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Abstract

Competitive gene-set analysis, or enrichment analysis, is widely used for
functional interpretation of gene expression data. It tests a known category (e.g.
pathway) of genes for enriched differential expression signals. Current methods do
not properly capture inter-gene correlations and heterogeneity, resulting in
mis-calibration and power loss. We propose MEACA, a new gene-set method
based on mixed-effects models. MEACA flexibly incorporates unknown
heterogeneity and correlations across genes, and does not need time-consuming
permutations. Compared to existing methods, MEACA substantially improves
type 1 error control and power in widely ranging scenarios. Real data applications
demonstrate MEACA’s ability to recover biologically meaningful relationships.

Keywords: MEACA; gene-set analysis; pathway; enrichment test; differential
expression; gene expression

Background
Advancements in high-throughput technologies such as microarray and RNA-Seq

have made genome-wide expression profiling a popular research tool to study how

gene expression patterns associate with experimental, environmental or clinical con-

ditions. A key task of gene expression data analysis involves the detection of differ-

entially expressed genes, which refer to genes whose expression levels are associated

with a factor of interest. To this end, the conventional strategy has been to analyze

individual genes separately. However, the results from such single-gene analysis are

often challenging to interpret, due to the large numbers of genes that are profiled

out of which a long list may be significantly differential. To overcome this, a widely

used approach has been to study biologically interpretable sets of genes rather than

individual genes. Typically, a gene set consists of genes sharing a common biological

property (e.g. genes in a known pathway or annotated with a common biological

function), and is available through publicly accessible databases such as the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [1] and Gene Ontology (GO) [2] .

Gene-set analysis of gene expression data aims to evaluate the association between

the expression levels of genes in a pre-defined set, referred to as the test set, and

experimental or environmental factors of interest. It examines whether the test set

contains or is enriched with differential expression (DE) signals, where the DE sig-

nal of a gene can be quantified by comparing the gene’s expression levels across

samples grouped according to the factor of interest (e.g. between diseased subjects

and healthy controls). Gene-set tests help researchers understand the underlying

biological processes in terms of ensembles of genes.
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Depending on the null hypothesis that is tested, there are two types of gene-set

tests [3]: self-contained tests and competitive tests (also called enrichment tests in

some literature). A self-contained test examines the DE signals of genes in the test

set without reference to other genes in the genome, with the null being that no

genes in the test set are differentially expressed [4, 5, 6, 7, 8, 9]. A competitive test

compares DE signals of genes in the test set to those of the genes not in the test

set, trying to detect whether the former are more abundant and/or profound than

the latter [10, 11, 12]. Many competitive testing methods perform a three-stage

analysis [13]. At the first stage, a gene-level statistic is calculated for each gene in

the whole genome to measure the association between its expression levels and the

design variable(s) of interest; such gene-level statistics include, among others, signal-

to-noise ratio [14], ordinary t-statistic [10] or moderated t-statistic [15], log fold

change [16] and z-score [17]. At the second stage, a set-level statistic is calculated

by comparing the gene-level statistics to the genes’ memberships with respect to

the test set (i.e., whether a gene belongs to the test set). Examples of the set-

level statistics are the enrichment score [14], the maxmean statistic [18], and a

statistic derived from convoluted distribution of gene-level statistics [12], to name

a few. At the third stage, a p-value is obtained for the test set by comparing the

set-level statistic to its reference distribution. Compared with self-contained tests,

competitive gene-set tests are much more widely used in the genomic literature

[19, 11] and will be the focus of our work.

Most competitive gene-set tests assume independence between gene-level statis-

tics [20]. Given that the gene-level statistics are calculated based on a common

set of samples, this assumption implicitly requires that the expression levels of dif-

ferent genes are independent. Examples of independence-assuming gene-set tests

include, among many others, PAGE [16], the contingency-table-based tests (see

[21] for a review) and sigPathway [15, 10]. However, inter-gene correlations can be

widespread, for example, among co-regulated genes [19]. It has been recognized that

even mild inter-gene correlations may result in severely inflated false positive rate

for independence-assuming gene-set tests [18, 19, 3, 11, 12].

A handful of methods have been proposed to account for inter-gene correlations

in competitive gene-set tests. One attempt is to evaluate the null distribution of the

set-level statistic by permuting the clinical/treatment labels of the samples. Exam-

ples include the widely used Gene Set Enrichment Analysis (GSEA) proposed by

Subramanian et al. [14] and various other methods [22, 23]. Permuting sample labels

does not require an explicit understanding of the underlying correlation structure

among genes and thus protects the test against such correlations. Since permuting

sample labels is computationally inefficient, Zhou et al. [24] proposed an analytic

approximation to permutations for set-level score statistics, which preserves the

essence of permutation gene-set analysis with greatly reduced computational bur-

den. However, permuting sample labels in these methods inevitably alters the null

and alternative hypotheses of a competitive gene-set test by excluding from the

null the possibility that DE signals are present but not enriched in the test set, and

consequently confuses the competitive test with the self-contained test, making the

results hard to interpret [3, 13, 11].

Another attempt to account for correlated genes is to use set-level statistics that

directly incorporate inter-gene correlations estimated from the data. For example,
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CAMERA [11] calculates a variance inflation factor (VIF) from the sample correla-

tions (after the treatment effects removed) of the observed expression data, which

is then incorporated into the set-level statistic to account for the correlations be-

tween the gene-level statistics. QuSAGE [12], a recent extension to CAMERA that

quantifies gene-set activity with a probability density function, uses a similar VIF

to handle inter-gene correlations. MAST [25] adapts CAMERA to the analysis of

single-cell RNA-Seq data. However, as we will demonstrate both theoretically and

empirically, the VIF approach implicitly assumes that all genes are homogeneous

in terms of whether DE is present and the magnitude of the DE effect. This is

problematic because DE heterogeneity commonly arises in gene expression studies:

in most real data sets, one expects some of the genes to be differentially expressed

while others not, and those that are differentially expressed to have varying DE

effects. As a result of its failure to account for this heterogeneity, the VIF approach

tries to quantify the correlations among gene-level test statistics (e.g., t-statistics)

using the within-treatment-group correlations between the expression levels of dif-

ferent genes. However, the former are often smaller than the latter because, when a

fraction of the genes are differentially expressed, their DE effects add to the variabil-

ity of the gene-level statistics across genes and hence act to dilute the correlation

between these statistics. We will show that the VIF approach can lead to severely

compromised type 1 error and power in gene-set testing.

To address these challenges, we propose a new framework for competitive gene-

set analysis, which we will call MEACA (Mixed-effects Enrichment Analysis with

Correlation Adjustment). Our idea is motivated by the discrepancy, due to DE het-

erogeneity, between the within-treatment-group correlation structure of the genes

expression levels and the correlation structure among gene-level statistics. Using a

mixed-model approach, we model the covariance structure of gene-level statistics by

two components, one attributable to the correlations between the expression levels

of different genes after treatment effects are removed, and the other attributable to

the variability across genes in terms of the presence of DE and the effect size. Our

method is able to adjust for completely unknown, unstructured correlations among

the genes. We use a quasi-likelihood framework, which does not require the gene

expression data or the distribution of the DE effects across genes to be Gaussian.

MEACA uses a score-type test and allows for analytical assessment of p-values,

which renders it computationally efficient for analysis of large numbers of genes

and gene sets. We will show that, compared to existing methods including GSEA

[14] and CAMERA [11], MEACA consistently outperforms existing methods in

terms of type 1 error control in a wide variety of correlation settings and enjoys

substantial power gain.

Results
Method Overview

In enrichment analysis, we are interested in a pre-defined set of genes, for example,

from a known pathway or given by a functional annotation term from a database

such as KEGG [1] or GO [2]. Our goal is to test whether this known gene set

is enriched with DE signals compared to the rest of the genes. We will refer to

the genes in the pre-defined gene set as “the test genes” which make up the “the
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test set,” and genes not in this set “the background genes” which make up “the

background set.”

Our gene-set testing method, MEACA, is based on a mixed-effects model that

flexibly incorporates the unknown distribution of DE effects and effectively adjusts

for completely unknown, unstructured correlations among genes. MEACA does not

rely on time-consuming permutations, and uses a quasi-likelihood framework which

does not assume the data follows a normal distribution. Our methodology is con-

nected to that of CAMERA, in that both estimate an inter-gene correlation ma-

trix from the data to adjust the distribution of the gene-level statistics. However,

MEACA uses a modeling approach that does not rely on either of the following two

assumptions, which are implicitly required by CAMERA but are likely violated in

reality:

(A1) Either none of the genes are differentially expressed or all genes are differen-

tially expressed with the exact same DE effect, both in the test set and in the

background set;

(A2) Inter-gene correlations are present only among genes in the test set, not among

background genes or between background and test genes.

More details on these assumptions and the MEACA methodology will be presented

in Methods.

Simulation Studies

We conduct type 1 error and power simulations to evaluate the performance of

MEACA and compare it with other methods. In this section, we outline the essen-

tial components of these simulations, with additional details provided in Methods.

First, to assess the impact of DE heterogeneity on the performance of various meth-

ods, we conduct two groups of simulations: In group I simulations, no background

genes are differentially expressed, so under the null hypothesis no DE genes are

present either in the test set or the background set; In group II simulations, a pro-

portion of background genes are allowed to be differentially expressed, and under

the null the same proportion are differentially expressed among test genes. Hence,

Assumption (A1) holds for group I but not for group II. Let pb and pt be the DE

probabilities for a background gene and a test gene, respectively. Table 1 summa-

rizes the configurations of pb and pt we consider, in both type 1 error (configuratinon

Snull) and power simulations (configurations S1 − S4).

Table 1 DE probability configurations in type 1 error and power simulations.

Group
Background DE prob. in test set (pt)

DE prob. (pb) Snull S1 S2 S3 S4

I 0% 0% 5% 10% 15% 20%
II 10% 10% 15% 20% 25% 30%

Snull is for type 1 error simulations. S1-S4 are the four scenarios considered in power
simulations, representing growing extent of enrichment. pb and pt are the DE probability
for genes in the background set and that in the test set, respectively.

To study how inter-gene correlation affects the methods to be compared, we ex-

amine five different correlation structures, (a)-(e). We assume a common pairwise

correlation coefficient for genes from the same category (either the test set or the

background set): let ρ1 be the correlation between test genes, ρ2 be the correlation
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between background genes, and ρ3 be the correlation between a test gene and a

background gene. We examine five different correlation structures, listed as follows:

(a): ρ1 = ρ2 = ρ3 = 0; that is, the genes are independent of each other.

(b): ρ1 = ρ2 = ρ3 = 0.1; that is, all genes are correlated, with an exchangeable

correlation structure.

(c): ρ1 = 0.1, ρ2 = ρ3 = 0; that is, only the genes in the test set are correlated.

(d): ρ1 = 0.1, ρ2 = 0.05, ρ3 = 0; that is, genes are correlated within the test set

and within the background set, but any two genes, one from the test set and

the other from the background set, are independent.

(e): ρ1 = 0.1, ρ2 = 0.05, ρ3 = −0.05; that is, all genes are correlated, but the

correlation between two genes depends on their membership status to the test

set.

The five structures will help us evaluate the robustness of MEACA and how vio-

lations of the independence assumption or Assumption (A2) affect the competing

methods.

In the simulations, we compare MEACA to five existing gene-set testing meth-

ods: sigPathway [10], MRGSE [26], CAMERA [11], QuSAGE [12], and GSEA [14].

MRGSE is a rank-based method assuming inter-gene independence, and is recom-

mended by Tarca et al. [27] as the best performing one among a wide class of

independence-assuming methods. sigPathway is a parametric version of MRGSE,

and in our simulations we use the moderated t-statistic [15] as its gene-level statis-

tic. The other three methods in comparison, CAMERA, QuSAGE [12], and GSEA

[14], all incorporate features intended for inter-gene correlation correction. CAM-

ERA uses the moderated t-statistic as the gene-level statistic and estimates a VIF

to account for inter-gene correlations. QuSAGE is an extension of CAMERA that

quantifies gene-set activity with a probability density function. GSEA first calcu-

lates an enrichment score for a test set from the ranks of all genes based on DE

evidence, and then determines the significance of the enrichment score by randomly

permuting the case-control labels of the samples.

Type 1 error simulations

We evaluate the calibration of MEACA and the competing methods using data

simulated under a variety of settings. For MEACA and five other approaches (sig-

Pathway, MRGSE, GSEA, CAMERA and QuSAGE), Figure 1 shows the quantile-

quantile (QQ) plots of p-values in simulation groups I (left column) and II (right

column) and under each of the five correlation structures (each row, from top to

bottom, corresponds accordingly to correlation structures (a)-(e)). The plots are

based on 10,000 simulation replicates. In each QQ plot, the vertical axis corre-

sponds to the empirical p-values and the horizontal axis corresponds to quantiles

from the uniform distribution between 0 and 1, which is the theoretical distribution

of the p-values if a method is correctly calibrated. For any given setting, a curve

that closely follows the diagonal line indicates a method that is well calibrated. A

curve that falls consistently below the diagonal line indicates a method that has

inflated type 1 error, whereas a curve consistently above the diagonal line indicates

overly conservative type 1 error control.
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Across the settings, MEACA shows consistent accuracy for type 1 error control.

All the other methods, however, can be severely mis-calibrated under various scenar-

ios. In particular, the independence-assuming methods, sigPathway and MRGSE,

are well calibrated only when the genes are uncorrelated (structure (a)) or when

the genes are equally correlated (structure (b)). When the genes go beyond these

simple structures, sigPathway and MRGSE become very liberal ((c)-(e))), with type

1 error rates at level 0.05 as high as 0.68 (structure (e), group I). These results show

that even small inter-gene correlations (e.g. 0.05) can result in inflated type 1 error

if the test does not account for such correlations.

For GSEA, accuracy of type 1 error control relies on the absence of background

DE signals: in group I where no gene is differentially expressed, GSEA performs

extremely well; group II, however, reveals the failure of GSEA in controlling type

1 error when DE signals are present in both the test and the background sets, re-

gardless of whether inter-gene correlations exist or not. This phenomenon is not

surprising given that GSEA permutes the case-control labels of samples, which in-

evitably disturbs the DE patterns in the genes and is effectively testing a very

restrictive null hypothesis, one in which not only the set of test genes cannot be en-

riched with DE signals compared to the set of background genes, but in fact neither

set is allowed to contain any differentially expressed genes at all. This null hypoth-

esis implies the null entailed by the goal of competitive gene-set testing, which is

why GSEA is correct in group I. But the former is much more restrictive than the

latter, which explains GSEA’s anti-conservativeness in group II. It is notable that,

in practice, one rarely sees a situation where no differentially expressed genes are

present in the background set, so group II is more relevant than group I, making

GSEA a risky choice for the purpose of competitive gene-set testing.

For CAMERA, control of type 1 error varies from being too conservative to being

too liberal across the settings in Figure 1. For any given setting, the performance

of CAMERA would depend on (1) whether DE effects are heterogeneous across

genes and (2) the inter-gene correlation structure. These two factors correspond,

respectively, to Assumptions (A1) and (A2) discussed in Material & Methods. In

simulation group I, (A1) holds because DE effects are completely absent and there-

fore homogeneous across genes. In this case, CAMERA is correctly calibrated under

(a) and (c), when Assumption (A2) also holds. When all genes, including the back-

ground genes, are correlated (as is the case for structure (b)), CAMERA is overly

conservative with type 1 error rate at level 0.05 too stringently controlled at < 10−4.

Under structures (d) and (e), CAMERA tends to be too liberal, with type 1 error

at level 0.05 as high as 0.21 (structure (e), group I). QuSAGE has similar trends

of mis-calibration in these group I settings, and is anti-conservative under (a). In

contrast to group I, group II has a fraction of the genes that are differentially ex-

pressed with varying effects, resulting in heterogeneity among genes in terms of the

presence and magnitude of DE effects. So in this case Assumption (A1) is violated.

As discussed in Material & Methods, this would drive the type 1 error of CAM-

ERA towards the conservative side when inter-gene correlation is present, because

CAMERA ignores the DE heterogeneity and consequently would over-correct for

the correlation. Indeed, as shown in the right column of Figure 1, when genes are

correlated (structures (b)-(e)), the calibration of CAMERA is very conservative,
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with type 1 error at level 0.05 falling below 0.005. Such stringent control of type 1

error is expected to come at the cost of low power of detecting gene sets that are

truly enriched with DE signals, which we will show in the power simulations. In

group II, QuSAGE is also mis-calibrated across the settings.

Power simulations

Figure 2 shows how the power of MEACA varies as the enrichment in the test set

becomes more profound (from S1 to S4) in the alternative hypothesis. For each

correlation structure, we report the power trajectory at level 0.05. The top is the

power for group I, and the bottom for group II. The power results under correlation

structures (a) and (b) are similar, and are among the highest under each of the four

alternatives. As the correlation structure becomes more complex, from (c) to (d)

then to (e), the power decreases under every alternative setting. The power under

correlation structure (e) is the lowest for both groups I and II.

It is also of interest to explore whether MEACA, while being able to adjust for

inter-gene correlations, will have compromised power when genes are in fact uncor-

related. For this purpose, we compare the empirical power of MEACA, MRGSE, sig-

Pathway and CAMERA under correlation structure (a). We do not consider GSEA

or QuSAGE because they do not have consistently accurate control of type 1 error

under (a). In Table 2, it is clear that MEACA does not lose any power compared

to the independence-assuming methods when the genes are indeed independent.

CAMERA also loses little power under structure (a). However, we note that, in the

presence of inter-gene correlations, CAMERA is expected to lose power in many

realistic scenarios due to its over-stringent calibration (Table 3), and independence-

assuming methods tend to generate excessive false positives (Figure 1).

Finally, we compare the statistical power of MEACA to the other methods under

different correlation structures (Table 3). Note that it is not fair or interesting to

compare to a method that does not effectively control false positives. Therefore,

to make a more meaningful power comparison, for any given setting, we only con-

sider the methods whose type 1 error control is adequate (i.e. either accurate or

conservative, but not anti-conservative) as shown by Figure 1, and we leave out a

method if its type 1 error rate is inflated. For example, in group II under correlation

structure (c), all of MRGSE, sigPathway, GSEA and QuSAGE are anti-conservative

and therefore excluded, whereas we include CAMERA which is conservative and

MEACA which is accurate. We focus on the group II scenarios, which we consider

more practically relevant than group I because in real data sets one typically ex-

pects at least some of the background genes to be differentially expressed. Table 3

shows that MEACA enjoys the highest power under all of the correlation structures.

CAMERA is the only other method that is adequately calibrated across the set-

tings. However, CAMERA has by far a lower power when the genes are correlated,

with the power at level 0.05 as low as 0.028 (structure (b)). This aligns with the

highly conservative type 1 error control of CAMERA when DE signal is present

among the background genes (Figure 1). Our results indicate that MEACA consis-

tently maintains the highest power and achieves great power gain over CAMERA,

which can be greatly underpowered in some realistic settings.
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Figure 1 Quantile-quantile plots for p-values by different methods in type 1 error simulations. The
plots from top to bottom correspond to the correlation structures (a)-(e), respectively. The left
column is for group I simulation, and the right column for group II simulation (see Table 1 for
details). Results are based on 10, 000 simulation replicates. MEACA gives uniformly distributed
p-values under all simulation settings, whereas all of the other methods can be severely
mis-calibrated under some settings.

Real Data

We conduct competitive gene-set analysis on two real data sets to illustrate the use

of MEACA and to compare the enriched gene sets it identifies with those obtained

by three other methods, GSEA, CAMERA and MRGSE.
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Figure 2 Power of MEACA under correlation structures (a)-(e). The top corresponds to group I
simulations, and the bottom to group II simulations (see Table 1). The error bars are the 95%
confidence intervals based on 10, 000 simulation replicates.

Table 2 Power comparison under (a), when genes are uncorrelated.

Group Method S1 S2 S3 S4

I

MEACA 0.65 0.96 1.00 1.00
CAMERA 0.63 0.95 1.00 1.00
MRGSE 0.12 0.31 0.58 0.80
sigPathway 0.65 0.96 1.00 1.00

II

MEACA 0.23 0.59 0.87 0.98
CAMERA 0.23 0.58 0.86 0.98
MRGSE 0.11 0.31 0.58 0.83
sigPathway 0.23 0.59 0.87 0.98

MEACA, while being able to account for inter-gene correlations, does not lead to
power loss when the genes are in fact uncorrelated. Empirical power at level 0.05
is calculated for each of the four alternative settings S1-S4 and groups I and II
(see Table 1 for details). Results are based on 10, 000 simulation replicates. The
highest power is in bold type for each setting.

Huntington’s Disease Data

We examine an RNA-Seq data set on the Huntington’s Disease (HD) to identify

enriched gene sets that are potentially responsible for HD. The mRNA expression

profiles in human prefrontal cortex were obtained from 20 Huntington’s Disease

samples and 49 neurologically normal controls. Expression values were normalized

and filtered as described in [28]. The data set, containing 28, 087 genes is available

as series GSE64810 in the GEO database (http://www.ncbi.nlm.nih.gov/geo/).

For each gene, we adjust for two covariates—age at death (DeathAge) and RNA In-

tegrity Number (RIN), both treated as categorical variables [28]. Briefly, DeathAge
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Table 3 Power comparison under correlation structures (a)-(e) for group II.

Method (a) (b) (c) (d) (e)
MEACA 0.87 0.87 0.64 0.55 0.45
CAMERA 0.86 0.028 0.061 0.076 0.11
MRGSE 0.58 0.58 – – –
sigPathway 0.87 0.87 – – –
GSEA – – – – –
QuSAGE – 0.84 – – –

MEACA has the highest power for all settings. Power at level 0.05 is calculated
only for methods that have adequate (accurate or conservative, but not anti-
conservative) type 1 error control for a given setting as shown in Figure 1. Data
are simulated under the alternative hypothesis S3 (see Table 1 for details). Results
are based on 10, 000 simulation replicates. The highest power is in bold type for
each setting.

is binned into intervals 0-45, 46-60, 61-75, 76-90 and 90+, and RIN is dichotomized

as > or ≤ 7. We regress the normalized expression levels on AgeDeath and RIN

and use the resulting residuals as the covariate-adjusted expression levels.

We perform enrichment analysis on the covariate-adjusted data using the MsigDB

[14] C2 Canonical Pathways (February 5, 2016, data last accessed). The C2 Canon-

ical Pathways have a collection of 1330 gene sets, with an average size of 50 genes

(the size ranges from 3 to 1028, and the median is 29). Since the genes are named

by HGNC symbols in C2 and by Ensembl IDs in the HD expression data set, we

convert the Ensembl IDs in the expression data into HGNC symbols using BioMart

(http://uswest.ensembl.org/biomart/martview/). We retain 26, 941 genes that

have corresponding HGNC symbols. On each gene set in the entire collection of

C2 Canonical Pathways, we perform four testing methods (MEACA, GSEA, CAM-

ERA and MRGSE) to obtain p-values evaluating whether the gene set is enriched

with DE signals associated with HD.

In Figure 3 we plot the p-values of MEACA against those of GSEA, CAMERA and

MRGSE on the negative log10 scale. The p-values of CAMERA are overwhelmingly

larger than those of GSEA and MEACA, yet smaller than those of MRGSE. This is

consistent with our observation in the type 1 error simulations that CAMERA can

produce conservative p-values. The p-values of MEACA and those of the other

three methods are highly correlated (Pearson’s correlations of log 10 p between

MEACA and GSEA, CAMERA and MRGSE are 0.91, 0.96, and 0.81, respectively).

The p-values of MRGSE are in general smaller than the corresponding p-values of

MEACA, likely due to unadjusted inter-gene correlations and leading to more gene

sets claimed to be significant by MRGSE.

We then compare the resulting list of significant gene sets identified by MEACA to

those by the other three methods. For multiple comparison adjustment, we use

the Benjamini-Hochberg [29] procedure (BH) to control the false discovery rate

(FDR) at 0.05. Out of a total of 1330 C2 Canonical Pathways, MEACA identifies

89 gene sets to be significantly enriched. In contrast, GSEA identifies 3 enriched

gene sets—2 of them are also among those 89 gene sets identified by MEACA (the

one that is not significant according to MEACA has a nominal p-value of 0.013 and

a BH-adjusted p-value of 0.100). MRGSE identifies as many as 371 gene sets, which

include all the 89 sets identified by MEACA as well as 282 other gene sets, which

are likely to contain many false discoveries due to MRGSE’s failure to control for

inter-gene correlations. CAMERA fails to detect any significant gene set. In their
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Figure 3 Comparison of p-values between MEACA, GSEA, CAMERA and MRGSE in HD data.
The p-values are reported from enrichment test of each gene set in the C2 Canonical Pathway
gene sets.

original paper, Labadorf et al. [28] used the same HD data set to conduct enrichment

analysis with topGo [30]. They noted that the enriched gene sets they identified

showed a clear immune response and inflammation-related pattern, including the

PID NF-kappaB canonical pathway, PID IL4-mediated signaling events (Pathway

name: PID IL4 2PATHWAY) and the Reactome innate immune system pathway.

In our analysis, MEACA is able to capture all of these three gene sets, which rank

(by nominal p-values) 3, 10 an 18, respectively, among the 89 enriched gene sets by

MEACA.

In Table 4, we report the top 30 enriched gene sets (ordered by nominal p-values)

identified using MEACA. Among these, only one gene set (labeled by “∗” in the

table) is also identified by GSEA at FDR level of 0.05, and none by CAMERA.
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The majority of the enriched gene sets by MEACA have been previously shown to

be closely related to HD pathogenesis. For example, the top enriched gene set, PID

SMAD2 3NUCLEAR PATHWAY, is responsible for regulation of nuclear SMAD2/3

signaling. Nuclear SMAD2/3 has been linked to polyglutamine diseases, a group of

neurodegenerative disorders that include HD [31]. The second gene set, REAC-

TOME YAP1 AND WWTR1 TAZ STIMULATED GENE EXPRESSION, consists

of genes whose expressions are regulated by transcriptional co-activators YAP1 and

WWTR1. YAP1 has been extensively linked to HD [32, 33, 34]. The third enriched

gene set, PID NFKAPPAB CANONICAL PATHWAY, is a canonical NF-kappaB

pathway, and its dysregulation has been shown on the cellular level to cause HD

immune dysfunction [35]. It has also been found that reduced transport of NF-

kappaB out of dendritic spines and its activity in neuronal nuclei may contribute

to the etiology of HD [36]. This also suggests that the BIOCARTA NTHI PATH-

WAY, related to NF-kappaB activation, is a plausible pathway associated with

HD. Moreover, the PID HIV NEF PATHWAY, is a pathway for negative effector

of Fas and TNF-alpha, both of which are proteins that have been linked to HD

in mice [37]. Furthermore, three of the enriched gene sets, PID MYC REPRESS

PATHWAY, BIOCARTA TOLL PATHWAY, and KEGG NOD LIKE RECEPTOR

SIGNALING PATHWAY, involve C-MYC, toll-like receptors and NOD-like recep-

tors, respectively, all of which have previously been found to relate to HD or other

neurodegenerative disorders [38, 39, 40]. The KEGG TGF BETA SIGNALING

PATHWAY has been associated with HD using an independent data set [41]. An-

other gene set, REACTOME INNATE IMMUNE SYSTEM, has been found to con-

tribute to HD pathogenesis [28, 35]. In addition, Chiang et al. [42] demonstrated

that the systematic downregulation of PPARγ, related to the BIOCARTA PPARA

PATHWAY, seems to play a critical role in the dysregulation of energy homeostasis

observed in HD, and that PPARγ is a potential therapeutic target for this disease.

For PID P53 DOWNSTREAM PATHWAY, Ghose et al. [43] have shown the likely

involvement of NFkB (RelA), p53 and miRNAs in the regulation of cell death in

HD pathogenesis.

Male vs Female Lymphoblastoid Cells Data

As a way to validate our method, we analyze the mRNA expression profiles from

lymphoblastoid cell lines derived from 17 females and 15 males. Subramanian et al.

[14] examined this data set with their GSEA method, testing the MsigDB cytoge-

netic gene sets (C1) for association with sex. The C1 collection includes 24 gene

sets, one for each of the 24 human chromosomes, and 295 gene sets corresponding

to cytogenetic bands. Comparing male and female cell lines, one would expect to

home in on gene sets on chromosome Y[14]. Because of this prior knowledge, we use

this data set as a benchmarking tool to compare different testing methods.

We perform enrichment analysis with four tests, MEACA, GSEA, CAMERA and

MRGSE, on all the 309 C1 gene sets containing at least 3 genes. Again, the GSEA

p-values are obtained using (b+ 1)/(K + 1) with K = 9999. In Table 5, we summa-

rize all the gene sets that are identified to be significant by at least one of the four

testing procedures, with FDR controlled at 0.05 by the BH procedure. MEACA has

recapitulated our knowledge about the data set to a great extent in that it identi-

fies all and only the four gene sets corresponding to chromosome Y or Y bands. In
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Table 4 Top 30 enriched gene sets identified by MEACA for HD data.

BH-adjusted
Gene Set Size ρ̂1 ρ̂2 ρ̂3 p-value p-value
PID SMAD2 3NUCLEAR PATHWAY 79 0.063 0.013 0.015 5.8E-06 5.7E-03 ∗
REACTOME YAP1 AND WWTR1 TAZ
STIMULATED GENE EXPRESSION

23 0.121 0.013 0.014 8.5E-06 5.7E-03

PID NFKAPPAB CANONICAL PATH-
WAY

22 0.127 0.013 0.019 2.3E-05 1.0E-02

BIOCARTA NTHI PATHWAY 23 0.130 0.013 0.023 6.2E-05 2.1E-02
BIOCARTA TID PATHWAY 18 0.101 0.013 0.012 1.2E-04 2.2E-02
PID HIV NEF PATHWAY 35 0.065 0.013 0.013 1.2E-04 2.2E-02
KEGG PATHWAYS IN CANCER 311 0.028 0.013 0.010 1.3E-04 2.2E-02
PID MYC REPRESS PATHWAY 60 0.057 0.013 0.013 1.9E-04 2.2E-02
BIOCARTA TOLL PATHWAY 36 0.083 0.013 0.018 2.0E-04 2.2E-02
PID IL4 2PATHWAY 59 0.081 0.013 0.010 2.0E-04 2.2E-02
KEGG TGF BETA SIGNALING PATH-
WAY

82 0.055 0.013 0.011 2.2E-04 2.2E-02

BIOCARTA DEATH PATHWAY 33 0.067 0.013 0.013 2.4E-04 2.2E-02
KEGG NOD LIKE RECEPTOR SIG-
NALING PATHWAY

55 0.045 0.013 0.008 2.6E-04 2.2E-02

BIOCARTA CTCF PATHWAY 23 0.083 0.013 0.015 2.8E-04 2.2E-02
ST TUMOR NECROSIS FACTOR
PATHWAY

28 0.031 0.013 0.014 3.2E-04 2.2E-02

BIOCARTA TNFR2 PATHWAY 17 0.151 0.013 0.022 3.3E-04 2.2E-02
KEGG APOPTOSIS 82 0.036 0.013 0.008 3.3E-04 2.2E-02
REACTOME INNATE IMMUNE SYS-
TEM

209 0.039 0.013 0.009 3.3E-04 2.2E-02

PID HES HEY PATHWAY 47 0.071 0.013 0.019 3.4E-04 2.2E-02
REACTOME DOWNSTREAM TCR
SIGNALING

31 0.082 0.013 0.011 3.7E-04 2.2E-02

PID TCPTP PATHWAY 42 0.076 0.013 0.010 3.7E-04 2.2E-02
BIOCARTA 41BB PATHWAY 14 0.110 0.013 0.023 3.9E-04 2.2E-02
PID FRA PATHWAY 34 0.154 0.013 0.008 4.1E-04 2.2E-02
PID P53 DOWNSTREAM PATHWAY 131 0.045 0.013 0.012 4.2E-04 2.2E-02
PID EPO PATHWAY 34 0.069 0.013 0.013 4.3E-04 2.2E-02
BIOCARTA PPARA PATHWAY 53 0.031 0.013 0.008 4.4E-04 2.2E-02
BIOCARTA EPONFKB PATHWAY 11 0.068 0.013 0.010 4.7E-04 2.2E-02
BIOCARTA HIVNEF PATHWAY 58 0.063 0.013 0.019 4.8E-04 2.2E-02
BIOCARTA CD40 PATHWAY 13 0.165 0.013 0.026 4.8E-04 2.2E-02
BIOCARTA IL7 PATHWAY 17 0.100 0.013 0.016 5.2E-04 2.3E-02

The coefficients, ρ̂1, ρ̂2 and ρ̂3, respectively, are the average estimated sample correlations of
observed data between genes in the test set, between genes in the background set, and between
two genes belonging to two different sets. A gene set significantly enriched by GSEA is indicated
by “∗”. No gene set is identified as enriched by CAMERA and all the 30 gene sets are among the
371 genes identified by MRGSE. For all methods, FDR is controlled at 0.05.

comparison, GSEA, CAMERA and MRGSE not only yield less significant p-values

than MEACA for three of the gene sets on chromosome Y, but have also missed

the fourth gene set, chrYp22. Moreover, MRGSE claims as significant three auto-

somal chromosomes which do not show evidence of enrichment by any of the other

methods.

Table 5 Enriched gene sets and their BH-adjusted p-values for lymphoblastoid cells data.

Gene set Size MEACA GSEA CAMERA MRGSE
chrY 40 <1.0E-15 1.1E-02 1.6E-03 9.3E-05
chrYq11 16 <1.0E-15 1.1E-02 2.3E-05 8.9E-04
chrYp11 18 8.5E-13 1.1E-02 3.0E-02 2.7E-02
chrYp22 8 3.9E-02 6.8E-01 8.2E-01 2.2E-01
chr6 614 8.7E-01 1.0E-00 1.0E-00 1.3E-02
chr1 1104 8.7E-01 1.0E-00 1.0E-00 4.2E-03
chr12 571 8.8E-01 1.0E-00 1.0E-00 1.6E-06

Reported are gene sets with BH-adjusted p-value< 0.05 for at least one of
MEACA, GSEA, CAMERA and MRGSE. An adjusted p-value is made bold if
below 0.05.
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Discussion and Conclusions
We have developed MEACA, a new method for competitive gene-set analysis of

gene expression data, with the aim of evaluating the association between a set of

genes and a factor of interest. MEACA features effective adjustment for completely

unknown, unstructured correlations among the genes, and the ability to account

for the DE heterogeneity across genes. It uses a score test approach and allows for

analytical assessment of p-values without the need of time-consuming permutation

procedures. Compared to previously proposed approaches, MEACA enjoys robust

and accurate control of type 1 error and maintains high power across a wide range

of settings. Our method is available in the MEACA R package.

Inter-gene correlations are widespread in gene expression data, and failure to

account for such correlations has been extensively shown to be problematic for

gene-set analysis. Under the competitive gene-set testing framework, a number of

methods have been proposed to account for correlation among genes. One approach

is to evaluate the significance of set-level statistic by permuting sample labels, as

adopted by the widely used procedure GSEA [14]. However, the sample permu-

tation method has been criticized for altering the null hypotheses being tested in

the competitive gene-set analysis [3, 13] and consequently tends to result in mis-

calibrated testing results. Instead, CAMERA [11] and a recent extension, QuSAGE

[12], correct for the correlations among genes by estimating a VIF directly from

the data. We are the first to point out a major problem with this approach related

to its failure to properly model the DE heterogeneity across genes, which results

in incorrect adjustment for the correlation between single-gene test statistics. We

have shown in both simulations and real data examples that this can severely com-

promise the performance of CAMERA and QuSAGE. In particular, we have found

that CAMERA can be profoundly mis-calibrated and underpowered under realistic

scenarios. We have addressed this challenge by modeling the covariance structure

between gene-level statistics using two variance components, one attributable to

correlations between gene expressions after potential DE effects are removed, and

the other attributable to the heterogeneity of DE effects. Moreover, MEACA is

based on a quasi-likelihood framework, which does not assume normality for the

expression data or the distribution of the DE effects.

We have compared the performance of MEACA to competing approaches through

both simulations and real data examples. Through extensive simulation studies,

we have examined the calibration of MEACA and five other methods (sigPathway,

MRGSE, CAMERA, GSEA and QuSAGE) in a variety of settings, and have demon-

strated that MEACA controls type 1 error accurately under all settings considered,

whereas each of the other methods has failed in at least some situations. The power

of MEACA is also shown to compare favorably with the other methods. We have

further validated our approach using two real data sets, in which MEACA, com-

pared with its competitors, has yielded results that are highly biologically relevant.

In particular, we have identified a moderate number of gene sets associated with

HD, many of which have previously been linked to the disease yet most, if not all,

of which were missed by GSEA and CAMERA. As a simple benchmarking data

set, we have also analyzed a lymphoblastoid cell line data set for which we have

relatively confident prior understanding. MEACA has been able to generate results

that are highly consistent with our prior knowledge.
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Although MEACA is motivated by the problem of gene-set analysis of transcrip-

tomic data, it can be widely applicable to other types of data sets (such as proteomic,

metabolomic and microbiome data) in which it is of interest to detect whether a

subset of the features (such as protein categories, metabolite groups and micro-

bial taxonomic groups) are enriched with differential signals between two groups of

samples. Examples include detection of differentially abundant gene families in func-

tional analysis of metagenomic data [44] and enrichment analysis of high-throughput

proteomic data[45].

While two-group comparison is one of the most useful designs, many studies in-

volve a more complicated design structure, involving multiple groups, a block struc-

ture and/or time course measurements. MEACA provides a framework that is po-

tentially generalizable to these designs with an extended mixed effects model and a

modified set-level test statistic. It is our current work to adapt our approach to be

applicable to analytical needs beyond two-group comparison.

Methods
The MEACA Method

We consider a gene expression (e.g. RNA-Seq or microarray) experiment, in which

we compare the expression data of samples from two groups: a treatment group

with n1 samples referred to as “cases” and a control group with n2 samples re-

ferred to as “controls” (n1, n2 ≥ 3). Suppose the expression levels of a set of m

genes are observed for each sample. An unknown subset of these genes are differ-

entially expressed between cases and controls, with varying sign and magnitude of

DE effects. The genes are also allowed to have (negatively or positively) correlated

expression levels. Our goal is to test whether a pre-defined set of test genes are

enriched with DE signals compared to the background genes (i.e. genes not in the

test set). The rest of this paragraph will provide a brief overview of the model un-

derlying MEACA, with some technical details to be explained later. We will use a

gene-level test statistic, denoted by Ui, to capture the unknown DE signal of gene

i. Let G be an m-dimensional vector defining the gene set of interest, where Gi = 1

if and only if gene i is in the test set and Gi = 0 otherwise (for any given gene set

G is known). In the following sections, we will derive a model for Ui’s conditional

on G, using a mixed-effects framework of the form (details to be explained later)

Ui = β0 + β1Gi + ψi + ηi, i = 1, . . . ,m, (1)

where β1 is a fixed effect capturing the mean difference between the test set and

the background set, and ψi and ηi are random effects. The term ψi captures the

variability among Ui’s due to some genes being differentially expressed and some

not, and to the varying magnitude of the DE effects. The variance of ψi depends on

whether Gi = 0 or 1, which allows the spread of gene-level statistics to be different

between the test set and the background set. The ηi’s account for the variability in

Ui’s due to sample-level noise and are allowed to be correlated with each other to

accommodate inter-gene covariation.

To justify model (1) and to specify the modeling assumptions on ψi and ηi, we will

start by constructing a hierarchical model for the observed gene expression data,
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from which we will then derive a mixed-effects model for the gene-level statistics

jointly for all the genes. Based on this model, we will then present our enrichment

testing method, and discuss its connections with CAMERA.

A hierarchical model for gene expression data

We will start by presenting the hierarchical model for the observed gene expression

data jointly for all genes, which will incorporate the following features. Firstly, for a

given sample, the expression levels of different genes are allowed to be correlated. We

further assume that the correlation structure is the same across samples. Secondly,

different genes may have different baseline expression levels, where “baseline” refers

to the average among controls. Thirdly, for any given gene, its mean expression

level in the treatment group can be either higher, lower or the same compared to

the control group, depending on whether the gene is up-regulated, down-regulated,

or not differentially expressed. For the genes that are differentially expressed, their

DE effects are modeled additively and are allowed to have heterogeneous signs and

magnitudes. Finally, given a gene and its DE effect, the expression level is allowed to

vary independently across samples, which captures measurement error and sample-

level variability.

To present our model formally, we first introduce some notation. Let n = n1 +n2

be the total sample size. Let X be an n-dimensional known vector of 1’s and 0’s

denoting the case-control membership of the samples, with Xi = 1 for a case and

Xi = 0 for a control. Let Y be an m by n matrix representing the expression

data, in which each column is the expression profile for a sample and Yij (1 ≤ i ≤
m, 1 ≤ j ≤ n) is the expression level of sample j at gene i. Let µi (1 ≤ i ≤ m) be

the baseline expression level for gene i. The quantities µi’s are treated as nuisance

parameters and as we will see later do not contribute to our analysis. Let ∆ =

(∆1, · · · ,∆m)T be a vector for the additive DE effects for the genes. Gene i is not

differentially expressed if ∆i = 0, up-regulated if ∆i > 0 and down-regulated if

∆i < 0. We model ∆ as a random effect, for which we will detail our assumptions

later. Given µi and ∆i, the mean expression level for the control group and the

treatment group are µi and µi + ∆i, respectively. Given these means, the noise

in the observed expression data for the jth sample is denoted by the error vector

εj = (ε1j , · · · , εmj)T , 1 ≤ j ≤ n. We assume ε := (ε1, · · · , εm) to be independent of

∆ and to have mean zero. Without loss of generality, we also assume Var(εij) = 1 for

all genes and samples. For a real gene expression data set typically not satisfying this

assumption, we can standardize the data by each gene to ensure that its empirical

variance equals one before implementing our method (Additional file 1, Section A).

For the covariance structure of ε, we assume independence across samples and allow

correlations between genes, namely

εj1 and εj2 are independent, for j1 6= j2, (2)

Cov(εj |G) = C, 1 ≤ i ≤ n, (3)

where C is an m by m inter-gene correlation matrix shared by all samples and is

generally unknown. Putting these elements together, we obtain the following model
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for the expression data Y given X

Yij = µi +Xj ·∆i + εij , (4)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n. The gene-set membership vector G enters this model via

∆i and possibly µi.

Assumptions on the DE effects

Conditional on G, we assume that the ∆i’s are mutually independent and come

from either of the two distributions, D1 for the background set (i.e, Gi = 0) and D2

for the test set (i.e, Gi = 1). We denote the expected values of D1 and D2 by β0

and β0 + β1, respectively, and their variances by σ2
1 and σ2

2 , respectively. It follows

that

E(∆|G) = β0 + β1G, var(∆|G) = σ2
1I1 + σ2

2I2, (5)

where I1 and I2 are diagonal matrices of dimension m with 0’s and 1’s on their

diagonals. The 1’s in the diagonal of I1 correspond to the genes with Gi = 0 and

those for I2 to the genes with Gi = 1.

Aside from the conditions in equation (5) on the first two moments, we do not

impose on the DE effects, ∆, any specific distributional assumptions such as nor-

mality. For example, the distribution of a given ∆i can put a positive probability

mass on zero, which allows for the highly likely scenario in which some of the genes

are not differentially expressed. To further illustrate our general framework for ∆,

we present a simple model included by equation (5) as a special case. Suppose the

m genes are independently sampled to be either differentially expressed or not. The

probability for gene i to be differentially expressed is pt if Gi = 1, or pb if Gi = 0.

For differentially expressed genes, their DE effects are sampled independently from

a common distribution with mean µδ and variance σ2
δ . Under these assumptions,

E(∆i|G) = piµδ, Var(∆i|G) = piσ
2
δ + pi(1− pi)µ2

δ , (6)

where pi = pt if Gi = 1 and pi = pb if Gi = 0 (Additional file 1, Section B). It

can be shown that this model is a special case of equation (5), where β1 = 0 is

equivalent to pb = pt.

Model for gene-level statistics

For each gene i, we consider the gene-level statistic Ui given by

Ui =

∑
j:Xj=1 Yij

n1
−

∑
j:Xj=0 Yij

n2
, (7)

which is sample mean difference in the expression levels between cases and controls.

Given our assumption that the expression data Y have been standardized so that

εi has variance 1, Ui is equivalent to the two-sample t-test statistic and provides a

DE metric for gene i.
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We will construct a quasi-likelihood model for the conditional distribution of

U = (U1, · · · , Um)T given G, by deriving the conditional mean and covariance

structures of U from the model for Y described in the previous two subsections.

We first observe that combining equations (4) and (7) yields

Ui = ∆i + ηi,where ηi =
1

n1

∑
j:Xj=1

εij −
1

n2

∑
j:Xj=0

εij . (8)

It can be shown (Additional file 1, Section C) based on equations (2), (3), (5) and

(8) that

E(U |G) = β0 + β1G, (9)

Σ := Var(U |G) = σ2
0C + σ2

1I1 + σ2
2I2, (10)

where σ2
0 = 1/n1 + 1/n2 is a known parameter. We note that in equation (10),

the covariance structure of U has three components, a component with C which

accounts for the contribution of sample-level noise ε, and two additional components

from the heterogeneity of the DE effects ∆. It is noteworthy that both the C

component and the ∆ components contribute to the variance of Ui’s, whereas only

the C component contributes to the covariance between two Ui’s. As the result,

the correlation between two Ui’s is affected by both the ∆ components as well as

the C component, with the former serving to increase the variance and therefore

dilute the correlation. Ignoring the contribution of the former, as is done by some

previously proposed methods including CAMERA, tends to lead to overestimation

of the extent of inter-gene correlations for the Ui’s.

Finally, we note that by letting ∆i = β0 + β1Gi + ψi, equation (8) is equivalent

to model (1) whose mean and variance are given by equations (9) and (10). The

random effects ψi’s capture the heterogeneity of the DE effects that are conditional

on whether gene i belongs to the test set (Gi = 1) or not (Gi = 0).

The MEACA set-level test statistic

To detect patterns of the DE signals in the gene set of interest that stand out

compared with genes not in the set, we test H0 : D1 = D2 against H1 : D1 6=
D2. For example, for the special scenario given by equation (6), this amounts to

testing pb = pt against pb 6= pt. To construct the set-level test statistic, we focus

on the part of the alternative space where E(D1) 6= E(D2), or equivalently β1 6= 0.

We first consider the less interesting case with uncorrelated genes, in which C

equals I, an m-dimensional identity matrix. Under the quasi-likelihood model for

U given in equations (9) and (10), the quasi-score statistic for β1 has the form

S ∝ GT (U− β̂01m), where β̂0 = U is an estimate for β0 and 1m is a m-dimensional

vector of 1’s. To perform a quasi-score test, one would divide S2 by its estimated

variance under H0 and the assumption that C = I. The resulting test statistic is

Tu =
S2

V̂ar0,C=I(S|G)
=

[GT (U − β̂01m)]2

GT (I −H)G
, (11)
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where H =
1

m
1m1Tm and the subscript “u” stands for “uncorrelated genes.” For

the case of interest when inter-gene correlation is present, C is a non-trivial corre-

lation matrix. We will again form our test statistic based on S. However, for the

denominator of the statistic, the null variance of S will be evaluated under the

quasi-likelihood model with a non-trivial C. By equation (10), the variance of S

is given by Var(S|G) = GT (I −H)Σ(I −H)G. Note that H0 : D1 = D2 implies

σ2
1 = σ2

2 . Thus, under H0, Σ = Var0(U |G) = σ2
0C + σ2

1I, where σ2
0 = 1/n1 + 1/n2

is known and σ2
1 is an unknown parameter. To estimate σ2

1 under H0, we observe

that Var0(Ui) = σ2
0 +σ2

1 and thus use σ̂2
1 =

∑m
i=1(Ui−U)2/(m−1)−σ2

0 . Therefore,

assuming C is known, we can obtain the two-sided MEACA test statistic given by

T =
S2

V̂ar0(S|G)
=

[GT (U − β̂01m)]2

GT (I −H)Σ̂(I −H)G
, (12)

where Σ̂ = (1/n1+1/n2)C+σ̂2
1I is a null estimate of Σ and β̂0 = U . Under suitable

regularity conditions, significance of the test could then be assessed by comparing

T to a χ2
1 distribution.

When it is desirable to test the one-sided alternative hypothesis that E(D1) <

E(D2), one may use the signed squared root of T given by

Tone sided =
GT (U − β̂01m)√

GT (I −H)Σ̂(I −H)G
(13)

as the test statistic, whose p-value can be obtained by comparing to the standard

normal distribution.

Estimating the inter-gene correlation matrix C

In practice, the inter-gene correlations are usually unknown. Therefore we substitute

C with Ĉ, the empirical correlation matrix of the expression data after possible

DE effects are controlled for by centering the expression levels of cases and controls

separately around zero. Formally, Ĉ is given by Ĉik =
1

n

∑n
j=1(Yij−αij)(Ykj−αkj),

where αij =
∑
j′:Xj′=Xj

Yij′/
∑n
j′=1 1{Xj′ = Xj} is the average expression level at

gene i for all samples from the same group (either cases or controls) as sample j.

In real data sets, the number of genes, m, is usually much greater than the sample

size n, in which case C is a high-dimensional parameter that cannot be efficiently

estimated by Ĉ. Interestingly, however, we find that the MEACA test statistic T

relies not on the entry-wise accurate estimation of C, but only on three parameters

involving the entries of C, which can be much more realistically estimated given

a moderate sample size. To demonstrate this, let m1 and m2 be the sizes of the

test set and the background set, respectively (m1 + m2 = m). Also let ρ1 be the

average correlation between two genes in the test set, ρ2 be the average correlation

between two background genes, and ρ3 be the average correlation between a test

gene and a background gene. Then, ρ1 is the mean of the off-diagonal entries in the

m1 ×m1 sub-matrix of C made up of rows and columns corresponding to the test

set, ρ2 is that in the m2×m2 sub-matrix corresponding to the background set, and

ρ3 is the mean of the entries in the m1 ×m2 sub-matrix of C corresponding to the
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cross-covariance between the test and the background sets. It can be shown that

the denominator of the MEACA test statistic given in equation (12) can be written

as

a1ρ1 + a2ρ2 − a3ρ3 + a4 + a5σ̂1
2, (14)

where a1, · · · , a5 > 0 are constants that do not depend on C (for details see Addi-

tional file 1, Section D). Therefore, the MEACA test statistic depends on C only

through ρ1, ρ2 and ρ3.

Connections with CAMERA

Model (1) and expression (14) also help reveal the connections between CAMERA

and our method. When considered under our framework with Var(εij) = 1 and

equation (7) as the gene-level statistics, the CAMERA approach can be viewed as a

score test derived from a model which effectively assumes (A1) and (A2) introduced

in Results, which are further explained as follows:

(A1) The random effect ψi = 0 can be dropped from model (1) for both genes in

the test set and those in the background set. Or equivalently, σ2
1 = σ2

2 = 0

in equation (10). This amounts to assuming, both in the test set and in the

background set, that either none of the genes are differentially expressed or

all genes are differentially expressed with the exact same DE effect;

(A2) The inter-gene correlation structure satisfies ρ2 = ρ3 = 0, which means that

inter-gene correlations are present only among genes in the test set, not among

background genes or between background and test genes.

Both assumptions are likely violated in reality. In particular, it is likely for both the

test set and the background set that some genes are differentially expressed while

others are not, and that the genes that are differentially expressed vary in terms of

the signs and magnitudes of their DE effects. In our model, this is accounted for by

a non-trivial ψi term or equivalently by the heterogeneity in the ∆i’s, which adds to

the variances of Ui’s without contributing to their pairwise covariances. However,

with Assumption (A1), CAMERA effectively ignores the ∆i heterogeneity and con-

sequently under-estimates the variances of Ui’s and over-estimates the correlations

between Ui’s. This tends to result in over-adjustment of inter-gene correlations in

enrichment testing and lead to conservative type 1 error and power loss. In the

setup given by equation (14), this issue would be reflected by incorrectly calculated

constants a1, · · · , a5 which overall would produce a greater than necessary denom-

inator in the set-level test statistic and thus tends to drive the p-value towards the

non-significant side. With Assumption (A2), ignoring a positive ρ2 has the effect of

under-estimating the null variance of the set-level test statistic and thus may inflate

type 1 error, whereas ignoring a positive ρ3 has the opposite effect. Overall, whether

CAMERA results in a conservative or anti-conservative type 1 error will depend on

how these factors act upon each other. In simulation studies, we will explore how

CAMERA behaves in different scenarios.

Simulation Study Design

In this section, we will specify the setup of our type 1 error and power simulation

studies. Let Yj be a vector denoting the expression profile of sample j. Conditional
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on the genes’ DE effects, we simulate the Yj ’s independently from a multivariate

normal distribution with unit variance and ρi1,i2 = Cor(Yi1,j , Yi2,j) as the correla-

tion coefficient between genes i1 and i2. We assume a common pairwise correlation

coefficient for genes from the same category (either the test set or the background

set): Cor(Yi1 , Yi2) = ρ1 if genes i1 and i2 are both test genes (i.e., Gi1 = Gi2 = 1),

Cor(Yi1 , Yi2) = ρ2 if they are both background genes (i.e., Gi1 = Gi2 = 0). For a test

gene and a background gene (i.e., Gi1 = 1, Gi2 = 0), we assume Cor(Yi1 , Yi2) = ρ3.

We examine five different correlation structures, as listed in Results.

The simulations run as follows. First, we consider a total of m = 500 genes,

of which m1 = 100 genes are in the test set and the remaining m2 = 400 genes

in the background set. Second, we randomly sample genes to be differentially ex-

pressed with probability pt in the test set and with probability pb in the background

set. If gene i is sampled to be differentially expressed, we simulate its DE effect ∆i

from a normal distribution N(2, 1), and if gene i is not differentially expressed, we

set ∆i = 0. Third, we set the mean expression levels of the m genes to be µ1 = 0m
for a control sample and µ2 = ∆ for a case sample. Fourth, for each of the n1 = 25

samples in the control group, we simulate its expression profile independently from

a multivariate normal distribution MVN(µ1,Σ), where Σ = [Cov(Yi1 , Yi2)]m×m is

the covariance matrix corresponding to one of the structures in (a)-(e) detailed in

the previous paragraph. For each of the n2 = 25 samples in the treatment group,

we simulate its expression profile from MVN(µ2,Σ).

Further assumptions on pt and pb will complete our generating model used in the

type 1 error and power simulations. Table 1 summarizes the configurations of pb and

pt we consider. In order to examine how the presence of DE and the heterogeneity

of the DE effects may affect various enrichment tests, for each correlation structure

in (a)-(e), we conduct two groups of simulations: genes in the background set are

allowed to be differentially expressed in group II but not in group I (so Assumption

(A1) holds for group I but not for II). In both type 1 error and power simulations,

we set the DE probability for the background genes to be pb = 0% in group I and

pb = 10% in group II. In the type 1 error simulations, we have pt = pb under the

null. In the power simulations, we consider four different scenarios, S1−S4, for the

alternative hypothesis corresponding to different levels of enrichment: for genes in

the test set, we set the DE probability to be pt = 5%(S1), 10%(S2), 15%(S3) and

20%(S4) in group I, and 15%(S1), 20%(S2), 25%(S3) and 30%(S4) in group II.

Software Implementation of Methods

To implement MEACA, we have developed an publicly available R package. sig-

Pathway [10], MRGSE [26], CAMERA [11] are all implemented in the limma

[46] package of the Bioconductor [47] project. QuSAGE [12] is available as an

R package under the same name. GSEA [14] is implemented in the R-GSEA

script (http://software.broadinstitute.org/gsea/index.jsp). We note how-

ever, that GSEA can yield p values that are exactly zero, which have been shown to

be inaccurate for permutation tests [48]. To avoid exactly zero p-values, we follow

the recommendation of Phipson et al. [48] and calculate the GSEA p value using

(b + 1)/(K + 1), where K is the total number of permutations performed and b

out of the K permutations result in statistics that are more extreme than the ob-

served statistic. In the simulation studies, we use default of the R-GSEA program
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K = 999. In the real data analysis, where we increase the number of permutations,

K, to 9999 due to the need to more accurately estimate smaller p-values.
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