Likewise, areas with low connectivity 

and otherwise low risk can be identified and prioritized for seed production. 

 Two regions in Africa, the Great Lakes Region and the region between Ghana and 

Nigeria, have high cropland connectivity risk for multiple crops.  EACMV-Ug emerged in 

Uganda and caused famine in Eastern, Central and Western Africa (Anderson et al. 2004), and 

wheat stem rust race Ug-99 also in Uganda (Pretorius et al. 2000).  It is an interesting open 

question if the role of Uganda in cropland networks had some influence on disease emergence, or 

if it was simply a matter of higher sampling effort that made detection more likely. 

 The movement of pathogens through the international seed trade is an important risk 

factor for many crops (Anderson et al. 2004;  Rodoni 2009;  Wylie et al. 2008).  In Sub-Saharan 

Africa, movement of plant material and farming tools is key to the dispersal of banana diseases 

such BXW (Beed 2014;  Tripathi et al. 2009) and through cuttings for the cassava virus diseases, 

and particularly CBSD (Bock 1994;  Legg et al. 2015). The US late blight pandemic in 2009 was 

caused by the movement of infected tomato plants via trade from a single national supplier (Fry 

et al. 2013).  During 2009-2010, an epidemic of late blight in tomato was reported in Southwest 

India with the suggestion that the pathogen was introduced via potato seeds imported from the 

UK and Europe before 2009 (Chowdappa et al. 2013).  Cropland connectivity is likely to capture 

at least a portion of the risk associated with such movement, to the extent that trade and 

movement of equipment and agricultural workers tends to be through areas that produce a 

particular crop. Of course, at the same time that cropland connectivity represents a risk for the 

spread of pathogens and pests, connectivity may also sometimes confer advantages for efficiency 

in deployment of equipment and personnel, as well as marketing of products. 
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Additional background related to disease and pest risk 

Banana.  Important diseases of banana, particularly in the African Great Lakes region are 

banana Xanthomonas wilt of banana (BXW) and banana bunchy top disease (BBTD) caused by 

the Banana bunchy top virus (BBTV, genus Babuvirus)  (Anderson et al. 2004;  Beed et al. 2012;  

Kumar et al. 2015). Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc) Race 1 

and 2 is relatively widespread in Africa but with heterogeneous distribution. However, the 

emergent Fusarium Tropical Race 4 pathogen was recently introduced to Mozambique in 

commercial Cavendish plantations. Plant parasitic nematodes and banana weevils (Cosmopolites 

sordidus) pose additional important threats to banana production. Dispersal risk of these banana 

diseases, as well as diseases transmitted in other vegetatively-propagated crops, is strongly 

influenced by movement of planting materials. Movement of banana suckers may be 

independent of distance at smaller spatial scales, due to the effects of family, friendship, and 

ethnic ties. Dispersal of certain diseases (e.g. BXW) is maximized by poor agronomic practices 

(i.e., non- sterilization of farm tools used to harvest and manage banana fields) and lack of 

adoption of good practices (removal of male flower buds when last banana cluster forms). Wind 

direction and speed are also very important for dispersal considering their effects on vectors 

(e.g., aphids carrying BBTV). At short distances, movement via insect vectors is important for 

the spread of many viral diseases.      

 Cassava. Cassava’s biggest constraints in Africa are virus diseases: Cassava mosaic 

disease (CMD) caused by Cassava mosaic geminiviruses (CMGs) and Cassava brown streak 

disease (CBSD) caused by both Cassava brown streak virus (CBSV) and Ugandan cassava 

brown streak virus (UCBSV). Viruses causing both are transmitted by the whitefly vector, 

Bemisia tabaci, and by infected cuttings. CMD is present in all cassava growing areas in Africa 
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while CBSD is confined to Eastern Africa and the Great Lakes region (Legg et al. 2011). There 

is already ample circumstantial evidence that connectedness is very important for the spread of 

CMD around Lake Victoria. Interestingly, these two diseases that have the same host and similar 

cropland areas, have different epidemic patterns, which is a consequence of relative differences 

in their propensity to be spread through infected cuttings, and differing mechanisms of vector 

transmission of the causal viruses.  In Latin America, other viral diseases affect farmers, such as 

cassava common mosaic disease (CCMD), caused by Cassava common mosaic virus (CsCMV) 

and transmitted by infected cuttings or mechanically. It can cause yield losses of approximately 

30% (Venturini et al. 2016) and recent outbreaks have been reported in Peru and Argentina (Di 

Feo et al. 2015).  Complex viral infections have been associated with disease symptoms in 

Colombia, as for some other vegetatively-propagated crops (Carvajal-Yepes et al. 2014).   

 Sweetpotato.  Sweetpotato is also the host of important pathogens and pests, including 

viruses. Several weevils important to yield loss exist worldwide, with different species most 

abundant in different regions.  Some viruses such as SPCSV, SPFMV and some begomoviruses 

are present globally, whereas other viruses are found only in certain regions, such as SPMMV. 

They are spread through infected planting material (long or short distances) or arthropod vectors 

(short distances). Movement of reproductive material (vines) through trade can cover long 

distances.  Some factors can limit the movement of vines such as crop-free periods caused by dry 

seasons, or temperature cycles.  Where cropping is continuous through time, this will maximize 

the dispersal of inoculum by humans and vectors. Whereas some pests such as viruses are easily 

spread through planting material (Gibson and Kreuze 2015) and can form permanent reservoirs 

in wild host species (Tugume et al. 2008;  Tugume et al. 2013;  Tugume et al. 2016), others, such 

as weevils are more difficult to spread through planting material (as they mainly affect roots and 
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vine cuttings are the dominant planting material), have no known alternative hosts, and are 

unable to travel long distances by themselves. Thus both long distance and local spread are much 

more likely for viruses than for weevils. 

 Yam. Yam (Dioscorea spp.) is a multispecies crop popularly grown for its tubers by 

millions of smallholder farmers in West Africa. The crop is traditionally propagated using whole 

tubers or setts cut from tubers. Nearly 94% of the global edible yam production (64 million tons 

from 7.14 million hectares) is located in West Africa (Benin, Cameroon, Côte d’Ivoire, Ghana, 

Nigeria and Togo). Nigeria alone produces 66% of global production (FAOstat 2016). Dioscorea 

rotundata (white yam) and D. cayenensis (yellow yam) of West Africa origin are the dominant 

species, whereas introduced Asiatic D. alata (water yam) and D. dumetorum are other popular 

food yams in WA. Major constraints to yam production in West Africa are mosaic disease 

caused by Yam mosaic virus and Yam mild mosaic virus (genus Potyvirus), anthracnose disease 

caused by Colletotrichum gloeosporioides, and damage due to nematodes, Scutellonema bradys 

and Pratylenchus spp. (lesion nematode) and Meloidogyne spp., (root knot nematodes) 

responsible for significant pre- and postharvest deterioration of tubers. All these agents are 

endemic in all the yam production regions in West Africa, however, differential susceptibility 

was observed between the species. Viruses and nematode spread between generations along with 

the planting material. Anecdotal evidence clearly links spread of virus and nematodes to the 

movement of planting material in West Africa.  
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Table 1. Components of the cropland connectivity risk index (CCRI) that were varied in 
sensitivity analyses.  Each possible combination of the levels of the values indicated was 
evaluated.  The possible combinations included varying the form of mean (total mean or land 
mean) and varying the dispersal model (power law or exponential), as well as the parameters of 
the model selected. 

 
Method Parameter Levels Interpretation 

Total mean  
�c���������

/576
��	


��

 

c���������
 is the cropland 

proportion of the ith 5 min 
grid within a 2 degree grid 

c���������
  The sum of cropland 

proportion of all 5 min x 5 
min grids within a 2° x 2° 
grid is divided by the total 
number of 5 min x 5min 
grids aggregated in a 2° x 
2° per grid  

Land mean 
�c���������

/�576
��	


��

� #
��
�� 
c���������

is the cropland 

proportion of the ith 5 min 
grid within a 2 degree grid 

c���������
  The sum of cropland 

proportion of all 5 min x 5 
min grids within a 2° x 2° 
grid is divided by the total 
number of 5 min x 5min 
grids containing only land 
(5 min x 5 min grids with 
water are excluded) 
aggregated in a 2° x 2° 
per grid; #water denotes 
the total number of 5 min 
grids with water 

Dispersal Risk 
Model (DRM) 
 
DRM=cicjdij

-β 
 
 
 
 
 
 
DRM=cicj exp(-γd

ij
) 

 

Power law model  
dij

-β  
dij is the distance between 
nodes i and j 
ci is the fraction harvested 
area with the crop of 
interest at the ith node 

β β1= 0.5 
β2= 1.0 
β3= 1.5 

Potential changes in 
model to describe 
different types of pests 
and dispersal mechanisms 

Exponential model 
exp(-γd

ij
) 

dij is the distance between 
nodes i and j 
ci is the fraction harvested 
area with the crop of 
interest at the ith node  

γ 
 

γ1= 0.05 
γ2= 0.1 
γ3= 0.2 
γ4= 0.3 
γ5= 1.0 

Potential changes in 
model to describe 
different types of pests 
and dispersal mechanisms 

Cropland  
proportion 

Minimum cropland 
proportion for inclusion 
of node in analysis 

pc 
 

pc1>0.0015 
pc2>0.002 
pc3>0.0025 
 

Smaller thresholds would 
result in more nodes 
retained in the network  

Link weight  Minimum link weight for 
inclusion of link in 
network 

pl 

 
pl1>0.001 
pl2>0.0001 
pl3>0.00001 
 

Smaller thresholds would 
allow more links in the 
network  
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Figures and figure captions 

Figure 1. Contrasting the processes of invasion and saturation over time, where the pathogen or 
pest species is present in red nodes and absent in green nodes.  A. In an invasion, a region is 
initially free of the species.   During the process of invasion, the species enters the region and 
spreads over time.  B. In the process of saturation, a species is already present in a region but not 
in all potential locations.  A restricted subset of nodes in the region may act as refugia for 
overwintering or oversummering, or for persistence of the species during years with weather less 
conducive to the species.  From these locations, the species can spread to linked nodes when 
conditions are more conducive.  Note that the difference between invasion and saturation is 
partially a difference in the spatial resolution being considered.  For consideration of the risk due 
to cropland connectivity, even when a species is already present in the region, higher cropland 
connectivity increases the risk of saturation. 

Figure 2 in Box 1. An illustration of the evaluation of cropland connectivity risk for a simple 
scenario.  A. The map of cropland density indicates the fraction harvested area for crop species 
in a hypothetical small region, where white areas have none of the crop species, yellow areas (1- 
16 and 18-19) have a low fraction of land planted to the crop species, and the blue area (17) has a 
high fraction planted to the crop species.  B. The network of cropland connectivity that 
corresponds to the map in A, indicating the links for one set of parameters.  The high density  
region (blue node 17) and bridging region (green node 10) are indicated.  C.  The map of nearest 
neighbors’ degrees for the network in B.  Nearest neighbors are those with direct links to a 
reference node, and node degree is the number of links to that node.  D.  The map of node 
strength for the network in B.  Node strength is the sum of the weights of links to a reference 
node.  E.  The map of betweenness centrality for the network in B.  Betweenness centrality 
indicates the number of shortest paths in the network that pass through a reference node.  F.  
Eigenvector centrality for the network in B.  Eigenvector centrality is a measure of how well 
connected a node is in terms of immediate neighbors, their neighbors, etc.  G. The cropland 
connectivity risk index (CCRI) for the network in B.  CCRI is a weighted mean of the four 
measures of connectedness in maps C through F.  Note that this is the CCRI for one parameter 
combination.  H. The map of the mean CCRI from a sensitivity analysis of networks 
corresponding to map A for a range of parameter combinations (Table 1).  I. The difference 
between ranked values of the mean CCRI from a sensitivity analysis, and the ranked values in 
map A.  This difference indicates locations where the fraction of land planted to the crop species 
does not capture all the features of connectivity in the CCRI.  Pink indicates regions where the 
CCRI is higher than the ranked values of map A, and green indicates regions where the CCRI is 
lower.  J.  Map of the maximum CCRI from the sensitivity analysis.  K. Map of the minimum 
CCRI from the sensitivity analysis.  L. Map of the variance in CCRI across realizations in the 
sensitivity analysis. 

Figure 3. The mean and variance observed for cropland connectivity risk index (CCRI) 
components in a sensitivity analysis for banana/plantain, cassava, potato, sweetpotato, and yam.

Figure 4.  Maps of the difference in cell rank between harvested area fraction and the cropland 
connectivity risk index (CCRI) for banana/plantain, cassava, potato, sweetpotato, and yam.	
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