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Abstract	
The	 brain	 is	 a	 large-scale	 complex	 network	 whose	 workings	 rely	 on	 the	 interaction	
between	its	various	regions.	In	the	past	few	years,	the	organization	of	the	human	brain	
network	 has	 been	 studied	 extensively	 using	 concepts	 from	 graph	 theory,	 where	 the	
brain	 is	 represented	 as	 a	 set	 of	 nodes	 connected	by	 edges.	 This	 representation	 of	 the	
brain	 as	 a	 connectome	 can	 be	 used	 to	 assess	 important	 measures	 that	 reflect	 its	
topological	architecture.	We	have	developed	a	freeware	MatLab-based	software	(BRAPH	
–	 BRain	 Analysis	 using	 graPH	 theory)	 for	 connectivity	 analysis	 of	 brain	 networks	
derived	 from	 structural	 magnetic	 resonance	 imaging	 (MRI),	 functional	 MRI	 (fMRI),	
positron	 emission	 tomography	 (PET)	 and	 electroencephalogram	 (EEG)	 data.	 BRAPH	
allows	 building	 connectivity	matrices,	 calculating	 global	 and	 local	 network	measures,	
performing	non-parametric	permutations	for	group	comparisons,	assessing	the	modules	
in	 the	 network,	 and	 comparing	 the	 results	 to	 random	 networks.	 By	 contrast	 to	 other	
toolboxes,	 it	 allows	 performing	 longitudinal	 comparisons	 of	 the	 same	 patients	 across	
different	points	in	time.	Furthermore,	even	though	a	user-friendly	interface	is	provided,	
the	 architecture	 of	 the	 program	 is	 modular	 (object-oriented)	 so	 that	 it	 can	 be	 easily	
expanded	 and	 customized.	 To	 demonstrate	 the	 abilities	 of	 BRAPH,	 we	 performed	
structural	 and	 functional	 graph	 theory	 analyses	 in	 two	 separate	 studies.	 In	 the	 first	
study,	using	MRI	data,	we	assessed	the	differences	in	global	and	nodal	network	topology	
in	healthy	controls,	patients	with	amnestic	mild	cognitive	impairment,	and	patients	with	
Alzheimer’s	 disease.	 In	 the	 second	 study,	 using	 resting-state	 fMRI	 data,	we	 compared	
healthy	controls	and	Parkinson’s	patients	with	mild	cognitive	impairment.	
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longitudinal	analysis	
	 	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 7, 2017. ; https://doi.org/10.1101/106625doi: bioRxiv preprint 

https://doi.org/10.1101/106625


	 2	

1.	Introduction	
Graph	 theory	 studies	 the	 properties	 and	 behavior	 of	 networks,	 which	 are	 systems	
consisting	 of	 a	 set	 of	 elements	 (nodes)	 linked	 by	 connections	 or	 interactions	 (edges).	
Many	systems	found	in	Nature,	ranging	from	social	 interactions	to	metabolic	networks	
and	transportation	systems,	can	be	modeled	within	this	framework,	pointing	to	a	set	of	
underlying	similarities	among	these	very	diverse	systems.	The	human	brain	can	also	be	
modeled	as	a	network	(the	human	connectome)	 [1],	where	brain	regions	are	 the	nodes	
and	 the	 connections	 between	 them	 are	 the	 edges.	 The	 human	 brain	 is	 thus	 an	 ideal	
candidate	for	graph	theoretical	analysis.	The	nodes	can	be	defined	as	the	brain	regions	
underlying	 electrodes	 or	 using	 an	 anatomical,	 functional	 or	 histological	 parcellation	
scheme.	The	edges	are	obtained	as	measures	of	association	between	the	brain	regions,	
such	 as	 connection	 probabilities	 (diffusion	 tensor	 imaging,	 DTI),	 inter-regional	
correlations	 in	 cortical	 thickness	 (magnetic	 resonance	 imaging,	 MRI)	 and	
electrophysiological	 signals	 (electroencephalography,	 EEG;	 magnetoencephalography,	
MEG)	or	 statistical	dependencies	 in	 time	 series	 (functional	MRI,	 fMRI)	 and	blood	 flow	
(arterial	spin	labeling,	ASL).	
After	 compiling	 all	 pairwise	 associations	between	 the	nodes	 into	 a	connectivity	matrix	
(or	brain	graph),	several	network	properties	can	be	calculated	in	order	to	characterize	
the	global	 and	 local	organization	of	 the	 connectome.	For	 instance,	 the	 small-worldness	
can	be	used	to	assess	the	balance	between	short-distance	and	long-distance	connectivity	
[2],	while	the	modularity	defines	how	well	the	network	can	be	divided	into	subnetworks	
(or	modules)	[3,4],	which	generally	correspond	to	well-known	brain	systems	such	as	the	
default-mode	 or	 fronto-parietal	 networks	 [5,6].	 These	 network	 properties	 and	 many	
others	 can	 be	 used	 to	 reveal	 fundamental	 aspects	 of	 normal	 brain	 organization	 and	
highlight	 important	 aspects	 of	 underlying	 brain	 pathology	 in	 diseases	 such	 as	
Alzheimer's	disease	(AD)	[7]	or	Parkinson's	disease	(PD)	[8].	
Several	toolboxes	have	been	developed	to	study	brain	connectivity,	including	the	Brain	
Connectivity	 Toolbox	 [9],	 eConnectome	 [10],	 GAT	 [11],	 CONN	 [12],	 BrainNet	 Viewer	
[13],	GraphVar	[14]	and	GRETNA	[15].	While	all	of	them	made	important	contributions	
by	proving	new	options	to	build,	characterize	and	visualize	brain	network	topology,	they	
require	some	programming	experience,	or	deal	only	with	some	aspects	of	the	analysis,	
or	 are	 coded	 in	 such	 a	way	 that	 their	 adaptation	 is	 hard	 to	 achieve.	Hence,	 a	 reliable,	
streamlined,	 user-friendly,	 fast,	 and	 scalable	 software	 that	 deals	 with	 all	 aspects	 of	
network	organization	is	still	lacking.		
In	 this	 article,	 we	 present	 BRAPH	 –	 BRain	 Analysis	 using	 graPH	 theory	
(http://www.braph.org/),	 a	 software	package	 to	perform	graph	 theory	analysis	of	 the	
brain	 connectome.	BRAPH	 is	 the	 first	object-oriented	open-source	 software	written	 in	
MatLab	for	graph	theoretical	analysis	with	a	graphical	user	interface	(GUI).	In	contrast	
to	 previous	 toolboxes,	 BRAPH	 takes	 advantage	 of	 the	 object-oriented	 programming	
paradigm	 to	 provide	 a	 clear	 modular	 structure	 that	 makes	 it	 easy	 to	 maintain	 and	
modify	existing	code,	since	new	objects	can	be	added	without	the	need	for	an	extensive	
knowledge	 of	 the	 underlying	 implementation.	 From	 the	 clinical	 point	 of	 view,	 BRAPH	
presents	 the	 following	 strengths:	 (a)	 it	 allows	 comparing	 regional	 node	 values	 before	
the	actual	network	analysis,	which	is	important	to	get	a	first	impression	on	the	data;	(b)	
it	visualizes	individual	connectivity	matrices	and	individual	network	measures,	which	is	
crucial	 to	 detect	 potential	 outliers,	 a	 major	 confound	 in	 neuroimaging	 studies;	 (c)	 it	
carries	 out	 longitudinal	 graph	 theory	 analyses	 that	 provide	 an	 important	 insight	 into	
topological	network	changes	over	time;	(d)	it	assesses	modular	structure	using	different	
algorithms	 and	 allows	 performing	 subnetwork	 analyses	 within	 the	 defined	 modules,	
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which	 is	 important	 for	 studies	 testing	 hypotheses	 within	 a	 particular	 structural	 or	
functional	brain	network;	(e)	it	provides	utilities	for	multi-modal	graph	theory	analyses	
by	integrating	information	from	different	network	modalities,	which	is	arguably	the	next	
challenge	in	imaging	connectomics.	From	the	user	point	of	view,	BRAPH	is	the	only	fully	
vertically	 integrated	 software	 that	 allows	 carrying	 out	 all	 the	 steps	 of	 a	 graph	 theory	
analysis,	from	importing	the	neuroimaging	data	to	saving	the	final	results	in	a	single	file.	
Importantly,	 this	 is	 not	 only	 practical	 but	 also	 increases	 the	 reliability	 and	
reproducibility	 of	 the	 results,	 which	 is	 an	 increasingly	 important	 issue	 within	 the	
research	 community.	 In	 addition,	 BRAPH	 offers	 a	 comprehensive	manual,	 continuous	
release	 of	 new	 utilities,	 and	 a	 support	 forum,	 all	 of	 which	 can	 be	 accessed	 at	
http://www.braph.org/.	Finally,	BRAPH	offers	online	videos	that	provide	a	step-by-step	
guide	on	how	to	perform	graph	theory	analyses,	allowing	the	users	a	simple	and	quick	
start	for	their	brain	connectivity	studies.	
Below	we	 describe	 in	 detail	 the	 different	 options	 that	 BRAPH	 offers	 for	 graph	 theory	
analyses	when	it	comes	to	building	connectivity	matrices,	applying	threshold	strategies,	
performing	weighted	or	binary	network	analyses	and	computing	random	networks.	Our	
software	has	already	been	successfully	applied	in	previous	graph	theory	studies	[16,17]	
but	 to	 further	 demonstrate	 its	 abilities,	 in	 this	 article	we	 assess	 network	 topology	 on	
structural	MRI	data	 from	patients	with	amnestic	mild	cognitive	 impairment	(MCI)	and	
AD,	and	on	fMRI	data	from	PD	patients	with	MCI.		
	
2.	Materials	and	Methods	
2.1.	Overview	of	BRAPH	
BRAPH	is	a	complete	software	package	that	allows	carrying	out	all	the	steps	of	a	graph	
theoretical	 analysis,	 visualize	 the	 results	 and	 generate	 high-quality	 publication-ready	
images.	It	can	obtain	undirected	binary	and	weighted	brain	connectivity	graphs	starting	
from	 data	 acquired	 using	 various	 neuroimaging	modalities,	 including	MRI,	 fMRI,	 EEG,	
and	positron	emission	tomography	(PET).	BRAPH	can	also	assess	the	modular	structure	
of	 the	 brain	 graph,	 employing	 various	 algorithms	 and	 extracting	modules	 for	 further	
analysis.	 To	 test	 for	 significant	 differences	 between	 groups,	 BRAPH	 carries	 out	 non-
parametric	permutation	tests	and	allows	correcting	the	results	for	multiple	comparisons	
using	false	discovery	rate	(FDR)	[18].	It	also	provides	options	to	carry	out	longitudinal	
graph	theory	analyses	and	to	normalize	the	network	measures	by	random	graphs.	
As	 shown	 in	Figure	1,	 the	software	consists	of	 three	 independent	 layers	 connected	by	
software	 interfaces:	 Graph,	 Data	 Structures	 and	 Graphical	 User	 Interfaces	 (GUIs).	 The	
Graph	package	 includes	 the	 fundamental	 functions	 to	perform	a	graph	 theory	analysis	
and	 calculating	 the	 global	 and	nodal	measures.	 The	Data	 Structures	 package	 provides	
the	core	functionalities	of	the	software	and	allows	defining	the	brain	atlas,	the	cohort	of	
subjects,	 and	 the	 type	 of	 graph	 analysis;	 importantly,	 all	 these	 functionalities	 can	 be	
accessed	by	command-line	and	can	therefore	be	scripted	by	advanced	users.	Finally,	the	
GUIs	package	provides	a	streamlined	way	to	carry	out	graph	theory	analyses	based	on	a	
series	 of	 GUIs	 for	 users	without	 a	 computational	 background:	 (a)	 the	GUI	Brain	Atlas	
allows	selecting	and	editing	the	brain	atlas;	(b)	the	GUI	Cohort	allows	defining	the	cohort	
of	subjects	by	uploading	the	relevant	data;	(c)	the	GUI	Graph	Analysis	allows	building	the	
connectivity	matrices	by	selecting	the	type	of	graph	(weighted,	binary,	see	also	Figure	2)	
and	thresholding	method	(threshold,	density)	as	well	as	calculating	topological	measures	
and	visualizing	the	results.	For	the	GUI	Cohort	and	GUI	Graph	Analysis,	 four	options	can	
be	 selected	 (MRI,	 fMRI,	 PET,	 EEG)	 depending	 on	 the	 nature	 of	 the	 analysis.	 Figure	 3	
shows	 an	 overview	 of	 these	 different	 steps.	 Thanks	 to	 this	 three-layered	 structure,	
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BRAPH	 can	 be	 easily	 expanded	 and	 customized	 to	 address	 any	 needs,	 e.g.,	 by	
implementing	new	graph	measures	or	new	approaches	for	building	brain	graphs.	
	
2.2.	Defining	the	nodes	
The	first	step	of	a	graph	theory	analysis	consists	of	defining	the	nodes,	which	generally	
correspond	to	the	regions	included	in	a	brain	atlas.	This	atlas	should	contain	the	names	
and	 labels	of	 the	brain	 regions	as	well	 as	 their	 spatial	 coordinates	 (x,	y,	z)	 in	order	 to	
project	 them	on	a	3D	surface	and	create	a	visual	representation	of	 the	brain	graph.	 In	
the	case	of	the	analysis	of	structural	networks	(e.g.	obtained	from	structural	MRI	data	or	
T1-weighted	 images),	 the	 nodes	 are	 usually	 defined	 using	 an	 anatomical	 parcellation	
scheme	that	divides	the	brain	into	regions	using	the	brain	sulci	and	gyri	as	anatomical	
landmarks.	Examples	of	anatomical	atlases	are	the	automated	anatomical	labeling	(AAL)	
[19],	Desikan	[20]	or	Destrieux	[21]	atlases.	BRAPH	already	provides	these	atlases	ready	
for	 upload	 on	 the	 GUI	Brain	Atlas	 interface.	 In	 the	 case	 of	 the	 analysis	 of	 functional	
networks	(e.g.	obtained	from	fMRI	data),	the	atlas	may	be	defined	using	an	anatomical	
parcellation	scheme,	a	meta-analysis,	or	a	clustering-based	method	of	spatially	coherent	
and	 homogenous	 regions.	 Examples	 of	 functional	 atlases	 are	 the	 Dosenbach	 [22],	 the	
Power	[23]	and	the	Craddock	[24]	atlases,	all	of	which	are	also	provided	by	BRAPH.	The	
user	may	also	upload	a	different	atlas	from	an	external	file	(in	.xml,	.txt	or	.xls	format)	or	
create	an	entirely	new	one	in	the	GUI.	The	resulting	atlas	can	be	saved	as	a	.atlas	file	(see	
manual	and	website	for	an	example	of	a	.atlas	file).		
After	 the	 atlas	 has	 been	 created	 or	 uploaded	 into	 the	 software,	 the	 user	 should	 then	
upload	the	subject	data	into	the	GUI	Cohort	interface.	This	data	may	consist,	for	example,	
of	cortical	thickness,	surface	area	or	volume	measures	in	structural	MRI;	regional	time-
series	 in	 resting-state	 fMRI;	 glucose	 metabolism	 or	 blood	 flow	 in	 PET	 and	 ASL;	 and	
electrophysiological	signals	in	EEG	or	MEG.	These	regional	values	can	be	obtained	using	
the	 Statistical	 Parametric	 Mapping	 (SPM;	 http://www.fil.ion.ucl.ac.uk/spm/),	 FMRI	
Software	 Library	 (FSL;	 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki),	 FreeSurfer	
(https://surfer.nmr.mgh.harvard.edu/)	 or	 any	 other	 image	 preprocessing	 software.	 In	
addition,	they	may	be	corrected	for	the	effects	of	nuisance	variables	such	as	age,	gender	
or	 scanner	 site	 by	means,	 for	 example,	 of	 linear	 regression	 (in	 this	 case	 the	 residual	
values	should	substitute	the	raw	values	in	the	network	analysis)	[25].	
	
2.3.	Defining	the	edges	
Once	 the	 nodes	 of	 the	 network	 have	 been	 defined,	 the	 edges	 representing	 the	
relationship	between	them	need	to	be	computed.	In	BRAPH,	the	edges	are	calculated	in	
GUI	Graph	Analysis	as	the	statistical	correlation	between	the	values	of	all	pairs	of	brain	
regions	 for	 an	 individual	 or	 for	 a	 group	 of	 subjects,	 depending	 on	 the	 neuroimaging	
technique.	 Different	 types	 of	 parametric	 and	 non-parametric	 correlations	 may	 be	
selected	 for	 this	purpose:	Pearson,	 Spearman,	Kendall	 rank	correlation	 coefficients,	 or	
(Pearson	or	Spearman)	partial	correlation	coefficients.	Note	that	all	self-connections	are	
eliminated	from	the	analysis	by	setting	the	diagonal	entries	in	the	connectivity	matrix	to	
zero.	 In	 addition,	 the	 user	 can	 also	 choose	whether	 to	 retain	 the	 negative	 correlation	
coefficients,	substitute	them	with	their	absolute	value	or	replace	them	by	zero.		
	
2.3.	Network	construction	
To	 minimize	 the	 computation	 time,	 the	 graph	 measures	 can	 be	 calculated	 using	
optimized	algorithms	based	on	linear	algebra.	Therefore,	a	graph	is	more	conveniently	
represented	 as	 a	 connectivity	matrix,	where	 the	 rows/columns	 denote	 the	 nodes	 and	
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the	 matrix	 elements	 represent	 the	 edges	 between	 the	 nodes.	 Each	 row	 of	 the	
connectivity	matrix	 represents	 the	edges	 that	are	going	out	 from	a	node;	 for	example,	
row	 j	 represents	 the	edges	 that	 are	going	out	 from	node	 j.	 Each	 column	of	 the	matrix	
represents	the	nodes	that	arrive	to	a	node;	for	example,	column	k	represents	the	edges	
that	are	arriving	to	node	k.	Thus,	the	element	(j,	k)	represents	the	edge	that	goes	from	
node	 j	 to	 node	 k.	 The	 specific	 order	 of	 the	 nodes	 in	 the	 matrix	 does	 not	 affect	 the	
calculation	of	 the	graph	 theory	measures,	but	only	 the	graphical	 representation	of	 the	
connectivity	matrix.	As	illustrated	in	Figure	2,	based	on	the	nature	of	the	edge’s	weight	
and	directionality,	 four	types	of	graphs	can	be	defined.	Weighted	directed	 (WD)	graphs	
have	edges	associated	with	a	real	number,	indicating	the	strength	of	the	connection,	and	
are	directed	(i.e.,	node	j	can	be	connected	to	node	k	without	node	k	being	connected	to	
node	 j).	 The	 edges	 in	 the	weighted	undirected	 (WU)	 graphs	 are	 associated	with	 a	 real	
number	 indicating	 the	 strength	 of	 the	 connection	 and	 are	 undirected	 (i.e.,	 if	 node	 j	 is	
connected	to	node	k,	then	node	k	 is	also	connected	to	node	j),	resulting	in	a	symmetric	
connectivity	matrix.	Binary	directed	 (BD)	graphs	have	directed	edges,	which	can	either	
be	 0	 or	 1,	 indicating	 the	 absence	 or	 presence	 of	 a	 connection.	 The	 edges	 in	 a	 binary	
undirected	 (BU)	 network	 can	 also	 be	 either	 0	 or	 1	 and	 they	 have	 no	 preferential	
directionality.	 In	 order	 to	 transform	 a	 directed	 graph	 into	 an	 undirected	 graph,	 the	
connectivity	matrix	needs	to	be	symmetrized.	In	BRAPH,	the	connectivity	matrix	can	be	
symmetrized	via	command	line	by:	(a)	taking	the	sum	between	the	matrix	itself	and	its	
transpose;	(b)	taking	the	difference	between	the	previous	two;	(c)	comparing	the	matrix	
to	 its	 transpose	and	selecting	either	the	smaller	or	the	 larger	value	 for	each	entry.	We	
remark	that,	even	though	the	directed	measures	are	not	currently	used	in	the	analyses	
performed	by	BRAPH,	they	are	already	available	in	the	Graph	package	and	ready	to	be	
used	in	future	versions	of	the	software.	
To	 transform	 a	weighted	 graph	 into	 a	 binary	 one,	 BRAPH	 assigns	 a	 value	 of	 1	 to	 the	
edges	above	a	given	threshold	and	0	to	those	below	it.	There	are	two	ways	of	applying	a	
threshold:	(a)	by	selecting	a	correlation	coefficient	as	the	cut-off	value	below	which	all	
connections	 are	 excluded	 from	 the	 analysis	 (binary	 undirected	 threshold	 (BUT)	
interfaces);	 or	 (b)	 by	 fixing	 the	 fraction	 of	 edges	 (i.e.,	 a	 specific	 density)	 that	 will	 be	
connected	 (binary	undirected	density	 (BUD)	 interfaces).	The	 choice	between	 these	 two	
options	becomes	significant	when	comparing	different	groups	of	subjects,	as	it	may	lead	
to	 different	 results;	 currently	 the	 density	 approach	 is	 more	 often	 employed	 in	 the	
literature,	 because	 it	 permits	 analyzing	 differences	 in	 network	 architecture,	 while	
controlling	for	the	different	number	of	edges	across	individuals	or	groups.	
For	MRI	or	static	PET	data,	a	single	connectivity	matrix	 is	calculated	for	each	group	of	
subjects;	therefore,	the	graph	theory	measures	reflect	the	group’s	properties.	For	fMRI	
data	and	other	neuroimaging	sequences	that	provide	a	measure	of	brain	function	over	
time,	 an	 individual	 connectivity	 matrix	 is	 calculated	 for	 each	 subject;	 therefore,	 the	
graph	 theory	 measures	 reflect	 the	 characteristics	 of	 each	 subject,	 which	 can	 then	 be	
averaged	within	a	particular	group.	
	
2.4.	Network	analysis	
BRAPH	 allows	 calculating	 both	 global	 and	 nodal	 network	 measures,	 on	 weighted	 or	
binary	 networks,	 using	 different	 thresholds	 or	 densities.	 To	 test	 for	 significant	
differences	 between	 groups	 (cross-sectional	 analysis)	 or	 two	 different	 points	 across	
time	 (longitudinal	 analysis),	 BRAPH	 performs	 non-parametric	 permutation	 tests,	
reporting	one-tailed	and	two-tailed	p-values	based	on	95%	confidence	intervals.		
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The	 network	 measures	 can	 also	 be	 compared	 with	 the	 corresponding	 measures	
calculated	on	random	graphs	with	the	same	degree	or	weight	distribution.	These	can	be	
used,	for	example,	to	normalize	weighted	network	measures.		
Regarding	nodal	network	measures,	the	permutation	tests	are	carried	out	for	each	brain	
region,	 assessing	 simultaneously	 multiple	 null	 hypotheses,	 which	 consequently	
increases	the	risk	of	finding	false	positives.	BRAPH	deals	with	this	issue	by	providing	the	
adjusted	 p-values	 that	 should	 be	 considered	 to	 correct	 the	 results	 for	 multiple	
comparisons	with	 false	discovery	rate	(FDR)	using	 the	Benjamini-Hochberg	procedure	
[18].	
	
2.5.	Graph	theory	measures	
BRAPH	 can	 calculate	 several	 graph	 theory	 measures	 that	 assess	 the	 topology	 of	 the	
whole	brain	network	as	well	as	of	its	regions.	Here,	we	explain	briefly	some	of	the	most	
relevant	ones;	 for	a	complete	 list	with	formulas	and	details,	please	refer	to	the	BRAPH	
manual	 and	website.	 The	 code	we	 used	 to	 calculate	 the	 graph	measures	was	 adapted	
from	the	Brain	Connectivity	Toolbox	(http://www.brain-connectivity-toolbox.net/)	[9],	
which	 is	 regarded	 as	 the	 most	 important	 reference	 in	 the	 field	 since	 it	 provided	 the	
seminal	groundwork	for	the	use	of	graph	theory	by	neuroimaging	researchers.		
The	 simplest,	 yet	 most	 fundamental,	 measure	 that	 can	 be	 assessed	 in	 a	 graph	 is	 the	
degree,	which	is	the	number	of	connections	a	node	has	with	the	rest	of	the	network.	In	
weighted	 graphs,	 we	 calculate	 the	 degree	 of	 the	 nodes	 by	 ignoring	 the	 weights	 and	
binarizing	 the	matrix.	 The	 degree	 distribution	 in	 the	 brain	 follows	 a	 power	 law	 [26],	
meaning	that	highly	connected	areas	tend	to	communicate	with	each	other.	
Another	 important	measure	 is	 the	 shortest	path	length,	which	 is	 the	 shortest	 distance	
between	two	nodes.	In	a	binary	graph,	distance	is	measured	as	the	minimum	number	of	
edges	that	need	to	be	crossed	to	go	from	one	node	to	the	other.	In	a	weighted	graph,	the	
length	 of	 an	 edge	 is	 a	 function	 of	 its	 weight;	 typically,	 the	 edge	 length	 is	 inversely	
proportional	 to	 the	 edge	weight	because	 a	high	weight	 implies	 a	 stronger	 connection.	
The	average	of	the	minimum	path	lengths	between	one	node	and	all	other	nodes	is	the	
characteristic	path	length	[2].	One	can	also	define	two	related	measures	of	centrality:	the	
closeness	centrality,	which	is	the	inverse	of	the	shortest	path	length,	and	the	betweenness	
centrality,	which	is	the	fraction	of	all	shortest	paths	in	the	network	that	pass	through	a	
given	node	 [9].	 These	 and	 other	measures	 can	 be	 used	 to	 assess	whether	 a	 node	 is	 a	
brain	hub	[27],	regulating	most	of	the	information	flow	within	the	network.	
The	 closer	 the	 nodes	 are	 to	 each	 other,	 the	 shorter	 is	 the	 path	 length	 and	 the	 more	
efficient	 is	 the	 transfer	 of	 information	 between	 them.	 Therefore,	 one	 can	 define	 the	
global	efficiency	of	a	node	as	the	inverse	of	the	shortest	path	from	that	node	to	any	other	
node	in	the	network	[28].	To	assess	the	communication	efficiency	between	a	node	and	
its	 immediate	 neighbors,	 the	 local	 efficiency	 can	 be	 calculated.	 Both	 global	 and	 local	
efficiency	measures	can	be	averaged	over	all	nodes	to	describe	global	properties	of	the	
brain	network	[28].	
The	clustering	coefficient	is	a	measure	that	assesses	the	presence	of	cliques	or	clusters	in	
a	graph	[2].	For	each	node,	this	can	be	calculated	as	the	fraction	of	the	node's	neighbors	
that	 are	 also	 neighbors	 of	 each	 other.	 For	 the	 whole	 network,	 the	 nodal	 clustering	
coefficients	of	all	nodes	can	be	averaged	into	the	mean	clustering	coefficient.	A	closely	
related	measure	to	the	clustering	is	the	transitivity,	which	is	defined	as	the	ratio	of	paths	
that	transverse	two	edges	by	the	number	of	triangles.	If	a	node	is	connected	to	another	
node,	which	in	turn	is	connected	to	a	third	one,	the	transitivity	reflects	the	probability	
that	the	first	node	is	connected	to	the	third.	
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The	 small-worldness	 is	 given	 by	 the	 ratio	 between	 the	 characteristic	 path	 length	 and	
mean	 clustering	 coefficient	 (normalized	 by	 the	 corresponding	 values	 calculated	 on	
random	 graphs)	 [2];	 this	 is	 an	 important	 organizational	 property	 that	 describes	 an	
optimal	network	architecture.	Compared	to	a	random	graph,	a	small-world	network	 is	
characterized	by	similarly	short	paths	but	a	significantly	higher	clustering	coefficient.	
A	network	can	also	be	divided	into	separate	communities	corresponding	to	anatomical	
proximity	or	 to	 a	 specific	 function	 shared	by	 a	 group	of	 nodes.	The	 extent	 to	which	 a	
network	can	be	divided	into	these	communities	or	modules	can	be	calculated	using	the	
modularity,	which	maximizes	 the	number	of	edges	within	communities	and	minimizes	
the	 number	 of	 edges	 between	 different	 communities	 [29].	 The	within-module	 z-score	
quantifies	how	well	a	node	is	connected	with	other	nodes	from	the	same	module,	while	
the	participation	coefficient	 assesses	 if	 a	 node	has	many	 connections	with	 nodes	 from	
different	 modules.	 If	 a	 node	 has	 a	 high	 within-module	 degree	 it	 is	 classified	 as	 a	
provincial	hub;	if	it	has	a	high	participation	coefficient	it	is	considered	to	be	a	connector	
hub.	
	
2.6.	Subjects	
To	demonstrate	 the	abilities	of	BRAPH,	we	performed	structural	 and	 functional	 graph	
theory	analyses	in	two	separate	studies.	In	the	first	study,	we	assessed	the	differences	in	
global	and	nodal	network	topology	in	healthy	controls,	patients	with	amnestic	MCI,	and	
patients	 with	 AD	 (see	 Table	 1)	 from	 the	 Alzheimer’s	 Disease	 Neuroimaging	 Initiative	
(ADNI)	database	(adni.loni.usc.edu).	The	ADNI	was	launched	in	2003	as	a	public–private	
partnership,	 led	by	Principal	 Investigator	Michael	W.	Weiner,	MD.	The	primary	goal	of	
ADNI	has	been	to	test	whether	serial	MRI,	PET,	other	biological	markers,	and	clinical	and	
neuropsychological	assessment	can	be	combined	to	measure	the	progression	of	MCI	and	
early	AD.	All	participants	were	scanned	on	a	1.5	Tesla	MRI	system	using	a	sagittal	3D	T1-
weighted	MPRAGE	sequence:	repetition	time	(TR)	=	9–13	ms;	echo	time	(TE)	=	3.0–4.1	
ms;	inversion	time	(IT)	=	1000	ms;	flip	angle	(FA)	=	8°;	voxel	size	=	1.1	×	1.1	×	1.2	mm3.	
In	 the	 second	 study,	we	 carried	 out	 a	 graph	 theory	 analysis	 on	 the	 resting-state	 fMRI	
data	of	healthy	 controls	 and	PD	patients	with	MCI	 (see	Table	2)	 from	 the	Parkinson’s	
Progression	Markers	Initiative	(PPMI)	(2011)	[30]	(www.ppmi-info.org/data;	accessed	
in	November,	2015),	an	international,	multicenter	study	launched	in	2010	to	identify	PD	
progression	biomarkers.	Each	participating	PPMI	site	received	approval	from	an	ethical	
standards	 committee	 before	 study	 initiation	 and	 obtained	 written	 informed	 consent	
from	all	participants.	PD	patients	were	classified	as	having	MCI	(PD-MCI)	if	they	scored	
1.5	 standard	 deviations	 below	 the	 scaled	 mean	 scores	 on	 any	 two	 cognitive	 tests,	
following	 previously	 published	 procedures	 for	 PD-MCI	 diagnosis	 in	 the	 PPMI	 cohort	
[31].	 PD-MCI	 patients	 and	 controls	 were	 scanned	 on	 a	 3	 Tesla	 Siemens	 scanner	
(Erlangen,	 Germany).	 Resting-state	 functional	 images	 were	 acquired	 using	 an	 echo-
planar	imaging	sequence	(repetition	time	=	2400	ms;	echo	time	=	25	ms;	flip	angle	=	80⁰;	
matrix	=	68	x	68;	voxel	size	=	3.25	x	3.25	x	3.25	mm3).	The	scan	lasted	8	minutes	and	29	
seconds	and	included	210	volumes.	
	
2.7.	Network	construction	and	analysis	
To	 assess	 structural	 network	 topology	 in	 controls,	 amnestic	 MCI	 patients,	 and	 AD	
patients	from	ADNI,	the	T1-weighted	images	of	these	subjects	were	preprocessed	using	
FreeSurfer	 (version	 5.3),	 as	 published	 elsewhere	 [17].	 The	 cortical	 thickness	 and	
subcortical	volumes	of	82	regions	were	extracted	and	included	as	nodes	in	the	network	
analysis.	The	edges	between	these	regions	were	computed	as	Pearson	correlations	and	
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the	 network	 analyses	 were	 carried	 out	 on	 the	 binary	 undirected	 graphs,	 while	
controlling	for	the	number	of	connections,	across	a	range	of	densities:	from	5%	to	25%,	
in	steps	of	0.5%.		
To	 assess	 functional	 network	 topology	 in	 PD-MCI	 patients	 and	 a	 group	 of	 elderly	
controls	 from	 PPMI,	 fMRI	 images	 were	 preprocessed	 using	 SPM8	
(http://www.fil.ion.ucl.ac.uk/spm)	 using	 the	 following	 steps:	 removal	 of	 first	 five	
volumes,	 slice-timing	 correction,	 realignment,	 normalization	 to	 the	 Montreal	
Neurological	 Institute	(MNI)	template	(voxel	size	3x3x3mm3),	 temporal	 filtering	(0.01-
0.08	 Hz),	 regression	 of	white	matter,	 cerebrospinal	 fluid	 signals	 and	 six	 head	motion	
parameters.	The	regional	time-series	of	the	200	brain	regions	included	in	the	Craddock	
atlas	[24]	were	extracted	from	each	subject.	To	compute	the	relationship	between	these	
regions,	 we	 used	 Pearson	 correlations	 and	 performed	 the	 network	 analyses	 on	 the	
weighted	undirected	graphs.	
In	both	studies,	non-parametric	permutation	tests	were	carried	out	to	assess	differences	
between	 groups,	 which	 were	 considered	 significant	 for	 a	 two-tailed	 test	 of	 the	 null	
hypothesis	 at	 p<0.05.	 In	 addition,	 to	 adjust	 the	 nodal	 network	 results	 for	 multiple	
comparisons,	 a	 FDR	 procedure	was	 applied	 to	 control	 for	 the	 number	 of	 regions	 that	
were	tested	at	q<0.05.		
	
3.	Results	
3.1.	Structural	network	topology	in	amnestic	MCI	and	AD	
The	 structural	 correlation	matrices	 and	 brain	 graphs	 of	 patients	 and	 controls	 can	 be	
found	 in	 Figure	 4.	 All	 groups	 showed	 strong	 correlations	 between	 bilaterally	
homologous	regions.		
Regarding	global	network	topology	(Figure	5),	we	found	increases	in	the	characteristic	
path	length	and	local	efficiency	in	MCI	and	AD	patients	compared	to	controls	at	several	
network	 densities.	 The	 transitivity	 and	 modularity	 showed	 the	 most	 widespread	
topological	changes:	the	transitivity	was	decreased	and	the	modularity	was	increased	in	
MCI	 and	 AD	 patients	 across	 almost	 all	 network	 densities	 compared	 to	 controls.	
Compared	 to	MCI,	AD	patients	 showed	 increases	 in	 the	 characteristic	path	 length	at	 a	
few	network	densities	and	widespread	changes	in	the	transitivity	and	modularity.	
Regarding	 regional	 network	 topology	 (Figure	 6),	 the	 nodal	 degree	 showed	 significant	
increases	in	the	left	medial	orbitofrontal,	right	insula,	bilateral	rostral	anterior	cingulate	
and	posterior	cingulate	gyri	 in	addition	 to	decreases	 in	 the	 left	middle	 temporal,	 right	
precentral	 and	 right	 inferior	 parietal	 gyri	 in	 AD	 patients	 compared	 to	 controls.	When	
compared	 to	MCI,	AD	patients	 also	presented	a	higher	nodal	degree	 in	 the	 left	 rostral	
anterior	cingulate	and	isthmus	cingulate	gyri.	
We	 also	 compared	 the	 nodal	 local	 efficiency	 between	 groups.	 This	 measure	 showed	
significant	increases	in	the	left	transverse	temporal	gyrus	in	MCI	patients	compared	to	
controls.	 AD	 patients	 showed	 both	 increases	 in	 the	 local	 efficiency	 in	 the	 bilateral	
temporal	pole	and	left	entorhinal	cortex	as	well	as	decreases	in	several	regions	from	the	
frontal	(bilateral	superior	frontal,	 left	pars	triangularis,	bilateral	pars	opercularis,	right	
postcentral	 gyri),	 temporal	 (bilateral	 inferior	 temporal	 gyri,	 amygdala,	 hippocampus)	
and	parietal	(left	inferior	parietal,	right	precuneus)	lobes.	When	the	two	patient	groups	
were	 compared	 to	 each	 other,	 AD	 patients	 showed	 efficiency	 increases	 in	 the	 right	
rostral	anterior	cingulate	compared	to	the	MCI	group.	
	
3.2.	Functional	network	topology	in	PD-MCI	
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The	 functional	 connectivity	matrices	 of	 controls	 and	PD-MCI	 patients	 can	 be	 found	 in	
Figure	7.	The	comparison	of	the	weighted	average	degree	showed	that	PD-MCI	patients	
presented	 a	 significantly	 lower	 number	 of	 connections	 compared	 to	 controls	 (PD-
MCI=172.6;	 controls=183.7;	 p-value=0.027),	 suggesting	 that	 their	 network	 was	 more	
disconnected.	 Then,	 we	 performed	 a	 modularity	 analysis	 on	 the	 weighted	 graphs	 of	
these	subjects	to	assess	the	presence	of	smaller	communities	of	regions	(modules).	This	
analysis	 showed	 there	 were	 five	modules	 in	 controls	 and	 patients,	 which	 were	 quite	
similar	in	the	two	groups.	Module	I	included	medial	frontal	areas,	the	posterior	cingulate	
and	bilateral	angular	gyri,	 resembling	 the	default-mode	network.	Module	 II	 comprised	
temporal	and	cerebellar	areas.	Module	 III	 included	several	middle,	 inferior	 frontal	and	
parietal	 regions,	similarly	 to	 the	 fronto-parietal	network	usually	 found	 in	resting-state	
studies	[5,6].	Module	IV	consisted	of	most	of	the	visual	cortex	similarly	to	the	previously	
reported	 visual	 network.	 Finally,	Module	 V	 included	mainly	 subcortical	 regions	 and	 a	
few	temporal	and	cingular	areas.	
When	we	assessed	the	nodal	degrees	of	the	regions	included	in	each	module	(subgraph	
analysis,	Figure	8),	we	observed	that	the	only	differences	between	the	control	and	PD-
MCI	groups	were	found	in	the	fronto-parietal	network.	Within	this	network,	the	regions	
showing	a	significantly	lower	degree	in	PD-MCI	patients	after	FDR	corrections	were	the	
bilateral	 superior	 frontal,	 superior	 parietal	 gyri	 and	 precuneus	 in	 addition	 to	 the	 left	
middle	and	inferior	frontal	gyri	and	anterior	cingulate.	
	
4.	Discussion	
Graph	 theory	 has	 introduced	 new	 opportunities	 for	 understanding	 the	 brain	 as	 a	
complex	 system	 of	 interacting	 elements.	 Thanks	 to	 this	 framework,	we	 have	 come	 to	
appreciate	that	the	human	brain	relies	on	fundamental	aspects	of	network	organization	
such	 as	 a	 small-world	 architecture,	 modular	 structure	 and	 vulnerable	 hubs.	 These	
properties	allow	our	brains	to	evolve,	grow	and	adapt	within	an	environment	presenting	
increasing	cognitive	demands,	and	their	disruption	accounts	for	some	of	the	key	aspects	
underlying	 pathology	 in	 neurological	 diseases.	 In	 this	 report,	 we	 present	 BRAPH,	 the	
first	 object-oriented	 software	 for	 graph	 theory	 analysis	 intended	 for	 all	 researchers,	
regardless	 of	 their	 scientific	 background.	 As	 modern	 network	 science	 continues	 to	
develop	at	an	amazing	speed,	 it	 is	 important	 to	have	a	software	 that	allows	modifying	
existent	 code	 in	 a	 structured	manner	 so	 that	 past	 knowledge	 can	be	 easily	 integrated	
with	new	topological	analyses	and	graph	theory	measures.	We	are	currently	working	on	
some	 of	 these	 developments	 with	 a	 particular	 focus	 on	 multimodal	 analyses	 and	
effective	connectivity	measures.	Amongst	BRAPH’s	strengths	is	the	fact	that	it	deals	with	
all	the	aspects	of	graph	theory	analysis,	by	providing	the	user	with	extensive	assistance,	
from	the	first	basic	steps	such	as	defining	the	nodes	or	edges	to	producing	the	final	end-
stage	 figures	 of	 the	 results	 as	 well	 as	 to	 archiving	 the	 results	 and	 relative	 analysis	
procedure	 in	 a	 dedicated	 file.	 To	 get	 an	 impression	 on	 BRAPH’s	 abilities,	 below	 we	
discuss	 some	 of	 the	 results	 we	 obtained	 in	 two	 different	 studies	 in	 patients	 with	
amnestic	MCI,	AD	and	PD-MCI.	
	
4.1.	Large-scale	structural	networks	in	amnestic	MCI	and	AD	
AD	 is	 currently	 one	 of	 the	 most	 prevalent	 neurodegenerative	 disorders,	 with	 a	
significant	 impact	 on	 society	 and	 caregiver	 burden	 [32].	 Although	 the	 devastating	
impact	 of	 this	 condition	 has	 pushed	 forward	 a	 large	 research	 effort	 towards	 a	 more	
accurate	 diagnosis,	 the	 underlying	 effects	 of	 AD	 on	 network	 topology	 remain	 poorly	
understood.	There	 is	 increasing	evidence	suggesting	that	the	pathological	hallmarks	of	
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AD,	 consisting	 of	 amyloid	 plaques	 neurofibrillary	 tangles,	 could	 spread	 in	 the	 brain	
through	synapses	and	neural	connections.	Hence,	the	application	of	graph	theory	to	the	
study	of	brain	connectivity	could	shed	light	on	the	mechanisms	of	disease	propagation	
in	AD.		
In	the	current	study,	we	found	that	AD	patients	presented	an	abnormal	global	network	
topology	as	reflected	by	increases	in	the	path	length,	local	efficiency	and	modularity,	and	
by	decreases	of	 transitivity.	These	changes	 indicate	 that	 the	 regions	of	 their	networks	
communicated	 less	 efficiently	 with	 other	 brain	 regions	 and	 between	 different	 brain	
modules.	 In	 particular,	 the	 most	 widespread	 changes	 in	 network	 organization	 were	
observed	for	the	transitivity	and	modularity.	The	decreases	 in	transitivity	 found	in	AD	
suggest	that	the	regions	of	 their	network	were	poorly	connected	to	neighboring	areas,	
whereas	 the	 increases	 in	 modularity	 indicate	 that	 their	 modules	 had	 higher	 within-
module	connectivity	and	worse	inter-module	connectivity.	Patients	with	amnestic	MCI,	
who	are	potentially	on	the	path	to	develop	AD,	also	showed	similar,	albeit	less	extensive,	
network	 changes	 suggesting	 that	 amnesic	MCJ	might	 be	 indeed	 an	 intermediate	 stage	
between	healthy	aging	and	dementia.	These	findings	agree	with	the	results	obtained	in	
previous	studies	[7,	17].	
The	assessment	of	the	nodal	degree	in	AD	showed	widespread	changes	in	the	number	of	
connections	 of	 regions	 that	 belong	 to	 the	default-mode	network,	 including	 the	medial	
orbitofrontal,	 the	anterior	cingulate	and	posterior	cingulate	gyri,	compared	to	controls	
or	patients	with	MCI.	This	network	has	been	strongly	associated	with	AD	as	its	regions	
coincide	with	 the	areas	 showing	amyloid	deposition,	 gray	matter	atrophy	and	glucose	
hypometabolism	in	these	patients	[33].	Hence,	the	changes	we	found	in	this	study	may	
partially	 reflect	 pathological	 and	 metabolic	 abnormalities	 that	 usually	 occur	 in	 AD	
patients.	
In	contrast	to	the	nodal	degree,	the	nodal	local	efficiency	showed	alterations	both	in	MCI	
and	 AD	 patients.	 Whereas	 in	 MCI	 patients,	 these	 changes	 were	 confined	 to	 a	 single	
region	 in	 the	 left	 temporal	 lobe,	 in	AD	patients	 the	 local	 efficiency	was	 altered	 across	
several	 frontal,	 temporal	and	parietal	areas,	 including	the	hippocampus	and	amygdala,	
which	are	involved	in	AD	pathology	[34].	The	local	efficiency	reflects	how	efficiently	is	
the	 communication	 between	 a	 region	 and	 its	 neighboring	 areas.	 Decreases	 in	 this	
measure	might	 indicate	 a	 loss	 of	 local	 connections,	 whereas	 increases	 could	 reflect	 a	
compensatory	 mechanism	 by	 which	 the	 number	 of	 connections	 between	 close	 brain	
areas	increases	to	compensate	for	the	loss	of	connections	between	distant	brain	areas.	
Hence,	 altogether	our	 findings	 indicate	 that	graph	 theory	 is	 a	useful	method	 to	assess	
abnormalities	in	brain	connectivity	and	topology	in	the	prodromal	and	clinical	stages	of	
AD.	
	
4.2.	Large-scale	functional	networks	in	PD-MCI	
Cognitive	 impairment	 is	 one	 of	 the	 most	 important	 non-motor	 symptoms	 in	 PD	 that	
greatly	 affects	 quality	 of	 life.	 During	 the	 course	 of	 the	 disease,	 most	 PD	 patients	 will	
develop	 impairment	 in	 one	 or	more	 cognitive	 domains,	 for	 which	 they	will	 receive	 a	
diagnosis	 of	 MCI.	 The	 presence	 of	 MCI	 in	 PD	 is	 associated	 with	 an	 increased	 risk	 to	
progress	 to	 dementia	 [35].	 Hence,	 there	 is	 a	 pressing	 need	 to	 identify	 the	 underlying	
mechanisms	 of	 MCI	 to	 prevent	 cognitive	 decline	 in	 PD	 patients.	 Using	 a	 weighted	
network	approach	in	BRAPH,	we	found	that	PD-MCI	patients	presented	a	lower	number	
of	connections	in	the	whole	brain	network	compared	to	controls.	This	indicates	that	in	
general	 their	regions	were	more	disconnected.	However,	after	 identifying	 the	modular	
structure	and	performing	the	same	analysis	within	each	module,	we	observed	that	these	
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effects	were	mostly	driven	by	a	lower	degree	in	the	fronto-parietal	network	in	the	PD-
MCI	 group.	 The	 regions	 that	 were	 most	 affected	 in	 this	 network	 were	 the	 superior	
frontal	 gyri,	 superior	 parietal	 gyri	 and	 precuneus.	 All	 of	 these	 regions	 have	 been	
previously	shown	to	display	reduced	connectivity	in	PD	[8].	In	addition,	they	have	also	
been	 identified	as	 important	brain	hubs	 in	previous	graph	 theory	studies	 [27].	Within	
the	graph	theory	framework,	the	brain	hubs	are	the	most	important	and	central	regions	
of	 a	network	as	 they	mediate	numerous	 long-distance	 connections.	This	 characteristic	
also	 suggests	 they	 might	 have	 higher	 metabolic	 costs	 and	 a	 greater	 vulnerability	 to	
oxidative	stress	[27].	In	a	previous	study	[36],	it	was	shown	that	the	pathological	brain	
lesions	are	concentrated	in	hub	regions	of	the	connectome	in	several	neurodegenerative	
disorders,	including	PD,	in	line	with	our	findings.		
	
4.3.	BRAPH	features	
The	application	of	graph	theory	to	the	field	of	imaging	connectomics	is	still	 in	its	early	
beginnings.	There	are	 several	 important	 challenges	 that	need	 to	be	addressed	such	as	
whether	 the	nodes	and	edges	are	an	accurate	description	of	 the	 true	underlying	brain	
connectome	in	all	its	complexity	of	millions	of	neurons	and	synapses.	Although	we	have	
limited	 knowledge	 on	 how	 to	 address	 this	 particular	 issue,	 there	 are	 several	 other	
challenges	that	can	be	addressed	through	the	use	of	BRAPH.	For	instance,	given	that	the	
true	 connectome	 is	 a	 sparse	 network,	 it	 is	 important	 to	 threshold	 the	 structural	 or	
functional	 edges,	 which	 typically	 consist	 of	 continuous	 association	 indices	 [37].	 This	
thresholding	can	be	carried	out	using	different	methods.	On	the	one	hand,	a	 threshold	
can	 be	 applied	 so	 that	 only	 the	 connections	 that	 are	 below	 a	 significance	 level	 are	
included	in	the	analysis.	In	this	way,	the	weaker	connections	of	the	graph	are	eliminated	
and	 considered	 spurious.	 This	 approach	 will	 yield	 different	 numbers	 of	 connections	
across	 different	 individuals	 or	 groups.	 On	 the	 other	 hand,	 a	 threshold	 can	 be	 applied	
such	 that	 all	networks	have	 the	 same	number	of	 connections	 through	a	 fixed	value	of	
density.	 In	 this	way,	 only	 a	 percentage	 of	 edges	 are	 included	 in	 the	 analyses	 and	 the	
graph	 theory	measures	are	 independent	of	 the	number	of	 edges	 [37].	 In	BRAPH,	both	
thresholding	options	are	available	so	that	the	user	can	easily	compare	them.		
Another	 important	 challenge	 is	 the	 choice	 of	 a	 given	 value	 of	 threshold	 since	 there	 is	
currently	no	way	to	establish	which	is	the	best	value.	To	solve	this	issue,	BRAPH	allows	
testing	a	hypothesis	across	different	levels	of	significance	or	densities	to	determine	the	
robustness	 of	 the	 results.	 Some	 authors	 consider	 choosing	 a	 range	 of	 thresholds	 an	
arbitrary	process	 that	produces	values	that	are	strongly	dependent	on	this	choice.	For	
this	 reason,	 we	 also	 provide	 an	 option	 for	 weighted	 network	 analysis,	 which	 allows	
assessing	both	strong	and	weak	connections	present	in	a	graph	and	is	not	dependent	on	
a	particular	thresholding	scheme.		
Another	 challenge	 that	 is	 beginning	 to	 emerge	 in	 the	 scientific	 community	 is	 the	
realization	 that	 different	 node	 definitions	 can	 lead	 to	 different	 network	 findings.	
Currently	BRAPH	provides	six	anatomical	and	functional	brain	atlases	that	the	user	can	
apply	within	 the	 same	 study	 to	 assess	 the	 consistency	 of	 the	 results	 against	 different	
parcellation	schemes.	In	addition,	a	new	brain	atlas	can	be	easily	created	or	uploaded	in	
BRAPH	that	adjusts	to	the	user	needs.		
Finally,	the	last	challenge	that	can	be	addressed	through	BRAPH	is	the	normalization	of	
graph	 theory	 measures	 by	 reference	 to	 random	 networks	 that	 have	 a	 random	
organization	 (with	 the	 same	 degree	 and/or	 weight	 distribution).	 BRAPH	 provides	
various	options	to	perform	this	normalization.	
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In	 conclusion,	 the	 study	 of	 the	 brain	 connectome	 is	 a	 growing	 field	 that	 will	 provide	
important	insights	into	brain	organization	in	health	and	disease.	Amongst	its	numerous	
applications,	 there	 is	 the	possibility	 it	might	help	predicting	the	pathological	spread	of	
disease	 proteins	 in	 neurodegenerative	 disorders,	 which	 are	 becoming	 increasingly	
prevalent	 in	 the	world’s	 aging	 population.	 To	 address	 the	 increasing	 demands	 in	 this	
growing	 field	we	provide	BRAPH,	 the	 first	object-oriented	 software	 that	will	 integrate	
new	topological	analyses	and	measures	in	a	structured	manner,	allowing	the	users	to	be	
updated	 with	 the	 latest	 developments	 in	 graph	 theory.	 BRAPH	 can	 be	 found	 at	
https://www.braph.org	with	online	videos,	 a	 comprehensive	manual,	 a	 support	 forum	
and	relevant	links.	It	is	free	for	all	researchers	and	can	be	used	in	all	operating	systems.		
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Table	1.	Characteristics	of	the	structural	MRI	sample	
	 CTR	

(n=42)	
MCI	
(n=42)	

AD	
	(n=48)	

F	or	χ2	
(p	value)	

Age	(y)	 76.1(5.0)	 74.5(7.5)	 75.6	(7.0)	 0.017	
Sex	(M/F)	 110/100	 243/134	 97/84	 0.005	
Education	(y)	 16.0(2.9)	 15.7(3.0)	 14.8(3.2)	 <0.001	
MMSE	 29.1(0.9)	 27.0(1.8)	 23.2(2.0)	 <0.001	
	
Means	are	followed	by	standard	deviations.	Differences	in	age,	years	of	education,	and	MMSE	scores	were	
assessed	using	an	analysis	of	variance	(ANOVA).	Differences	in	gender	were	assessed	using	a	χ2	test.	CTR,	
controls;	MCI,	mild	cognitive	impairment;	AD,	Alzheimer’s	disease;	MMSE,	mini-mental	state	examination.	
	
	
	
	
Table	2.	Characteristics	of	the	fMRI	sample	
	 CTR	

(n=15)	
PD-MCI	
(n=15)	

CTR	vs	PD-MCI	
(p	value)	

Age	(y)	 66.4(9.1)	 63.5(8.2)	 0.372	
Sex	(M/F)	 13/2	 11/4	 0.361	
Education	(y)	 16.5(2.3)	 14.2(3.1)	 0.024	
UPDRS-III	 -	 21.8(8.9)	 -	
HY	stage	 -	 1.8(0.4)	 -	
MoCA	 24.0(3.7)	 27.9(1.6)	 0.001	
	
Means	are	followed	by	standard	deviations.	Differences	in	age,	years	of	education,	and	MoCA	scores	were	
assessed	using	Student’s	T	 test.	Differences	 in	gender	were	assessed	using	a	χ2	 test.	CTR,	 controls;	PD-
MCI,	 Parkinson’s	 disease	with	mild	 cognitive	 impairment;	UPDRS-III,	Unified	Parkinson’s	 disease	 rating	
scale	-	Part	III;	HY	stage,	Hoehn	and	Yahr	stage;	MoCA,	Montreal	cognitive	assessment	scale.	
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Figure	1.	Overview	of	BRAPH	software	architecture	
BRAPH	 consists	 of	 three	 layers,	 from	 left	 to	 right:	Graph,	Data	Structures	 and	Graphical	User	Interfaces	
(GUIs).	 These	 layers	 are	 connected	 by	 unidirectional	 software	 interfaces	 (arrows).	 Graph	 contains	 the	
functions	 to	 perform	 graph	 analyses.	 In	 Data	 Structures,	 Brain	Atlas	 allows	 defining	 the	 nodes	 of	 the	
network,	 Cohort	 allows	 defining	 the	 subjects	 to	 be	 studied	 and	 dividing	 them	 into	 groups,	 and	 Graph	
Analysis	 permits	 building	 the	 connectivity	matrices	 and	 calculating	 network	measures;	 each	 of	 these	 is	
implemented	in	an	object,	whose	functionalities	can	be	called	by	command	line.	For	each	of	these	objects,	
a	 GUI	 is	 provided	 (i.e.	GUI	Brain	Atlas,	GUI	Cohort	 and	GUI	Graph	Analysis).	 Thanks	 to	 this	 architecture	
BRAPH	can	be	very	easily	maintained,	expanded	and	customized.	
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Figure	2.	Types	of	graphs	
Graphs	can	be	classified	based	on	their	edge	weights	(weighted	or	binary)	and	directionality	(directed	or	
undirected).	It	is	possible	to	transform	a	directed	graph	into	an	undirected	one	by	symmetrization	(i.e.	by	
removing	 the	 information	 about	 the	 edge	 directions),	 and	 a	 weighted	 graph	 into	 a	 binary	 one	 by	
thresholding	 (i.e.	 by	 assigning	 a	 value	 of	 1	 to	 the	 edges	 above	 a	 given	 threshold	 and	 0	 to	 those	 below	
threshold).	
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Figure	3.	BRAPH	workflow	
Workflow	for	a	graph	theory	analysis	in	BRAPH	and	relative	graphical	user	interfaces	(GUIs).	A)	The	brain	
regions	are	defined	in	the	GUI	Brain	Atlas.	B)	The	data	of	the	subjects	are	imported	in	the	GUI	Cohort	and	
the	user	can	define	groups	and	edit	their	age,	gender	and	other	relevant	data.	C)	The	connectivity	matrix	is	
calculated	in	the	GUI	Graph	Analysis	after	selecting	the	parameters	defining	the	type	of	correlation,	how	to	
deal	 with	 negative	 correlation	 coefficients,	 and	 which	 type	 of	 graph	 to	 analyze:	 D)	 binary	 undirected	
graphs	at	a	fixed	density	(GUI	Graph	Analysis	BUD);	E)	binary	undirected	graphs	at	a	fixed	threshold	(GUI	
Graph	Analysis	BUT);	F)	weighted	undirected	graphs	(GUI	Graph	Analysis	WU).		
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Figure	4.	Structural	brain	networks	in	controls,	MCI	patients,	and	AD	patients		
From	 left	 to	 right:	weighted	 correlation	matrices	 of	 82	 regions,	 binary	 correlation	matrices	 after	 fixing	
density	at	15%,	and	corresponding	brain	graphs	from	A)	controls	(CTR),	B)	patients	with	amnestic	mild	
cognitive	impairment	(MCI),	and	C)	Alzheimer’s	disease	(AD)	patients.	
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Figure	5.	Differences	between	groups	in	global	structural	topology	
Left:	 differences	 between	 controls	 (CTR)	 and	 Alzheimer’s	 disease	 (AD)	 patients;	 middle:	 differences	
between	 controls	 (CTR)	 and	patients	with	mild	 cognitive	 impairment	 (MCI);	 right:	 differences	 between	
patients	with	mild	cognitive	impairment	(MCI)	and	Alzheimer’s	disease	(AD)	patients	for	A)	characteristic	
path	 length,	 B)	 local	 efficiency,	 C)	 transitivity	 and	D)	modularity.	 The	 plots	 show	 the	 lower	 and	 upper	
bounds	 (blue	 circles)	 of	 the	 95%	 Confidence	 Intervals	 (CI)	 (gray	 shade)	 as	 a	 function	 of	 density.	 The	
orange	 circles	 show	 the	 differences	 between	 groups	 and,	when	 falling	 outside	 the	 CI,	 indicate	 that	 the	
difference	was	statistically	significant	at	p<0.05.	The	blue	dots	indicate	the	mean	values	of	the	difference	
in	global	network	measures	between	the	randomized	groups	after	permutation	tests.	
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Figure	6.	Differences	between	groups	in	nodal	structural	measures	
Nodes	showing	significant	differences	between	groups	in	the	nodal	degree	and	nodal	local	efficiency	after	
FDR	corrections.	Orange	indicates	increases	in	the	nodal	measure,	while	blue	indicates	decreases.	
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Figure	7.	Functional	brain	networks	and	modules	in	controls	and	PD-MCI	patients	
Weighted	 connectivity	matrices	 and	modules	 in	 A)	 controls	 (CTR)	 and	 B)	 Parkinson’s	 disease	 patients	
with	mild	cognitive	impairment	(PD-MCI).	Five	modules	were	identified	in	each	group.	
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Figure	8.	Differences	between	groups	in	the	nodal	functional	degree	
Significant	 decreases	 in	 the	 nodal	 degree	 of	 regions	 from	 Module	 III	 or	 fronto-parietal	 network	 in	
Parkinson’s	disease	patients	with	mild	cognitive	impairment	(PD-MCI)	compared	to	controls	(CTR)	after	
FDR	corrections.	
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