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Abstract 1

The past decade has seen major investment in genome-wide association studies 2

(GWAS), with the goal of identifying and motivating research on novel genes involved in 3

complex human disease. To assess whether this goal is being met, we quantified the 4

effect of GWAS on the overall distribution of biomedical research publications and on 5

the subsequent publication history of genes newly associated with complex disease. We 6

found that the historical skew of publications toward genes involved in Mendelian 7

disease has not changed since the advent of GWAS. Genes newly implicated by GWAS 8

in complex disease do experience additional publications compared to control genes, and 9

they are more likely to become exceptionally studied. But the magnitude of both effects 10

has declined dramatically over the past decade. Our results suggest that reforms to 11

encourage follow-up studies may be needed for GWAS to most successfully guide 12

biomedical research toward the molecular mechanisms underlying complex human 13

disease. 14

Author summary 15

Over the past decade, thousands of genome-wide association studies (GWAS) have been 16

performed to link genetic variation with complex human disease. A major goal of such 17

studies is to identify novel disease genes, so they can be further studied. We tested 18

whether this goal is being met, by studying patterns of scientific research publications 19

on human genes. We found that publications are still concentrated on genes involved in 20

simple Mendelian disease, even after the advent of GWAS. Compared to other genes, 21

disease genes discovered by GWAS do experience additional publications, but that effect 22

has declined dramatically since GWAS were first performed. Our results suggest that 23

the ability of GWAS to stimulate research into novel disease genes is declining. To 24

realize the full potential of GWAS to reveal the molecular mechanisms driving human 25

disease, this decline and the reasons for it must be understood, so that it can be 26

reversed. 27

Introduction 28

Since the first successful genome-wide association studies (GWAS) were published over 29

a decade ago [1–3], thousands have been performed [4]. These studies have identified 30

PLOS 1/18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2018. ; https://doi.org/10.1101/106773doi: bioRxiv preprint 

https://doi.org/10.1101/106773
http://creativecommons.org/licenses/by/4.0/


tens of thousands of statistical associations between genetic variants and human 31

diseases [4]. More broadly, they have provided insight into the genetic architecture of 32

complex human disease, showing that most common diseases are polygenic and that 33

most common variants only slightly affect disease risk [5]. The large investment in 34

GWAS has been criticized [6], perhaps because initial hopes for quick clinical impact 35

were overenthusiastic [7]. The average time from basic science discovery to clinical 36

practice is 17 years [8], so it unsurprising that few GWAS results directly affect patients 37

yet. But direct clinical impact is not the only goal of GWAS. 38

A major goal of GWAS is to identify novel genes involved in complex disease and 39

steer research toward them [9–11]. For example, an early GWAS unexpectedly found 40

variation in Complement Factor H to be strongly associated with macular 41

degeneration [1], spurring the development of complement-based therapeutics [12]. 42

Similarly, associations between variation in the Interleukin 23 Receptor and Crohn’s 43

disease [13] and psoriasis [14], motivated the development of several treatments that are 44

now in clinical trials [15]. In both of these classic examples, going from association to 45

therapy demanded substantial follow-up research. 46

To assess the impact of GWAS on biomedical research, we focused on scientific 47

publications. Published GWAS are themselves often highly cited, for example [3, 13,16]. 48

A systematic comparison also found that GWAS are more highly cited than comparable 49

candidate gene studies [17]. But a paper that cites a GWAS does not necessarily 50

follow-up on the associations reported by that GWAS. To quantify how much follow-up 51

research is motivated by GWAS, we focused on the subsequent publication record of 52

newly associated genes. 53

The distribution of biomedical research publications is highly unequal among human 54

genes (Fig. 1A) [18]. Much of this inequality stems from historical momentum, driven 55

by the availability of prior functional information [19] or research tools [20]. 56

Consequently, many potentially medically important genes may be understudied [21]. 57

Because GWAS are largely unbiased by previous knowledge about genes [22], they 58

provide an opportunity for understudied genes to be brought to the scientific forefront. 59

We evaluated the effect of GWAS on the biomedical research literature in three ways. 60

At a broad scale, we tested whether the distribution of publications among human genes 61

has changed since the advent of GWAS. At a narrower scale, we quantified the effect of 62

being newly associated with complex disease on the subsequent publication histories of 63

human genes. Lastly, we identified outlier genes with exceptional publication activity 64

and tested whether GWAS might play a role in motivating such activity. Overall, we 65

find that genes newly associated with complex disease do experience notable increases 66

in publication activity, but this effect has declined dramatically over the past decade. 67

Results 68

We measured research output on genes using scientific publications, as collected in the 69

NCBI Gene database [23]. We prefer this manually curated database to automatic text 70

mining, because text mining may introduce false positives when a gene is mentioned in 71

passing. We used the Online Mendelian Inheritance in Man (OMIM) database [24] and 72

the EBI-NCBI GWAS catalog [4] to classify genes into those associated with no disease, 73

Mendelian disease, complex disease, or both. 74

Broad patterns of publications on human genes 75

As expected [18], we found that the distribution of publications among human genes 76

was highly uneven. A small number of genes were the subject of many thousands of 77

publications, while a large number of genes were the subject of only a few (Fig. 1A). 78
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Fig 1. Biomedical scientific publications are highly unequally distributed and strongly
skewed toward genes involved in Mendelian disease, even after the advent of GWAS. A:
The distribution of publications among human genes is highly uneven. Plotted is the
number of publications per gene, with genes sorted by number of publications. A few
genes are the subject of thousands of publications each, whereas thousands of genes are
the subject of fewer than ten publications each. B: The distribution of publications
among human genes is more uneven in the post-GWAS era (2005 and later) than in the
pre-GWAS era (before 2005). Shown in this Gini plot are the cumulative proportions of
publications in each category, versus gene rank. The further the curve is from the
diagonal, the more uneven the distribution. For comparison, the distribution of
publications among yeast genes is shown, with the yeast x-axis stretched to match the
number of human genes. C: Highly-studied genes tend to be involved in Mendelian
disease. Plotted is the density of genes versus publication rank for genes of each possible
type of disease association and for both the pre- and post-GWAS eras. In both eras,
genes involved in Mendelian diseases are strongly enriched toward high publication
ranks. By contrast, many genes involved only in complex disease rank low in terms of
publications.
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To quantify the unevenness of publications among genes, we used the Gini 79

coefficient, which ranges from 0 (perfectly even distribution) to 1 (perfectly uneven). 80

The Gini coefficient is calculated from the cumulative distribution of publications versus 81

gene rank (Fig. 1B). Notably, the inequality of publications among human genes is 82

larger in the post-GWAS era than in the pre-GWAS era (Gini coefficient 0.73 vs 0.65; 83

Fig 1B). It is not inevitable that the distribution of publications should be so unequal; 84

the Gini coefficient of publications among yeast genes is much lower at 0.43 (Fig. 1B). 85

The ultimate goal of most biomedical research is to improve human health, so the 86

distribution of publications is expected to be skewed toward genes involved in human 87

disease. In the pre-GWAS era, genes associated with Mendelian disease were, almost 88

without exception, among the most highly studied human genes (Fig. 1C). By contrast, 89

many genes that would later be associated with complex disease were among the least 90

studied human genes (Fig. 1C). The advent of GWAS led to the discovery of many 91

genes associated with complex human disease. The focus of biomedical publications on 92

Mendelian disease genes, however, remains strong in the post-GWAS era (Fig. 1C). In 93

particular, many genes associated with complex disease remain among the least studied 94

genes in the human genome (Fig. 1C). 95

The advent of GWAS has thus not reduced the startling inequality of scientific 96

publications among human genes (Fig. 1B) nor qualitatively changed the skew of those 97

publications toward genes involved in Mendelian, but not complex, disease (Fig. 1C). 98

But how do GWAS affect subsequent publications on individual genes that are newly 99

associated with complex disease? 100

Subsequent publications on individual genes 101

To quantify the immediate effect of GWAS on research into individual newly associated 102

genes, we focused on the calendar year a gene was associated with complex disease 103

through GWAS and the following two years. For each new GWAS gene, we compared 104

publications over this period with a control non-GWAS gene chosen to have as similar a 105

prior publication history as possible. The variance in an associated gene’s publications 106

is strongly correlated with the number of publications on that gene in the prior three 107

years (Fig. 2A). Normalizing the excess in publications relative to the control gene by 108

the square root of the number of recent publications normalizes the variance (Fig. 2B), 109

consistent with a Poisson model for publication output [25]. The normalized excess in 110

publications for a GWAS gene is slightly but significantly shifted (Fig. 2C; one-sample 111

t-test, p ∼ 5 × 10−34, N = 2, 442). The mean normalized excess is 1.24 units, 112

corresponding to a mean excess of 2.95 publications over the three years following 113

association. 114

What factors determine how large an effect a GWAS will have on an associated 115

gene’s subsequent publications? Notably, the more heavily studied a gene was 116

previously, the smaller the effect of GWAS association (Fig. 2B, Spearman rank 117

correlation, p ∼ 6 × 10−8, N = 2, 442). 118

The strength of a GWAS association is quantified by its statistical p-value and its 119

biological effect size, which is most commonly an odds ratio. The normalized 120

publication excess for a newly associated gene and the p-value of its association are 121

weakly positively correlated (Fig. 2D; p ∼ 1 × 10−4, N = 2, 442). GWAS results of 122

greater statistical significance are thus correlated with greater additional publications. 123

By contrast, the normalized publication excess is not significantly correlated with the 124

effect size of the reported association (Fig. 2E; p ∼ 0.16, N = 1, 295). Researchers are 125

thus slightly more likely to follow up on associations with higher statistical confidence, 126

rather than those with larger biological effects. 127

The strongest predictor of the effect of a GWAS on future publications for associated 128

genes is, however, the year in which the GWAS was published. The normalized 129
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Fig 2. Effect on subsequent publications for genes newly associated with complex
disease via GWAS. To quantify the short-term effects of GWAS association, we
considered the publication excess of each newly associated gene compared with its
control gene. A: The variance of the publication excess is strongly correlated with the
associated gene’s number of recent publications. B: Normalizing the publication excess
by the square root of the number of recent publications equalizes the variance. It also
reveals a trend for the normalized effect of GWAS association to be smaller for more
heavily studied genes. C: The distribution of normalized publication excess is shifted
toward positive values, indicating a positive effect of GWAS association on subsequent
publications. D: The normalized publication excess for a newly associated gene is
weakly correlated with the p-value of the association. E: It is not statistically
significantly correlated with the effect size of the association, as quantified by the odds
ratio. F: The normalized publication excess is negatively correlated with the publication
date of the association. More recently associated genes experience a smaller increase in
subsequent publications.
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predictor coefficient std. error p-value
log10(recent pubs) -0.745 0.289 0.010
-log10(p-value) 0.038 0.021 0.081
odds ratio 0.033 0.062 0.598
GWAS pub. date -0.732 0.080 < 10−18

Table 1. Linear regression model for the normalized publication excess of new GWAS
genes (N = 1, 295).

publication excess has declined dramatically since the early years of GWAS (Fig. 2F; 130

p ∼ 9 × 10−23, N = 2, 442). 131

The predictors for the effect of GWAS on subsequent publications that we have 132

studied may themselves be correlated; to disentangle their effects, we built a linear 133

regression model. In that model, the effects of the number of recent publications and 134

the year of GWAS publication are strong and statistically significant (Table 1). By 135

contrast, the quantitative properties of the association itself, the p-value and the effect 136

size, are weak and not statistically significant. 137

Association with particular diseases might lead to particularly intense study. To test 138

this possibility, we considered the class of disease that each gene was associated with as 139

an additional predictor in the linear regression model. Of the 20 disease classes tested, 140

only metabolic disease had a significant effect on the normalized publication excess 141

(Table S1). Further stratifying among metabolic diseases, we found that this trend is 142

driven by studies on type II diabetes and obesity (Table S2). 143

Association with complex disease via GWAS is correlated with an increase in 144

subsequent publications on a gene (Fig. 2C). The magnitude of this increase does not 145

depend strongly on the p-value or the effect size of the association, but it is smaller for 146

genes that were more heavily studied or that were associated more recently (Table 1). 147

The typical effect of GWAS on subsequent publications on an associated genes is thus 148

declining, but does GWAS identify particular genes that receive exceptional study? 149

Genes with exceptional publication records 150

The typical new GWAS gene experiences a modest increase in subsequent publications, 151

but some exceptional genes may experience large increases, so-called “hot” genes. To 152

identify such genes, we used the model of Pfeiffer and Hoffmann [25] to predict the 153

number of publications for each gene in each year, based on that gene’s prior 154

publication history. We trained the model on all genes never implicated in complex 155

disease through GWAS. By comparing model predictions and publication data, we then 156

identified particular years in which particular genes had unexpectedly large numbers of 157

publications (Dataset S1). For example, Complement Factor H had a significant excess 158

of publications in all three years following its association with macular degeneration 159

(Fig. 3A). 160

The total number of hot genes per year has recently fluctuated (Fig. 3B). Between 161

2009 and 2016, on average 0.3% of genes were hot in any given year. Of genes that were 162

newly associated with complex disease via GWAS within the past three years, the 163

probability of being hot was 1.3%. So being newly associated with complex disease does 164

increase the probability that a gene will become hot. The total number of hot genes 165

that were recently associated with complex disease via GWAS peaked, however, in 2009 166

(Fig. 3B), even as the number of new GWAS genes each year has grown (Fig. 3C). Thus, 167

the proportion of hot genes that were recent GWAS hits has declined markedly 168

(Fig. 3D). 169

To further quantify the role of GWAS in creating hot genes, we used a logistic 170

regression model (Table 2). Consistent with the overall probabilities (Fig. 3), this model 171
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Fig 3. The effect of GWAS in generating exceptionally studied genes. A: A
significantly elevated number of studies were published on Complement factor H
following its association with macular degeneration via GWAS in 2005. Solid line is the
predicted publication history from the model of [25], points indicate actual publication
counts, and starred points indicate years with a statistically significant excess (one-sided
Bonferroni-corrected p < 0.05). B: The total number of genes exhibiting an unusual
excess in publications peaked in 2009, as did the number of those genes that were
recently newly associated with complex disease via GWAS. C: The number of genes
newly associated with complex disease through GWAS has grown since the inception of
GWAS. D: The proportion of genes exhibiting an unusual excess in publications that
were recently identified in GWAS peaked at roughly 20% in 2009 and has since declined.

predictor coefficient std. error p-value
log10(recent pubs) 3.881 0.068 < 10−32

year -0.108 0.012 2×10−18

recent GWAS 4.094 0.361 9 × 10−30

(year × recent GWAS) interaction -0.569 0.064 1 × 10−18

Table 2. Logistic regression model for whether a gene exhibits a statistically significant
excess in publications in a given year, compared to the expectation of the Pfeiffer and
Hoffmann model [25].
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showed that being a recent new GWAS hit was an important factor in determining 172

whether a gene would be hot. The effect of being a GWAS hit, however, had a negative 173

interaction with the year. In other words, the effect of GWAS on creating hot genes 174

with exceptional publication records is decreasing with time. 175

Discussion 176

We analyzed biomedical research publications to quantify the effect of genome-wide 177

association studies on published scientific research. We found that even after the advent 178

of GWAS, publications remain highly skewed toward Mendelian disease genes, with 179

many complex disease genes receiving little attention (Fig. 1C). New complex disease 180

genes identified by GWAS do receive additional study and subsequent publications 181

(Fig. 2C), but that effect has declined dramatically (Fig. 2F, Table 1). Being newly 182

associated with complex disease does increase a gene’s chance of becoming a “hot” gene, 183

but this effect has also declined (Fig. 3D, Table 2). Together, our results suggest that 184

GWAS have been successful in bringing research attention to novel genes involved in 185

complex human disease, but their influence is waning. 186

Considering the overall distribution of biomedical publications, we found that GWAS 187

have not reduced the startling inequality among human genes. The distribution of 188

publications among human genes is characterized by a Gini coefficient of 0.73 in the 189

post-GWAS era (Fig. 1A). By comparison, the Gini coefficient of money income among 190

American households was 0.48 in 2016 [26] and among global households was 0.625 in 191

2013 [27]. The inequality of publications among genes is thus substantially greater than 192

the inequality of income among households. 193

Focusing on individual genes, we found that association with complex disease via 194

GWAS is correlated with an increase in subsequent publications (Fig. 2). Interestingly, 195

the p-value and effect size of the association play a statistically insignificant role in 196

determining the magnitude of that increase (Table 1). Notably, the p-value is a 197

somewhat better predictor, consistent with attention to statistical rather than biological 198

significance [28]. We found a stronger effect on subsequent publications for genes newly 199

associated with metabolic disease (Table S1 and S2), perhaps reflecting its recent 200

emphasis in public health [29]. We also found that association with complex disease via 201

GWAS does raise the chances of a gene becoming an exceptionally studied “hot” gene 202

(Fig. 3). But most dramatically, we found that the effects of new association via GWAS 203

have declined substantially over the past decade (Fig. 2F and 3D). 204

The direct results of a GWAS are associations of a disease with genetic variants, not 205

with genes. For simplicity, we associated each variant with the closest gene, as long as 206

that gene was within 500 kilobases. But many variants are regulatory, and gene 207

regulation is complex, so some variants may actually most strongly affect other more 208

distant genes [30]. Thus some of the gene associations we study may be spurious. But 209

this issue has existed since the advent of GWAS and has not changed markedly since. 210

So it cannot explain our most striking result, that the effect of GWAS on subsequent 211

publications has declined over time. When studying the effects of genetic evidence on 212

drug development, Nelson et al. [31] used a more complex approach for assigning 213

variants to genes. They incorporated linkage disequilibrium and attempted to infer 214

regulatory relationships using expression quantitative trait loci (eQTLs) and DNAse 215

hypersensitivity sites. When we analyzed their collection of association data, we found 216

similar results to our original analysis, although effects were somewhat weaker (Table S5 217

and Fig. S2). Notably, we still found a negative relationship between the publication 218

date of an association and its effect on subsequent publications. 219

Our measures of scientific publications do not necessarily capture the full effects of 220

GWAS on biomedical research. Motived by the example of Complement Factor H 221
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(Fig. 3A), we focused on publications in a three-year window following the GWAS. Some 222

follow-up studies may take longer, but using a five-year window does not change our 223

qualitative conclusions (Fig. S1 and Tables S3 and S4). GWAS may also promote 224

biomedical research in ways that do not involve new publications. For example, drugs 225

with associated genetic evidence are more likely to progress along the development 226

pipeline [31], suggesting that GWAS promote efficient drug development. More broadly, 227

we focused on associations with complex disease, the most common biomedical 228

application of GWAS. But GWAS for drug response have already provided important 229

guidance for personalized treatment [32]. Lastly, human GWAS have applications 230

beyond health. For an evolutionary example, GWAS data have been used to detect 231

adaptation in the human genome [33]. 232

What explains our most striking result, the declining effect of GWAS on subsequent 233

publications regarding newly associated genes? Perhaps early GWAS captured most 234

genetic variants of large effect, so more recent studies find less compelling associations. 235

But effect size is not a strong predictor of subsequent publications (Table 1). Moreover, 236

the typical effect size of new associations has declined only modestly (Fig. S3A), and 237

the absolute number of large-effect associations has grown (Fig. S3B). Or perhaps 238

journal publication criteria have changed over time, making GWAS less visible or 239

follow-up studies more challenging to publish. The typical impact factor of journals 240

GWAS are published in has declined slightly since the advent of GWAS (Fig. S4A). But 241

the impact factor of the GWAS publication has only a weak effect on the publication 242

excess of newly associated genes (Fig. S4B). When we included GWAS publication 243

impact factor in our linear regression model, its effect was statistically significant but 244

insufficient to explain the effect of publication date (Table S6). Or perhaps the 245

availability of funding for follow-up studies has declined, as overall biomedical research 246

funding has declined in both North America and Europe [34]. Or perhaps the capacity 247

and interest to perform follow-up analyses has not kept pace with the “fire hose” of 248

GWAS results [35]. Our data do not point toward a definitive explanation, and further 249

investigation is needed to understand why recent GWAS promote less follow-up study 250

on associated genes than early GWAS. 251

Over the past decade, GWAS have undeniably contributed greatly to biomedical 252

knowledge [11]. The development of large-scale accessible databases of phenotypic and 253

genotypic data, such as the UK Biobank [36], will fuel further contributions. But few 254

GWAS results are directly medically actionable, so follow-up research is essential to 255

translate novel associations into medical innovations. Our results suggest that the 256

ability of GWAS to motivate published follow-up research on associated genes is 257

declining. To maximize the positive impact of GWAS on human health, this trend must 258

be understood and reversed. 259

Materials and Methods 260

Publication data: We obtained Entrez GeneIDs for all 20,422 human protein-coding 261

genes from NCBI Gene [23] on December 12, 2017. For all those genes, we collected 262

PubMed identifiers of associated publications from NCBI Gene’s gene2pubmed file, 263

downloaded December 12, 2017. This file contains both associations created manually 264

during the curation of Gene References Into Function (GeneRIFs) and associations 265

collected from organism-specific databases, Gene Ontology, and other curated data 266

sources. We then obtained date information for each publication from PubMed, taking 267

the earliest year between the reported Year or EYear, using BioPython [37]. We 268

followed a similar procedure for yeast genes. We obtained impact factor data from the 269

2016 InCites Journal Citation Reports [38]. 270
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Disease data: To identify genes associated with Mendelian disease, we downloaded 271

the Online Mendelian Inheritance in Man (OMIM) Gene Map of connections from genes 272

to traits [24] on January 17th, 2018. We filtered to keep only entries with a confidence 273

code of “confirmed” and to ignore entries indicating a potentially spurious mapping or 274

association with a non-disease trait. We further considered only entries with Entrez 275

GeneIDs, to avoid ambiguity among gene names and aliases. This procedure yielded 276

1,878 genes associated with disease traits. Of these, 1,543 genes were associated with 277

Mendelian but not complex multifactorial disease, 157 were associated with complex 278

multifactorial but not Mendelian disease, and 178 were associated with both Mendelian 279

and complex multifactorial disease. 280

To further identify genes associated with complex disease and to gather GWAS data, 281

we used the January 1st, 2017 release of NHGRI-EBI’s GWAS Catalog [4]. We filtered 282

the catalog to remove nondisease traits, by keeping only entries that were children of 283

the term “disease” (EFO0000408) in the Experimental Factor Ontology [39]. To connect 284

associated variants with genes, we began with the Mapped Genes column in the Catalog. 285

We then connected each variant with its closest mapped gene, if that gene was within 286

500 kilobases. If a variant was within two overlapping genes, we connected with both 287

genes. This procedure yielded 4,069 genes associated with complex disease. To analyze 288

classes of disease, we used the children of the term “disease” in the Experimental Factor 289

Ontology. 290

Our analysis of OMIM and the GWAS catalog yielded 5,369 total disease-associated 291

genes. Considering genes associated with only Mendelian disease in OMIM and not 292

associated with disease through GWAS yielded 1,126 Mendelian disease genes. 293

Considering genes associated with only complex multifactorial disease in OMIM or 294

associated with disease through GWAS yielded 3,648 complex disease genes. The 295

remaining 595 genes we associated with both Mendelian and complex disease. 296

Of the disease genes in the GWAS catalog, 2,442 were first associated prior to 2015, 297

so we could analyze three full years of publication data. For those genes, we identified 298

odds ratios as effect sizes without units for variants that had a reported frequency of 299

the risk allele. For our odds ratio analysis, we analyzed the 1,295 genes for which an 300

odds ratio was reported in the first year of GWAS association. 301

We also analyzed the association data of Nelson et al. [31]. They connected variants 302

to genes using linkage disequilibrium, expression QTLs, and DNAse hypersensitivity. 303

We filtered their Supplementary Data Set 1 to remove associations from OMIM, which 304

may be Mendelian diseases. We also manually classified traits as disease or non-disease 305

(Dataset S2), filtering out the non-disease traits. 306

Control genes: For each of our 2,442 GWAS genes, we identified its control gene as 307

the non-GWAS gene with the closest number of total publications prior to the year the 308

gene was first associated with complex disease. If multiple genes were tied for closest, 309

we compared the previous year as well, continuing either until there was no ambiguity 310

or until we reached 1950. For the 233 GWAS genes with ambiguous control genes, we 311

compared subsequent publications between the GWAS gene and the average of the 312

control genes. 313

Publication rate model: We used the model of Pfeiffer and Hoffman to predict 314

expected per-gene publication rates [25]: 315

∆Pi,t+1 =
k1P

∗
t + k2Pi,t + k3

1 + (P ∗
t /PS)α

. (1)

Here, ∆Pi,t+1 is the predicted number of publications for gene i in year t+ 1, and Pi,t 316

and P ∗
t are the cumulative number of publications in previous years for the gene and 317
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the average cumulative number of publications for all genes in the organism, 318

respectively. The term in the denominator models saturation of publication rates. The 319

three rate parameters, k1, k2, and k3, and the saturation parameters, PS and α, were 320

assumed to be identical for all genes. To fit the parameters to our data, we constructed 321

a likelihood function by assuming that the number of publications each year for each 322

gene was independently Poisson distributed with mean ∆Pi,t+1 given by Eq. 1. We then 323

maximized that likelihood with respect to the five model parameters, using publication 324

data from 1950 to 2015 for all non-GWAS genes. The maximum-likelihood parameter 325

values were k1 = 0.0214, k2 = 0.225, k3 = 0.00288, PS = 24.1, α = 1.67. Five genes each 326

had 1 publication prior to 1950 that was not included in the data fit. 327

To identify years in which genes had significantly elevated publication rates, our null 328

model was that publications were Poisson distributed with mean given by Eq. 1. 329

Significant gene-years were defined as those in which the probability of generating at 330

least the observed number of publications was less than the Bonferroni-corrected 331

significance cutoff 0.05/(NgNy). Here Ng = 20, 442 was the total number of genes 332

considered and Ny = 67 was the total number of years. 333
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predictor # of genes coefficient std. error p-value
log10(recent pubs) - -0.739 0.292 0.012
-log10(p-value) - 0.047 0.023 0.036
odds ratio - 0.032 0.065 0.619
GWAS pub. date - -0.760 0.085 10−18

brain aneurysm 4 -1.950 2.877 0.498
cardiovascular disease 94 -0.721 0.818 0.378
chemotherapy-induced alopecia 8 1.480 2.306 0.521
digestive system disease 138 0.431 0.703 0.540
endocrine system disease 10 2.825 1.969 0.152
eye disease 7 0.974 2.220 0.661
genetic disorder 40 -0.611 1.085 0.573
head and neck disorder 20 -0.087 1.371 0.949
immune system disease 317 -0.881 0.536 0.101
infectious disease 34 0.282 1.141 0.805
kidney disease 29 -1.500 1.220 0.219
liver disease 16 -0.473 1.523 0.756
mental or behavioural disorder 132 0.031 0.735 0.966
metabolic disease 133 1.796 0.719 0.013
neoplasm 254 -0.084 0.653 0.897
nervous system disease 221 0.436 0.632 0.490
reproductive system disease 27 1.046 1.216 0.390
respiratory system disease 41 -0.436 1.035 0.674
skeletal system disease 73 1.090 0.845 0.198
skin disease 36 -0.308 1.091 0.778

Table S1. Effects of disease class on publication excess. We added parameters to the
linear model designating whether or not a gene was first associated with a particular
disease class. Only for metabolic disease do we see a statistically significant effect on
publication excess. The second column shows the number of genes first associated with
each disease class.

predictor # of genes coefficient std. error p-value
type I diabetes mellitus 31 -0.355 1.186 0.765
type II diabetes mellitus 60 6.271 0.922 10−11

obesity 31 6.249 1.162 10−7

Table S2. Effects of different metabolic diseases on publication excess. We modified
our linear model to remove the general metabolic disease parameter and add the three
specific diseases with a large number of genes. Remaining model parameters (not
shown) are similar to the regression in Table S1.

predictor coefficient std. error p-value
log10(recent pubs) -0.558 0.524 0.287
-log10(p-value) 0.053 0.036 0.143
odds ratio -0.008 0.108 0.944
GWAS pub. date -1.554 0.191 10−15

Table S3. As in Table 1, linear regression model for the normalized publication excess
of new GWAS genes (N = 873), but with a five-year range for calculating ∆ pubs and
recent pubs.
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predictor coefficient std. error p-value
log10(recent pubs) 4.081 0.070 < 10−32

year -0.100 0.013 10−15

recent GWAS 4.124 0.372 10−28

(year × recent GWAS) interaction -0.575 0.066 10−17

Table S4. As in Table 2, logistic regression model for whether a gene exhibits a
statistically significant excess in publications in a given year, compared to the
expectation of the Pfeiffer and Hoffmann model [25], but with a 5-year range for
defining recent pubs and GWAS.

predictor coefficient std. error p-value
log10(recent pubs) -0.119 0.235 0.614
-log10(p-value) -0.007 0.008 0.393
GWAS pub. date -0.448 0.073 10−9

Table S5. As in Table 1, linear regression model for the normalized publication excess
of newly associated genes (N = 1, 861), but using the data of Nelson et al. [31]. Note
that they did not collect effect size information. The negative effect of publication date
remains, although it is somewhat weaker.

predictor coefficient std. error p-value
log10(recent pubs) -0.807 0.291 0.006
-log10(p-value) 0.026 0.022 0.235
odds ratio 0.050 0.062 0.420
-log10(impact factor) 0.422 0.192 0.028
GWAS pub. date -0.706 0.081 10−17

Table S6. As in Table 1, linear regression model for the normalized publication excess
of newly associated genes (N = 1, 191), but including the effect of impact factor for the
GWAS publication.
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Fig S1. Results using a 5 year window for counting publications and defining recent
GWAS. A-D: As in Fig. 2. E&F: As in Fig. 3.
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Fig S2. Results using association data from Nelson et al. [31] Panels as in Fig. 2, but
panel F is empty because Nelson et al. did not collect odds ratios. Broadly, the effects
are similar to those in our collection of data, but weaker. For the Nelson et al. data, the
mean normalized publication excess is 0.71, compared to 1.24 in our collection of data.
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with large odds ratios has not, however, declined with time.
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Fig S4. Effect of journal impact factor. A: The typical impact factor of GWAS
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factor the GWAS publication is weakly correlated with publication excess of the
reported associated genes.

Dataset S1: Gene-years with a statistically significant excess of publications relative 458

to the prediction of the Pfeiffer and Hoffman model. For GWAS disease genes, the date 459

of the first GWAS to identify that gene is also recorded. 460

Dataset S2: Traits from the association data of Nelson et al. [31], categorized as 461

disease or non-disease. 462
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