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Abstract 
Genome-scale models of metabolism and macromolecular expression (ME-models) explicitly         
compute the optimal proteome composition of a growing cell. ME-models expand upon the             
well-established genome-scale models of metabolism (M-models), and they enable new and           
exciting insights that are fundamental to understanding the basis of cellular growth. ME-models             
have increased predictive capabilities and accuracy due to their inclusion of the biosynthetic             
costs for the machinery of life, but they come with a significant increase in model size and                 
complexity. This challenge results in models which are both difficult to compute and challenging              
to understand conceptually. As a result, ME-models exist for only two organisms (Escherichia             
coli and Thermotoga maritima) and are still used by relatively few researchers. To address              
these challenges, we have developed a new software framework called COBRAme for building             
and simulating ME-models. It is coded in Python and built on COBRApy, a popular platform for                
using M-models. COBRAme streamlines computation and analysis of ME-models. It provides           
tools to simplify constructing and editing ME-models to enable ME-model reconstructions for            
new organisms. We used COBRAme to reconstruct a condensed E. coli ME-model called             
iJL1678b-ME. This reformulated model gives virtually identical solutions to previous E. coli            
ME-models while using ¼ the number of free variables and solving in less than 10 minutes, a                 
marked improvement over the 6 hour solve time of previous ME-model formulations. This             
manuscript outlines the architecture of COBRAme and demonstrates how ME-models can be            
reconstructed  and  edited  most efficiently using  the  software. 

Introduction 
Genome-scale metabolic models (M-models) have shown significant success predicting various          
aspects of cellular metabolism by integrating all of the experimentally determined metabolic            
reactions taking place in an organism of interest [1–4]. These predictions are enabled based on               
the stoichiometric constraints of the organism’s metabolic reaction network and metabolic           
interactions with the environment. M-models are capable of accurately predicting the metabolic            
capabilities of an organism, but they require defined substrate input constraints and empirical             
metabolite measurements to make predictions of its growth capabilities. Therefore, a focus of             
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development in the field of genome-scale models has been to increase the scope and              
capabilities of M-models [5]. 
 
Recently, M-models have been extended to include the synthesis of the gene expression             
machinery which can be used to compute the entire metabolic and gene expression proteome              
[6–9]. These ME-models integrate Metabolism and Expression on the genome scale (Figure 1 ),             
and they are capable of explicitly computing a large percentage (> 80% in some cases) of the                 
proteome by mass in enterobacteria [10]. In other words, not only do ME-models compute              
optimal metabolic flux states, as do M-models, but they also compute the optimal proteome              
usage required to sustain the metabolic phenotype. ME-models enable a wide range of new              
biological questions to be investigated including direct calculations of proteome allocation [11] to             
cellular processes, temperature dependent activity of the chaperone network[12], metabolic          
pathway usage and the effects of membrane and volume constraints [7]. Furthermore, their             
ability to compute the optimal proteome abundances for a given condition make them ideal for               
mechanistically integrating  transcriptomics and  proteomics data. 
 
So far ME-models have been constructed for only two organisms, Thermotoga maritima [8] and              
Escherichia coli K-12 MG1655 [6,7,9,13]. The slow pace of ME-model construction can be             
attributed to two basic challenges with ME-models. First, ME-models are much slower to             
numerically solve than M-models; it takes 5 orders of magnitude more CPU time to solve               
iOL1650-ME [6] than it does the corresponding iJO1366 M-model [14]. As a result, while              
M-models can be solved on personal computers, ME-models currently require large clusters or             
supercomputers to parallelize simulations. While increased computing power is generally          
becoming more readily available, thus alleviating the computational challenge, other challenges           
that come with ME-models are not as easily addressed. M-models can use generalized software              
tools [15–19], but each organism’s ME-model has required its own dedicated codebase and             
database schema, which makes advances for one organism’s model difficult to apply to another              
organism. Second, the large model sizes and complex structure have made analyzing and             
debugging the model difficult and time consuming. Therefore, each organism’s ME-model has            
required  dedicated  person-years of effort. 
 
We addressed the above challenges by developing a computational framework written in            
Python – analogous to the widely used software for M-models, COBRApy [18] – for building,               
editing, simulating and interpreting ME-model results, called COBRAme. COBRAme is designed           
to: 1) be applicable to any organism with an existing metabolic reconstruction (M-model) 2) use               
protocols and commands familiar to current users of COBRApy 3) construct ME-models with a              
reaction organization that is easily interpreted by the user 4) construct models that solve orders               
of magnitude faster than previous ME-models [6]. As a result of the above considerations, we               
hope that COBRAme and its associated tools, presented here, will accelerate the development             
and  use  of models of metabolism and  expression. 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/106559doi: bioRxiv preprint 

https://paperpile.com/c/qiHyRn/MvInY
https://paperpile.com/c/qiHyRn/Nd7f+Y0t3t+jAJ5O+U7Ii
https://paperpile.com/c/qiHyRn/COe1
https://paperpile.com/c/qiHyRn/qeT6X
https://paperpile.com/c/qiHyRn/Q20e
https://paperpile.com/c/qiHyRn/Y0t3t
https://paperpile.com/c/qiHyRn/jAJ5O
https://paperpile.com/c/qiHyRn/rNJ3b+Nd7f+Y0t3t+U7Ii
https://paperpile.com/c/qiHyRn/Nd7f
https://paperpile.com/c/qiHyRn/x00Vb
https://paperpile.com/c/qiHyRn/dX54Z+lyAbe+1xGco+wqX20+euUKz
https://paperpile.com/c/qiHyRn/wqX20
https://paperpile.com/c/qiHyRn/Nd7f
https://doi.org/10.1101/106559
http://creativecommons.org/licenses/by/4.0/


 

 
Figure 1 : Multi-scale  processes  modeled  in  a  ME-model  depicted  in  a  dividing  E.  coli cell.  ME-models  expand  upon 
underlying M-models  by  explicitly  accounting  for the  reactions  involved  in  gene  expression  required  to catalyze 
enzymatic  processes.  The  synthesis  of each  major  macromolecule is  coupled  to the  reaction  that it is  involved  in  by 
accounting for its dilution  to daughter  cells  during cell  division. Each  dilution  reaction  is  a  function  of growth  rate  (μ). 

Design  and  Implementation 

Python 
The COBRAme software is written entirely in Python and requires the COBRApy [18] software              
package to enable full COBRA model functionality. Additionally, COBRAme requires the SymPy            
Python module [20] in order to handle “μ”, the symbolic variable representing cellular growth              
rate, which participates as a member of many stoichiometric coefficients in the ME-matrix. The              
BioPython package [21] is used by COBRAme to construct transcription, translation and tRNA             
charging reactions for each gene product in the organism’s genbank genome annotation file.             
The ME-model is solved using the SoPlex [22,23] or quadMINOS (Ma et al. 2017) solvers via an                 
API written in Python and included as part of this project. Further, the ECOLIme Python               
package is included in this work and contains information pertaining to E. coli gene expression               
and scripts to build iJL1678b-ME starting with the E. coli metabolic model, iJO1366 [14].              
ECOLIme  can  further act as a  blueprint for ME-model  reconstructions of new organisms. 
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ME-model  Architecture 
Constructing a ME-model requires assembling information pertaining to many different cellular           
processes. For instance, in order to construct a translation reaction for the ME-model, the              
sequence of the gene, the codon table for the organism, the tRNAs for each codon, ribosome                
translation rates, elongation factor usage, etc. must be incorporated. Further, several processes            
in the ME-model recur for many genes that are transcribed or translated due to their               
template-like nature [13]. To address these challenges, the COBRAme ME-model was           
structured to compartmentalize information for individual cellular processes. A key component of            
this approach was the separation of the ME-model into two major Python class types: the               
information storage vessels called ProcessData and the functional model reactions called           
MEReaction, which  is analogous to  the  COBRApy Reaction. 
 

ProcessData 
COBRAme constructs ME-models that are composed of two major Python classes. The first of              
these is the ProcessData class, which is used to store information associated with a cellular               
process. The type of information contained in each ProcessData type is summarized in the              
COBRAme Documentation. This method of information storage has several advantages over           
alternatives such as establishing a database to query information as it is needed, which was the                
approach used to build previous ME-model versions. For example, this method simplifies the             
dissemination of the information used to construct a ME-model given that the information can              
now be included as part of a published ME-model without requiring the user to install and                
populate a database. Further, this gives the ability to compartmentalize the information based             
on which cellular processes it elucidates. By storing this information in Python objects, methods              
can be implemented to further allow data contained in each ProcessData instance to be              
manipulated. This method also reduces error by enabling many features to be computed using              
defined inputs in a consistent way. For example, the amino acid sequence for a protein can be                 
dynamically computed and used to construct a TranslationReaction instance using a gene’s            
nucleotide  sequence  and  codon  table. 

MEReaction 
ME-models are multiscale in nature meaning they contain a variety of different types of              
reactions that operate on different timescales and have different cellular functions. Reactions            
therefore must be coupled together to dictate the required activity of one reaction needed to               
facilitate the reactions which it participates. This is done by deriving a coupling coefficient to               
determine the amount of a macromolecule needed to catalyze particular reactions. To facilitate             
this coupling and to handle the unique characteristics of each major reaction type found in cell                
biology, the MEReaction Python class is used. This class defines the functional ME-model             
reaction that inherits from the COBRApy Reaction and thus ultimately makes up the ME-matrix.              
In addition to the functionality of COBRApy Reactions, MEReactions contain functions to read             
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and process the information contained in ProcessData objects and to update this information             
into a complete, functional reaction. Part of compiling a functional reaction also includes             
imposing the appropriate coupling constraints in many cases (coupling constraints detailed in            
COBRAme Documentation). These coupling constraints are imposed directly as part of the            
MEReaction’s update method and varies depending on the reaction type. Since MEReactions            
are associated with the information used to construct them through ProcessData, this codebase             
has the ability to easily query, edit and update the information used to construct the reaction into                 
the  MEReaction  and  therefore  model. 

ME-model  Construction  Workflow 
ME-models of E. coli are reconstructed using the two Python packages presented here,            
COBRAme and ECOLIme. COBRAme contains the class definitions and necessary methods to            
facilitate building and editing a working ME-model. COBRAme is written to be organism agnostic              
such that it can be applied to ME-models for any organism. ECOLIme contains the E. coli                
specific information (e.g. the E. coli ribosome composition) as well as functions required to              
process files containing E. coli reaction information (e.g. the text file containing transcription unit              
definitions) and associate them with the ME-model being constructed. Therefore, ECOLIme is            
required to assemble the reaction and gene expression information that comprises           
iJL1678b-ME, and COBRAme, on the other hand, supplies the computational framework           
underlying the ME-model. The composition along with further demonstrations of the utility of             
each  of these  packages is outlined  in  the  COBRAme  Documentation. 

 
Figure 2 : The  flow  of information  from input  data  to the  ME-model,  as  facilitated using  the  ‘ build_me_model’  script. 
The  ‘ build_me_model’  workflow  uses  the  ECOLIme  package  to load  and  process  the  E. coli M-model along  with  all 
supplied files  containing  information  defining  gene  expression  processes/reactions.  This  information  is  then  used  to 
populate the  different  ProcessData  classes  (shown in  turquoise  boxes)   and  link  them  to the  appropriate MEReaction 
classes  (shown in  red  ovals),  all  of which are  defined  in  the  COBRAme  package. The  entirety  of the  MEReactions 
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comprise a  working  ME-model.  Not  all  input  data,  ProcessData classes  and  MEReaction classes  care  shown.  For a 
complete list, reference  the  COBRAme  Documentation . 
 
The process of building iJL1678b-ME using COBRAme and ECOLIme is presented in the             
building script, ‘ build_me_model’ (Figure 2 ). This script goes through each of the major gene              
expression processes modeled in iJL1678b-ME and uses the functionality contained within           
ECOLIme to read and process all relevant information. Once the information is loaded, it is used                
to create and populate ProcessData instances associated with the information. Each of            
ProcessData instances are then linked to the appropriate MEReaction instance and updated to             
form a functioning ME-model (Figure 2 ). A description of the ‘ build_me_model’ script can be              
found  in  the  COBRAme  Documentation. 
 
 

 
 
Figure 3: An overview of the COBRAme ME-model formulation. The previous ME-models implemented coupling              
constraints explicitly as model metabolites. With COBRAme, instead of using explicit coupling constraints             
(metabolites), dilution of coupled macromolecules to the daughter cell is accounted for by embedding them directly in                 
the reaction which they are used. For example, for the metabolic reaction shown above, a small amount (μ/k eff) of the                    
catalyzing enzyme is consumed by the reaction it is involved in. In other words, for each unit of flux carried by the                      
metabolic reaction, μ/keff * vmetabolic_reaction of the catalyzing enzyme must be synthesized. A summary of the major                 
macromolecular coupling that is accounted for in iJL1678b-ME is also shown, along with their representation in the                 
ME-matrix. 
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Reformulating  the  E. coli ME-model 
Significant efforts were made to simplify the ME-model while also optimizing the model size,              
modularity and time required to solve. These included: 1) reformulating the implementation of             
explicit coupling constraints (metabolites) into single ME-model reactions and 2) lumping major            
cellular processes such as transcription and translation into single ME-model reactions. Further,            
a number of updates, changes and corrections have been made to the E. coli ME-model               
reconstruction  which  are  detailed  below.  

Macromolecular Coupling  
The largest mathematical difference between the original ME-model formulation [6] and           
ME-models constructed using COBRAme is the change in the macromolecular coupling           
implementation. These coupling coefficients dictates the amount of macromolecule synthesis          
flux that is required for the reaction catalyzed by that macromolecule to carry flux. They are                
derived based on the fact that as a cell grows and divides it must dilute macromolecules its                 
daughter cells and therefore have a general form of “μ/kkeff” (O'Brien et al. 2013) (Figure 3 ).                
While these are essential in a ME-model to couple together the various reaction types, in               
previous model versions they inflated the number of metabolites and reactions contained in the              
ME-matrix, resulting in longer solve times. COBRAme improves coupling constraint          
implementation by directly embedding macromolecule dilution coupling into its catalytic reaction           
(Figure  3 ). 
 
The coupling coefficients were derived as in O'Brien et. al. 2013, but were effectively imposed in                
the ME-model as equality constraints (Figure 3 ) as opposed to inequality constraints used in              
previous ME-model implementations [6,7]. This means that each ME-model solution will           
synthesize the exact amount of each macromolecule as dictated by each coupling coefficient,             
thus giving the computed optimal macromolecule synthesis fluxes for the in silico conditions.             
Previous ME-model formulations, as stated above, have applied the constraints as inequalities            
thus allowing the simulation to synthesize macromolecule components above the value dictated            
by the coupling coefficient. While all enzymes are not fully saturated in E. coli in vivo, this                 
phenomenon would not be selected as an optimal ME-model solution. Furthermore, using            
inequality constraints greatly expands the size of the possible solution space, significantly            
increasing the time required to solve the optimization. Reformulating the model using equality             
constraints thus resulted in a reduced ME-matrix with the coupling coefficients embedded            
directly into the reaction in which they are used (Figure 3 ). This process further removes the                
coupling constraints (metabolites) and associated variables (reactions) in the original          
formulation, which makes the ME-matrix much smaller (i.e. imposing each macromolecule           
coupling constraint in iJL1678b-ME requires at least one less variable (reaction) and constraint             
(metabolite) than  previous ME-model  versions). 
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Beyond reducing the size of the ME-matrix, eliminating inequality constraints greatly reduces            
the space of feasible fluxes at suboptimal growth rates. At an optimum, a ME-model will not                
waste resources, and, as a result, all the computed values are pushed up against their               
inequality constraints, rendering them as equalities. Therefore, reformulating the model with           
equalities alone will compute the same optimal flux state but results in a much simpler problem                
from a numerical point of view when applying the binary search or bisection solving algorithm               
(see  Optimization Procedure ).  
 
To improve the modularity of the model the tRNA coupling was reformulated (see S). This was                
done in order to account for the dilution coupling of both the tRNA synthetase and tRNAs                
themselves during tRNA charging reactions. In doing so, the tRNA charging reactions now             
produce a charged tRNA equivalent that can be added to the translation reaction directly since               
dilution coupling has already been applied. This allows tRNAs to be cleanly removed without              
breaking the model by simply deleting the SubreactionData ProcessData instances that apply            
the  tRNA equivalents.  
 
A more thorough description of coupling constraints and their implementation can be found in              
the  COBRAme  Documentation. 

Reaction  Lumping 
Using equality constraints in the COBRAme formulation and splitting the model into            
ProcessData and MEReactions allows for a variety of model simplifications. One major            
simplification is that reactions which occur in a number of individual steps or sub-reactions (i.e.,               
ribosome formation, translation, etc.) can be lumped into a single reaction. The single             
MEReaction is constructed using the set of ProcessData instances that detail the individual             
sub-reactions involved in the overall reaction. This information is further accessible through the             
MEReaction instances itself which allows the information to be queried, edited and updated             
throughout the reaction. If the sub-reaction participates in many different reactions, the changes             
can be further be applied throughout the entire model. This lumping has the obvious benefit of                
reducing the number of model reaction, thus shortening the solve time. Lumping complex             
reactions has the added benefit of making the ME-model much more modular in nature. This               
simplifies the process of adding or removing new processes associated with the reaction.             
Examples of accessing and editing ProcessData through MEReactions can be found in the             
COBRAme  Documentation.  

Nonequivalent Changes 
Unlike the reformulations described above, some of the changes made in the COBRAme             
formulation purposefully changed the model in a nonequivalent way. One of the most significant              
differences was assigning a “dummy complex” monomer with a representative amino acid            
composition as the catalytic enzyme for “orphan” reactions. These are non-spontaneous           
reactions which do not have a known enzymatic catalyst. The previous formulation therefore             
resulted in a slight bias toward using these reactions, given that they did not have an associated                 
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protein expression cost, which was corrected in iJL1678b-ME. Additionally, in iJL1678b-ME,           
protein “carriers” (e.g. acyl carrier protein) are assigned as catalysts to their transfer reactions.              
Therefore, the iJL1678b-ME will require translation of these carriers in order for them to              
participate in the reactions they are involved in, thus resulting in the expression of 52 more                
genes when  simulating  on  glucose  minimal  media  compared  to  iJL1678-ME.  
 
Previous E. coli ME-models included individual reactions for all possible different combinations            
that a transcription unit could be excised of rRNA, tRNA or ncRNA. Though only 82 transcription                
reactions in are present in iJL1678b-ME, accounting for all excision possibilities and the             
subsequent degradation of the excised portions adds thousands of reactions to the model (a toy               
example is shown in the Supplementary Text). This has a sizeable effect on the solve time of                 
the ME-model with limited improvement in the predictive capability of the model therefore             
handling  this was removed  from iJL1678b-ME.  
 
Further, membrane surface area constraints imposed in iJL1678-ME were removed. This           
constraint limited the number of membrane proteins that could be expressed at a given growth               
rate. Protein competition for membrane space may play an important role in shaping E. coli’s               
metabolic phenotype, particularly when growing aerobically. Despite this, the constraint was           
removed to prevent the model from being over constrained when growing in non-glucose             
aerobic conditions, leading to unrealistic behavior. Removing this constraint makes          
iJL1678b-ME more generalizable. Similarly, growth-dependent surface area calculations were         
used when imposing lipid demands, therefore they were also removed and replaced with             
demands identical to those defined in the iJO1366 biomass objective function. The protein             
translocation genes and pathways added when reconstructing iJL1678-ME, however, remain in           
iJL1678b-ME. 
 
Corrections were made to iJL1678-ME to remove metabolites from the in silico growth media              
that are not present in minimal E. coli growth media. For instance cob(I)alamin is not essential                
for growth in E. coli, but was required in the in silico growth media of iJL1678-ME to produce a                   
feasible model. This was due to cob(I)alamin being an essential modification for the QueG              
complex. It has been shown that the presence of cob(I)alamin increases the epoxyqueuosine             
reductase tRNA modification activity, but is not required for the reaction to take place [24].              
Further, a known failure mode of iOL1678-ME and iJL1678-ME is that all RNA modification              
genes are computationally essential, when, in vivo, this is not always the case. This means that                
the tRNA modification catalyzed by QueG is computationally essential. Given that the presence             
of cob(I)alamin in the in silico media will allow the activity of three reactions that would not be                  
active when grown in minimal media (METS (catalyzed by MetH), ETHAAL, and MMM), the              
cob(I)alamin modification was removed from QueG and replaced with the two known iron sulfur              
cluster modifications. Biotin was also removed from the in silico growth media since             
iJL1678b-ME can synthesize it from glucose, therefore it does not need to be supplemented for               
growth. 
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Optimization  Procedure 
Unlike M-models, the stoichiometric matrix for each ME-model consists of numerous growth rate             
(μ) dependant metabolite coupling coefficients and variable bounds (Figures 1, 3 ). This makes             
the ME-matrix nonlinear meaning they cannot be solved as a normal LP like M-models. The               
ME-matrix, however, is quasi-convex [25], meaning that, for any feasible substituted μ, all             
smaller μ values will also be feasible. Therefore, the maximal feasible μ value can be               
determined by a binary search or bisection algorithm wherein successive linear programs are             
solved at different values of μ to find the largest value of μ that gives a feasible flux state, as                    
done for iJL1678-ME and iOL1650-ME. For each optimization the production of a representative             
dummy protein is maximized. In doing so, this allows the same algorithm to be used for both                 
batch and nutrient limited growth, which required different procedures in iJL1678-ME and            
iOL1650-ME (O'Brien  et al. 2013) (see  Supplementary  Text). 
 
To perform the binary search, the following procedure was implemented in COBRAme. First,             
each symbolic coefficient or reaction bound was compiled into a function by SymPy [20]. Then,               
a linear program was created and passed into the linear programming solver, with all of these                
symbolic functions evaluated to an initial μ value. Afterwards, for each instance of the binary               
search in μ, values in the linear program were replaced by the new μ value, and the problem                  
was resolved  using  the  last feasible  basis.  
 
While any linear programming solver supported by COBRApy [18] could technically have been             
used, ME-models are very ill-scaled [6], unlike M-models. Therefore, two specialized solvers are             
used due to their extended numerical precision, thus ensuring acceptable numerical error:            
qMINOS[23,26] which supports quad (128-bit) numerical precision and SoPlex [22] which           
supports “long double” (80-bit) numerical precision as well as iterative refinement in rational             
arithmetic to  further reduce  numerical  error.  

Results and  Discussion 

Model  Overview 
The  COBRAme  framework was used  to  reconstruct a  mass-balance  checked, reformulated 
version  of the  E. coli K-12  MG1655  ME-model  iJL1678-ME, called  iJL1678b-ME. This produced 
a  model  with  12,654  reactions and  7,031  metabolites, a  marked  improvement over iJL1678-ME 
which  contained  79,871  reactions and  70,751  metabolites. As a  result, iJL1678b-ME has a 
matrix with  ~90% fewer columns than  iOL1650-ME.  This dramatically speeds up  the  solving 
procedure  and  allows processes such  as iterative  refinement, which  uses rational  arithmetic and 
is unsuited  for fast vector SIMD operations, to  become  feasible  for fast and  accurate  solutions 
(Figure  4 ). 
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Figure 4 : Flux variability analysis of reactions representing the expression of Pgi and the PGI metabolic                
reaction. With increasing solver precision, the variability becomes negligible (the max and min possible              
fluxes converge) for metabolic and translation fluxes when using a μ precision of 10 -5 and for transcription                 
fluxes when using a μ precision of at least 10 -10 . There are two transcription reactions for pgi to model                   
transcription of this gene using two different sigma factors. High μ precision can be achieved without                
sizeable  increases in  total  solve  time,  using  qMINOS. 
 
iOL1650-ME, constructed  using  COBRAme, was simulated  in  glucose  aerobic minimal  media  in 
silico conditions and  compared  against simulations from the  previous iOL1650-ME version. Both 
simulations were  ran  using  a  selection  of keff  parameters that were  fit to  proteomics data 
obtained  from E. coli grown  in  multiple  conditions [27]. The  new model  version  gave  very similar 
(R2>.98) fluxes when  comparing  model  solutions on  a  transcription, translation  and  metabolic 
level  (Figure  5 ) suggesting  that the  two  models are  virtually identical, computationally. The 
reformulated  ME-model  cannot be  expected  to  give  completely identical  solutions as 
iOL1650-ME due  to  some  of the  nonequivalent changes and  model  corrections described  in 
Nonequivalent Changes . Particularly, the  RNA degradosome  and  RNA excision  machinery 
was slightly under expressed  due  to  the  change  in  stable  RNA excision  handling  described 
above. 
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Figure 5 : Comparison of the simulated fluxes of iOL1650-ME to the COBRAme generated version of the                
same model at transcription, translation and metabolic flux scales. At each level, the models provided               
comparable flux predictions, indicated by the Pearson Correlations above 0.98. The models cannot be              
expected to give completely identical flux predictions due to the ME-model updates outlined in              
Nonequivalent Changes . Since iJL1678b-ME does not contain membrane surface area constraints,           
iOL1650-ME was used  for comparison. 
 
Computational essentiality predictions for both iJL1678b-ME and iOL1650-ME were compared          
against a genome-wide essentiality screen of single gene knockouts grown in glucose M9             
minimal media [28]. Due to the corrections described above, iJL1678b-ME displayed improved            
gene essentiality predictions when comparing essentiality for the 1539 proteins also modeled in             
iOL1650. The bulk of the these improvements stem from modeling the expression of enzyme              
“carriers” as mentioned in Nonequivalent Changes. This correction led to a 35 gene decrease              
in the number of false positives predictions made by iJL1678b-ME, but also led to a 22 gene                 
increase in true positives. Overall the accuracy of the model improved from 86.6% to 87.5%.               
Further, the matthews correlation coefficient [29], a machine learning metric to gauge the             
performance  of binary classifiers, saw an  increase  of 9.5% from 0.608  to  0.666. 
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Experimental 

Essential Nonessential 

iJL1678b 
Essential 1070 (69.5%) 109  (7.1%) 

Nonessential 84  (5.5%) 276  (17.9) 

iOL1650 
Essential 1092 (71.0%) 87  (5.7%) 

Nonessential 119  (7.7%) 241  (15.4%) 
 

Table 1 : Summary of essentiality predictions for the 1539 proteins modeled in both iJL1678b-ME and               
iOL1650-ME. Predictions of essentiality are from a genome wide screen of Keio collection [30] knockouts              
grown  on  glucose  M9  minimal  media  [28]. 
 
Beyond performance and predictive capabilities, the reformulations and reduced size make           
iJL1678b-ME more understandable to the user. By lumping cellular processes into individual            
model reactions, the structure of the ME-model reactions is able to more closely resemble the               
central dogma of biology. For instance, the translation of a given gene, <gene_id> occurs in a                
single model reaction, “translation_<gene_id>” where all components and coupling constraints          
are applied in one place (Figure 3 ) as opposed to occurring in multiple separate reactions. In                
addition to being more easily understandable by the user, the reformulation makes the model              
more amenable to visualization tools like escher [19], further easing the process of interpreting              
simulation  results. 
 

Editing  a  Constructed  ME-model 
The separation of COBRAme ME-models into information storing ProcessData classes and           
functional MEReactions allows many components of a finalized ME-model to be easily queried,             
edited and updated throughout the ME-model. This is especially useful for a few reasons: 1)               
certain processes occur repeatedly throughout the process of expressing the genes and            
proteins within a cell. Therefore, if the user wants to edit a parameter associated with one of                 
these processes, such as the GTP cost of translation elongations, this can be done by editing                
the ProcessData instance that defines this process and updating it through the model. 2)              
Aspects of processes involved in gene expression can often be interrelated. For instance, the              
nucleotide sequence of an mRNA being translated dictates the number and type of charged              
tRNAs that are incorporate, the number of GTP driven elongation steps that must occur, etc.               
COBRAme allows the user to edit the sequence in one place and use the TranslationReaction’s               
update method to apply the changes throughout the reaction. Examples of making edits to a               
ME-model  can  be  found  in  the  COBRAme  Documentation. 
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Availability and  Future  Directions 
Both the COBRAme and ECOLIme software packages are required to construct iJL1678b-ME            
and are currently available on the Systems Biology Research Group’s Github page            
(github.com/SBRG). Installation procedures as well as all necessary documentation required to           
build, simulate and edit ME-models are present in the repository READMEs. The SoPlex solver              
can be found at (http://soplex.zib.de/) and is freely available to all academic institutions. The              
soplex_cython package contains instructions to compile the soplex solver with 80-bit precision            
capabilities along with the necessary code required to solve iJL1678b-ME with SoPlex.            
Alternatively, the qMINOS solver[26] is also freely available for academic use. Instructions for             
installing and using the solver can be found as part of the solveme package [25]. These software                
packages will be actively maintained and improved. The COBRAme documentation can be            
found  on  readthedocs. 

Enable  New  ME-Model  Reconstructions 
We anticipate that the presented software tools will facilitate the reconstruction of many new              
ME-models beyond iJL1678b-ME for Escherichia coli K-12 MG1655. While the COBRAme code            
was constructed to be readily generalizable to many different organisms, it is likely that some               
organisms will require additional features for their ME-model reconstruction that we did not             
originally anticipate. It is our priority to continue to update and improve the code to enhance its                 
utility to model new, diverse organisms. Future efforts will be also be made to create standards                
to govern how ME-models are reconstructed, structured and shared within the scientific            
community.  
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