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ABSTRACT

The neuronal code arising from the coordinated population activity of grid cells in the rodent entorhinal cortex

can uniquely represent space across large distances but the precise conditions for efficient coding are unknown.

Here we present a number-theoretic analysis of grid coding and derive an upper bound on the distance that a

population of grid cells can represent without error. We show that in the absence of neuronal noise, the capacity

of the system would be extremely sensitive to the choice of the grid periods. However, when the accuracy of

the representation is limited by neuronal noise, the capacity becomes gradually more robust against the choice

of grid scales as the number of modules increases and remains near optimal even for random scale choices. Our

study reveals that robust and efficient coding can be achieved without parameter tuning in the case of grid cell

representation.

1. INTRODUCTION

Optimising neuronal systems for efficient processing and representation of information is a key principle for

both understanding and designing neuronal circuits (Sterling & Laughlin, 2015), but recognising that a particular

neuronal phenomena reflects an optimisation process is often difficult. Grid cells in the medial entorhinal cortex

have been suggested to represent spatial location by their spatially periodic firing fields near optimally (Burak et al.,

2006; Fiete et al., 2008; Mathis et al., 2012a,b). However, it remained controversial whether the robustness and

efficiency of the grid cell code is the result of the precise tuning of the grid parameters (Wei et al., 2015; Stemmler

et al., 2015; Mosheiff et al., 2016) or the performance of the system is relatively insensitive to the actual parameter

settings (Mathis et al., 2012a,b; Towse et al., 2014).

Grid cells are spatially tuned neurons with multiple firing fields organised along the vertices of a triangular grid

(Figure 1a; Hafting et al. 2005; Moser et al. 2014). Grid cells of any particular animal are organised into functional

modules (Barry et al., 2007; Stensola et al., 2012): cells within a module share the same grid scale and orientation,

but differ in the location of their firing fields, i.e., their preferred firing phase within the grid period (Figure 1a).

Modules form the functional units of the grid representation: The joint activity of all (possibly hundreds of) cells

within each module is captured by the (two dimensional) phase of the given module (Figure 1b; Sreenivasan &

Fiete 2011; Yoon et al. 2013) and the relationship between different cells from the same module remains stable

across different environments (Fyhn et al., 2007) or after environmental distortions (Stensola et al., 2012). A given

spatial location is represented by the phases of the different modules (phase vector). The representations are unique

up to a critical distance above which the coding becomes ambiguous: the phase vectors, and hence the firing rates

of all grid cells, become (nearly) identical at two separate physical locations (Figure 1c).

Depending on the magnitude of the critical distance compared to the largest grid scale, two complementary

coding schemes have been proposed for grid cells (Figure 1c): In nested coding (Mathis et al., 2012a; Wei et al.,

2015; Mosheiff et al., 2016) the coding range is set by the module with the largest scale and the smaller modules

refine the position coding. In a modulo arithmetic (MA) code (Fiete et al., 2008; Sreenivasan & Fiete, 2011)
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the coding range can be substantially larger than the scale of the largest module and the grid scales have similar

magnitudes.

It has been demonstrated that grid cells organised in a nested coding scheme can unambiguously represent

spatial locations up to a distance that is exponentially high in the number of modules (Mathis et al., 2012b; Wei

et al., 2015; Mosheiff et al., 2016). However, an efficient nested code demands accurate tuning of the scale

parameters as well as the number of neurons in a given module, and even then its coding range is constrained

by the largest grid scale. It remained unclear whether the sensitivity to its parameters is a general property of all

exponentially strong grid cell codes or it is specific to the nested coding scheme. In particular, it is not known

under what conditions the MA coding system can achieve exponential capacity, and how robust is the capacity to

the choice of the grid periods or neuronal noise.

Here we develop a novel approach to study the capacity of the grid coding system that is based on Diophantine

approximations, i.e., approximation of real numbers by rational numbers. First, we apply the technique to study

coding with two grid modules. We show that the capacity of the system is extremely sensitive to the number

theoretic properties of the scale ratio between the modules. Next, we generalise our approach to the case of

multiple modules, and show both analytically and numerically that the exponential capacity of the grid cell coding

system can be achieved under very general conditions. Finally, we demonstrate that when the coding range is

constrained by neuronal noise, the capacity of the system is extremely robust for the choices of the scaling of the

modules.

2. RESULTS

We investigate grid cell population code along a linear trajectory as the one dimensional results extend to two

(or higher) dimensions without difficulty (Fiete et al., 2008; Mathis et al., 2012a). As the joint firing pattern of cells

from the same module is periodic (with the period being equal to the scale of the grid, Figure 1b), it is convenient

to prescribe that, without loss of generality, at the spatial origin all modules are in their 0 phase. Then the phase of

module i is determined by the spatial position x of the animal as ψipxq :“ px mod αiq{αi, where αi is the scale

of the module with α0 “ 1, which means that distances are expressed in the unit of the smallest grid period.

Spikes of the neurons in module i, si, represent the spatial location of the animal with a relative error δ ¨ αi
which can be interpreted as the width of the (periodic) posterior probability distribution P px|siq (Figure 1b). For

an ideal observer this posterior distribution quantifies how much a given spatial location is consistent with the

observed spike pattern. Naturally, the width of the posterior depends on several factors, most importantly on the

number of neurons observed in a given module and on the scale of the modules relative to the typical speed of the

animal (Mosheiff et al., 2016). In the methods 4.1 we estimate that the realistic range of δ is 0.01 ď δ ď 0.2 which

is also consistent with the estimates of Mosheiff et al. (2016).

We assume that the modules are conditionally independent given the location of the animal, and hence position

decoding, or representation, can be implemented by an ideal observer independently reading out the spikes, si,

emitted by the different modules: P px|sq “
ś

i P px|siq. Using numerical simulations (methods 4.1) we found

that the module-posteriors can be accurately described as being periodic Gaussian functions (Figure 1b, right). In

the following we will treat them as idealised periodic bumps with a width parameter δ. When loosely talking about

interference between the grid modules we refer to the interference between these periodic posterior distributions

P px|siq.

2.1. Interference between the modules. We illustrate the effect of the scale ratio on the joint firing pattern of

the grid cells, and hence on the performance of the grid system for two modules in Figure 2. The goal of avoiding

interference between successive modules motivated the choice of irrational scale ratios (Figure 2B, Sreenivasan

& Fiete 2011). In the noiseless case, when δ Ñ 0, any irrational scale ratio guarantees an infinite capacity for

the grid cell coding system even with two modules. However, neurons are noisy, and therefore interference may
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FIGURE 1. Coding with grid cells. (a) Schematic firing fields (circles) of two-dimensional grid

cells as function of spatial position. Grid cells are organised into modules: Cells from the same

module share the orientation and scale parameter but differ in their spatial phase (top, shades of

purple). Different modules have different scale and orientation (top to bottom). (b) Spiking of

grid cells (black ticks, each spike is shown three times, at the maxima of the cells’ firing rate)

from a single module represents the movement of the animal (light-blue line) in a 1 dimensional

environment. Since the firing rate of the cells (right, olive) is periodic, the posterior distribution

(left: colormap, right: purple) is also periodic. The accuracy of the representation, quantified

by the width of the posterior distribution (δ, right) changes over time around a typical value that

depends on the scale and the firing rate of the module. (c) Grid cell coding schemes. The location

of the animal (filled arrow) is jointly encoded by the posterior of the different modules in both

nested (top) and modulo arithmetic (bottom) codes. Empty arrows indicate locations with large

interference between the modules.

occur even with irrational scale ratios. It is unclear how irrational numbers compare in terms of robustness against

interference.

To quantify interference between two modules with period 1 and α up to a maximum distance L from the origin,

it is enough to check interference in all positive integer distances ` ď L, where the phase of the first module, ψ1p`q,

is 0. Low interference between the modules requires their phase difference εp`q at integer distance ` being large,

or equivalently, the phase of the second module being different from 0:

(2.1) εp`q “ ||ψ1p`q ´ ψ0p`q|| “ ||ψ1p`q||,
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FIGURE 2. Interference depends on the choice of the scales. (a) Interference with rational

scale ratio. Left: Representative posteriors (P px|sq) for two modules with scale 1 and α “

3{2. Encoding becomes ambiguous at distance 3 from the origin where perfect interference

occurs (3 “ 2α). Right: Phase plot of the two modules, with the colour (red to blue) encoding

the distance from the origin (see the coloured line below the left panel). Perfect interference

occurs when the phase-curve overlaps with itself. (b) Interference with α “ 1.76 . . . , which is

close to 7{4 and therefore leads to strong interference at distance 7. Right: Interference occurs

when the distance between two neighbouring segments of the phase curve becomes smaller than

the limit set by the neuronal noise, Graphically, interference corresponds to the phase curve

intersecting one of the squares of side δ around the origo (inset, grey) or the phase difference,

εp`q, being smaller than p1 ` 1
α qδ. (c) Interference with α “ σ « 1.618, which is the golden

ratio. Interference still becomes stronger at larger distances, (e.g. at distance 5, since σ « 5
3 ).

Interference of grid codes is related to the approximation of irrationals with rational numbers

having small denominators (see text for further details). Right: Interference is inevitable since

the phase space has a limited volume.

where ||ψ|| means distance from the nearest integer. From now on we will loosely call εp`q the phase difference3.

If interference is low for all positive integers ` ď L, then not only the coding of the origin will be unambiguous,

but all positions in the interval r0, Ls will be distinguishable by the grid code. Indeed, if the grid code was ambigu-

ous confusing spatial locations x1 and x2, then it would also confuse the origin with |x1 ´ x2| as well, since the

phase differences of each module are the same between 0 and |x1´x2| and between x1 and x2 (Figure 2bc, right)4.

Therefore, strong grid codes require uniform coverage of the phase space across arbitrary distances (Sreenivasan

& Fiete, 2011).

To analyse the coding properties of the grid cell system, we follow the same three logical steps both in the

two module and in the multi-module case (Figure 3). First, we show the existence of an upper bound on how the

phase difference εp`q between the modules decreases with the distance. Intuitively, this upper bound expresses the

fact that interference between the modules necessarily becomes stronger at larger distances. Second, we demon-

strate that for appropriately chosen scale ratios a lower bound on the phase difference also exists. For these scale

3Note that εp`q can not be the phase difference in general, it is the phase difference at integer distance `. The phase difference being zero

does not necessarily imply interference, only if the phase is also close to 0. In Fig 2, both grids are around phase 0.4 at the distance 2.4 without

ambiguity.
4Note that this argument is correct only if the phase representation ambiguity of modules is independent of the actual position, which holds

if we suppose that firing fields of cells from the same module are spaced evenly, which we do assume.
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FIGURE 3. Logical steps of the argument. First, we provide an absolute upper bound on the

phase difference in the function of the distance, that is linear in log-log scale (left). Second,

we show, that for certain scales a lower bound also exists (middle). Third, we characterise the

efficiency of the scales (α) by their offset, cα (right).

choices catastrophic interference is avoided until a critical distance, that depends on the noise level in the system.

Importantly, the slope of the bounds depends only on the number of modules, but not on the choice of the scale

parameters. Therefore the efficiency of the scale choices can be characterised by the offset parameter, cα, of the

lower bound. Thus, our third step is to calculate cα for various choices of the scale parameter α.

To better illustrate our approach, we first consider only two grid modules. Our analytical derivations provide

an estimate for the asymptotic performance of the system that is valid in the low-noise limit. The main advantage

of our approach is that it provides strict bounds on the achievable coding efficiency that can be compared with the

efficiency at realistic noise levels, two or more modules alike.

2.2. Coding is extremely sensitive to the scale ratio with two modules. We can formalise the problem of inter-

ference between two modules as having a pair of integers k and ` with ` « kα, meaning that module 2 (with scale

α) is close to being in phase 0 at distance `, which would cause ambiguity between the coding of the spatial point

` and the origin. This is formally identical to the number theoretic question of the approximability of the scale

α « `{k with rationals having numerator ` ă L, also known as Diophantine approximations (Figure 2bc).

A classical result in number theory (Hurwitz, 1891) states that for all irrational numbers α ą 1 there are

infinitely many relative primes k, ` such that the error of the approximation, defined as

(2.2) εp`q “ |k ´ `{α|,

is smaller than the upper bound:

(2.3) εp`q ă
1
?

5

1

`
.

Note that Equation 2.2 expresses the same quantity as Equation 2.1 since ψ2p`q “ r`{αsmod 1, where the approx-

imation error corresponds to the phase difference between the modules (Figure 2bc).

Applying to the grid cells, Hurwitz’s theorem provides an upper bound on how the phase difference between

the modules shrinks with the distance. Specifically, the theorem states that the phase difference is guaranteed to

shrink at least as εp`q9 1{` (Figure 4a, dashed line) implying that on the long run interference can not be avoided

no matter how carefully we choose α. This is a fundamental upper bound on the efficiency of coding with grid

cells.

Whether the phase difference is small or large depends on the noisiness of the two modules, δ and αδ. The

representation of the position becomes ambiguous if the phase difference is smaller than the noise in the two

modules: εp`q ă 1
α p1 ` αqδ, where the 1

α factor comes from the conversion from distance to phase. Therefore,

ambiguity does occur at distance `˘ δ from the origin for some ` if the noise in the system is larger than the upper

bound on efficiency provided by Equation 2.3, i.e.

(2.4) ` ą
α

?
5p1` αq

1

δ
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FIGURE 4. Coding efficiency in two modules with different scale ratios. (a-c) The minimal

phase difference always decreases in the function of distance. The zig-zag line indicates the

phase difference (PD) at all integer distances, circles indicate record low PD. Dashed line shows

the theoretical upper bound of the PD, solid line shows the numerical fit on the lower bound

(with slope being ´1 and allowing finitely few exceptions at low `). Note, that the lower and

the upper bound coincides in b. Also note the 1{` scaling of PD for algebraic scale ratios (b-

c). Grey shading indicates the range of PD smaller than noise, p1 ` αqδ. (d)-(f) The value of

cαp`q (Equation 2.6) for different distances and scale ratios. cα is the highest constant under

which there are only finitely few values of cαp`q at small distances. The value of cα is slightly

higher for the golden ratio (e) than for
?

2 (f) and much larger than for non-algebric numbers (d,

α “
?
e, cα “ 0).

that is, at distance of order 1{δ. Consequently, it is impossible to code position with two modules better than this

bound.

The question rises then whether the above theoretical bound is achievable, at least for some appropriately chosen

α. The answer is yes, namely the upper bound in (2.3) is sharp for the golden ratio α “ σ :“
?
5`1
2 « 1.618.

Practically, this also introduces a limit on εp`q, saying that the phase difference between the modules remains

always larger than a specific lower bound:

(2.5) εp`q ą

ˆ

1
?

5
´ ε

˙

1

`

except for a couple of small distances, even for arbitrary small ε ą 0 (Figure 4b). It may sound strange that

there are finitely many exceptions, but in practice these mean only a few instances with ` being small (Figure 4d).

Therefore, if the ratio of the two grid modules equals the golden ratio then the phase difference between the two

modules is guaranteed to be larger than the lower bound defined by Equation 2.5. Since ε can be arbitrarily small,

the lower bound for the golden ratio approaches the theoretical upper bound (Equation 2.3) hence σ is an optimal

choice for the scale ratio to avoid ambiguity in case of two modules. To give a geometric picture, the golden

ratio guarantees approximately uniform coverage of the phase space for both short and arbitrarily large distances

(Figure 2c, right).

However, it turns out that there are many good choices: for any algebraic integer α of order 2 (i.e. irrational

which is a root of a polynomial of degree 2 with integer coefficients) there exists a maximal positive constant

cα ą 0 such that

εp`q ą cα
1` α

α

1

`
(2.6)
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FIGURE 5. Approximate cα values as a function of α. The values are shown for 1000 α ran-

domly selected from the interval r1, 2s. The cα of algebraic (
?

2,
?

3, σ, σ ´ 1{2) and non-

algebraic (
?
e) irrationals are also shown in red and black, respectively. We estimated cα, based

on Equation 2.7, as cα « inftLmaxδ | δmin ă δ ă δmaxu, for different noise ranges rδmin, δmaxs

in the three panels: (a) 0.05 ă δ ă 0.2, (b) 0.005 ă δ ă 0.05, (c) 0.001 ă δ ă 0.01.

Approximate Lmax values are indicated on the top of the panels for α “ σ.

holds except for a couple of small distances (Figure 4c-f, Oxtoby 1980). Hence, the representation is unambiguous

whenever cαp1` αq{pα `q ą p1` αq{pα δq, that is up to

(2.7) ` ď Lmax :“
cα
δ

for all δ which is small enough.5 The constant, cα, is the single parameter that determines the critical distance up

to which encoding is unique and hence can be used to compare different choices of α (Figure 4d,f). We already

noted that for the golden ratio the lower and the upper bounds coincide (Figure 4b), but the critical distance may

be larger for some α even if the corresponding lower bound on the phase difference is weaker.

We estimated the value of cα for various scale ratios at different noise levels. The constant cα is well defined

only for algebraic numbers, but can also be estimated for real numbers from the scaling of the phase difference with

distance using numerical simulations (Methods 4.8). Unlike for algebraic numbers, cα of real numbers depends on

the distance range used for the estimation, which we controlled by setting different intervals for δ in the simulations

(Figure 5).

These computations confirmed that σ is the best scale ratio choice in case of two modules with cσ “ σ?
5p1`σq

«

0.28, but also showed that, on both short and long run, cα is extremely sensitive to the choice of α: in case of a

small error in the tuning of α, the efficiency can drop substantially and cα becomes practically 0 (Figure 5), which

means that in the immediate neighbourhood of the optimal α, there are close to pessimal grid cell configurations.

This is because the lower bound on the phase difference (Equation 2.6) requires α to be an algebraic number, and in

an arbitrary small neighbourhood of any algebraic number there are (infinitely) many non-algebraic numbers, i.e.,

transcendental numbers (α “
?
e, Figure 4a) or rational numbers (α “ 3{2, cα Ñ 0, Figure 2a). As non-algebraic

irrational numbers can be much better approximated with rationals then algebraic numbers, non-algebraic grid

scale ratios will lead to much stronger interference between the two modules, but only at distances moderately

large compared to the scale of the modules (Figure 5).

The extremely rough landscape of cα renders optimization for α an espacially difficult problem: it is very

unlikely that a biological system would be able to find the global optimum for the scale ratio of two grid modules

and a relatively small mistuning from a local optimum could significantly deteriorate the efficiency of the system.

Therefore, at least in the case of two modules, it seems to be impossible to achieve asymptotically optimal scale

ratio for the grid cells. Although the two-module grid cell system was shown to be unstable against small variations

in the relative scale of the modules, it is unclear if these results generalise to grid systems with multiple modules.

5This last condition is only needed to exclude the possible exceptional ` distances in (2.5), which in practice is not a crucial condition

(Figure 4d-e).
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2.3. Multiple modules - naive solution. To derive the general solution for M grid modules, we focus on a set

of 1-dimensional grids with scales α0 “ 1 ă α1 ă ¨ ¨ ¨ ă αM´1. Spatial representation is unambiguous up

to a distance L from the origin if there is at least one module for which the phase is significantly different from

0 (Figure 6). Conversely, the representation becomes ambiguous if all modules show interference at the same

location, i.e., the phase of all modules are very close to 0 at distance ` from the origin.

Theoretical studies demonstrated that geometric progression of grid cell scales is optimal for nested coding, i.e.,

when each module refines the position coding within the period of the subsequent module (Figure 1c, Mathis et al.

2012a; Wei et al. 2015; Mosheiff et al. 2016). Recordings from multiple grid cells along the dorso-ventral axis of

the entorhinal cortex found a set of discrete modules with increasing grid scale (Hafting et al., 2005; Barry et al.,

2007; Brun et al., 2008; Stensola et al., 2012). However, the precise geometric progression of grid scales was not

confirmed as the scale ratio between the successive modules was found to be highly variable (Stensola et al., 2012).

This variability can be partly attributed to the difficulty of estimating the grid scale from finite and noisy data, and

the geometric progression could still be a good approximation of the data.

Thus, we speculated whether the set of grid cells with scale ratio (α) optimally chosen between pairs of succes-

sive grid modules were also near optimal in representing spatial location. Such pairwise optimization would lead

to a set of scales showing geometric progression with the scale ratio being α “ σ, i.e., r1, σ, σ2, . . . s. Surprisingly,

we found that with scale ratios that are efficient for two modules, adding a third (or more) module provides only

very little additional improvement on the coding capacity of the grid cell system.

To see this, consider for example the golden ratio σ, which is a second order algebraic number, i.e., it is the root

of the integer coefficient polynomial x2´x´1. Therefore, the phase ψ2pxq “ px mod σ2q{σ2 of any spatial point

x according to the third module can be simply expressed with that of the first two modules as

(2.8) ψ2pxq “ rψ0pxq ´ ψ1pxqs mod 1

(Methods 4.2). In other words, the phase of the third module provides no additional information given the phase of

the other two modules. In particular, if both ψ0pxq and ψ1pxq are close to 0 (Figure 6b), then so is ψ2pxq and hence

the third module fails to resolve the ambiguity when the two first modules interfere. The same argument applies

for any other low-order algebraic number as well. Nevertheless, in the next section we show that many modules

with appropriately chosen scale ratio can perform much better than two modules.

2.4. Multiple modules - general solution. The logic of the general solution for multiple modules is the same as

in the case of two modules. Here we only state the main results and the technical details of the analysis can be

found in the Methods (4.3).

First, we show that a similar upper bound exists for the maximal phase difference between the modules. Com-

pared to the two-module case, the bound is weaker when M ą 2 as the phase difference scales only with

1{`1{pM´1q " 1{` meaning that it ensures simultaneous interference between all modules only at much larger

distances.

Second, we found that the upper bound can be satisfied, up to a constant multiplier, cA, for algebraic scale ratios.

Specifically, if the scales of M modules form a geometric series with common ratio α being an algebraic number

of degree M , the upper bound is tight, meaning that the phase difference does not shrink faster than 1{`1{pM´1q.

Intuitively, this scaling indicates that there is always at least one pair of modules for which the phase difference at

the integer distance ` from the origin is larger than the lower bound.

The critical distance Lmax up to which coding is unambiguous can be expressed as (cf. Equation 2.7):

(2.9) ` ď Lmax :“
´cA
δ

¯M´1

,

for all δ which is small enough. Intuitively, Equation 2.9 demonstrates an exponential scaling of the maximal

distance uniquely represented by a population of grid cells with the number of grid modules, M . The coding range
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FIGURE 6. Interference ofM “ 3 modules with different choice of scales. (a) Top: Posterior

densities for three modules with rational scale ratios. The overlap between the modules is shown

in black, its height indicates the interference of the three modules as a function of distance from

the origin. The representation becomes ambiguous only if all 3 modules interfere, as at distance

6. Bottom: Ambiguity in position coding quantified by the multi-modality of the combined

posterior. (b) Posterior densities for three modules with pairwise optimal scale ratios. The scales

are 1 (blue), σ (red), and σ2 (olive). If two modules interfere with each other, then they interfere

with the third as well: at distance 8 the three peaks almost coincide. (c) The same as in (b)

for scales 1, 21{3, 22{3, powers of a cubic algebraic number. Although pairwise interference

can be very strong between any pairs (e.g. at distances 5, 6.2 and 8), the total interference is

substantially lower than in panel b (bottom).

of a particular set of the grid scales, A “ pα1, . . . , αM´1q, depends on both the noise in the system and on the the

basis of the exponential cA.

To directly compare the capacity of the non-nested grid cell system derived here with previous estimates, we

also calculate Nmax, the number of distinguishable spatial phases:

Nmax :“
Lmax

2δ
“

1

2cA

´cA
δ

¯M

(2.10)

The maximal capacity of the grid cell system has been estimated in the case of nested coding (Wei et al., 2015;

Mathis et al., 2012a). Efficient coding with nested modules requires that αi “ ri with 0 ď i ďM ´ 1 and r being
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FIGURE 7. Robustness of the grid code with multiple modules. (a)-(b): Approximate cA
values estimated for 100 α randomly selected from the interval r1, 2s with M “ 5 (a) and M “

10 (b) (see also Figure 5a for M “ 2). The scales form a geometric series, i.e., A “ tαiuMi“1.

Red circle indicates cA for a second order algebraic number α “ σ´1{2 « 1.118. Green (cyan)

shows cA for a 5th (10th) order algebraic numbers. Noise level is the same as in Figure 5a

(0.05 ă δ ă 0.2). (c)-(d): Mean (c) and coefficient of variation (d) of cA evaluated on the range

α “ t1.1, 1.9u. For M “ 10 the cA is shown for two alternative selection of the scales: if all

10 scales are selected randomly from the interval r1, 2s (olive) and when αs form a geometric

series perturbed as A “ tp1 ` εiqα
iu10i“1, where εi are i.i.d. uniform random variables on the

range r´0.01, 0.01s (red). (e)-(f) Phase difference (εp`q, (4.8)) in the function of the distance,

`. (e) Effect of number theoretic properties with M “ 10. When α is the root of the 10th order

polynomial x10 ´ x7 ´ 1, α « 1.12725, εp`q decays as 1{`1{9 (black). When α is second order,

α “ σ ´ 1{2 « 1.11803, the initial decay is similar, but after a critical distance at ` « 106

the decay becomes 1{` (yellow). (b) The critical distance grows with the number of modules

(αi “ pσ ´ 1{2qi). Grey shading in (e-f) indicates the range of phase difference smaller than

noise (Equation 4.9).

the scale ratio with fixed relative uncertainty of modules 2δ “ 1{r (Wei et al., 2015). The position of the animal can

be determined at precision 1{m without ambiguity if the animal is restricted to move in an environment with the

size identical to the scale of the largest module, mM´1. In this case the number of distinguishable spatial phases is

mM “
` 1{2
δ

˘M
, which is identical to the capacity we found for non-nested coding when cA “ 0.5 (Equation 2.10).

Since it has been previously shown that the grid system achieves its theoretically maximum capacity for nested

codes (Wei et al., 2015; Mathis et al., 2012a), we can conclude that the capacity of the non-nested grid cell system

is also nearly maximal, provided that cA is near 0.5. In the next sections we will first numerically estimate the

value of cA for various choices of the grid scales A and then we will show that with sufficiently large number of

modules cA is guaranteed to approach 0.5.

2.5. Numerical estimation of the cA. We developed an efficient method to numerically estimate the value of cA
for various parameter settings that is based on the simultaneous Diophantine approximations of a set of irrational

numbers (Methods, 4.8). Using realistic noise levels we found that, in the case of two modules, the efficiency

of coding is very sensitive to the choice of α, especially to its number theoretic properties (Figure 5a). This

sensitivity gradually vanishes with increasing the number of grid modules (Figure 7a-b), and for M “ 10 modules

cA P r0.2, 0.4s for almost all choices of the grid scales (Figure 7b), both when the scales follow a geometric series
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with a common scale ratio α (Figure 7b) and when all theM scales are chosen from the bounded interval r1, 2s (not

shown). We also found that cA vanishes only for pathological examples such as rational numbers or powers of the

second order algebraic number α “ σ ´ 1{2 « 1.118 (Figure 7a-b, red). The only scale choice that significantly

degrades the performance is when α « 1 (Figure 7a-b) which means that all grid modules have nearly identical

spatial scale.

To quantify the sensitivity of the grid system to the choice of the scale parameters we calculated the mean and

the coefficient of variation of cA with random choices of α (Figure 7c-d). We found, that the average cA increased

monotonically with the number of grid modules indicating that the system’s performance becomes closer to the

ideal cA “ 0.5 value as the number of modules increased (Figure 7c). Moreover, the variability of cA consistently

decreased with the number of modules reflecting the improved robustness of the system to the choice of grid periods

(Figure 7d). Note, that the maximal distance grows exponentially with the number of modules (Equation 4.10) and

cA ď 0.5 sets the base of the exponential scaling.

To further investigate the mechanisms responsible for the robustness of the system, we numerically evaluated

the minimal phase difference between the modules, εp`q, in the function of the distance (Figure 7e-f). In line

with the predictions of the theory (Equation 4.8), we found that the phase difference decreased with `´1{pM´1q,

i.e., with a small negative power of the distance for α being an order M algebraic number (Figure 7e, black).

For suboptimal αs, the scaling of the phase difference was nearly optimal up to a critical point beyond which the

scaling followed the algebraic rank of α (i.e., second order α scales with 1{`, Figure 7e, green). Importantly, this

critical point, where the transition occurs between ideal and number theoretical scaling is located at increasingly

larger distances when the number of modules increased (Figure 7f). Therefore, the asymptotic, number theoretical

properties of the grid periods have a gradually lower impact on the performance of the system in the distance range

limited by the intrinsic variability on neuronal spiking (Figure 7ef, background shading).

These observations suggests that even random scale choices might achieve optimal performance as the number

of modules grow. In the next section we make this statement mathematically precise and demonstrate that indeed,

cA approaches its maximum, 0.5, when the number of modules grow and the scales are chosen uniformly at random

from a bounded interval.

2.6. Capacity of non-geometric grid scales. Previous studies claimed that the representational capacity of the

grid cell system is exponential in the number of modules (Fiete et al., 2008; Sreenivasan & Fiete, 2011; Mathis

et al., 2012a,b; Wei et al., 2015). However, an analytic proof is known only in case of nested coding (Mathis et al.,

2012b; Wei et al., 2015), a coding scheme that requires very specific choice for the scaling of the modules. Our

number theoretic argument (eq. 4.10) solely does not imply exponential capacity, since it does not exclude the

possibility that the base of the exponential, cA, converges to 0 as M increases (although we observed the opposite

trend, see Figure 7c). In this section we investigate the asymptotic properties of the grid code when the number

of modules increases and the relative uncertainty δ of the modules remains fixed. Here we only state these results

informally, and leave the precise statements and the slightly technical mathematical proof to the Methods (4.7).

The main idea behind the proof is that the phase of a given module at particular distance x from the origin

depends only on the scale of that module, α. If the scale is chosen from a bounded interval r1, αmaxs, then the

phase is also random variable with probability distribution approaching the uniform distribution as the distance

increases. Then, the probability of simultaneous interference between M modules, that is, the probability of all

modules being near phase 0 at some distance x, is proportional to the volume of an M-dimensional hypercube,

which is V “ p2δqM , where the side of the cube is 2δ. The ratio of the volume of the hypercube and the unit cube

(the number of distinguishable phases) diminishes exponentially withM , and the total distance (expressed in units

of α0 “ 1) covered without ambiguity is 2δ
V 9p

1
2δ q

M´1. Specifically, our statement is, roughly speaking, that if

0 ă δ ă 1{2 is fixed, M is large enough, and the module scales are drawn uniformly at random from a not too
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narrow bounded interval, e.g. from r1, 2s, then the representation is unambiguous up to the exponential distance

(2.11) ` ă
´cA
δ

¯M´1

with probability approaching 1, and cA approaching 1{2. Although this statement is valid only if M Ñ 8, we

emphasize that this result is stronger than our previous derivation (Equation 4.10) in three aspects: First, our

previous derivation (4.10) allowed cA to tend to 0 as M increased. Now we showed that this does not happen.

In fact, the value of the constant tends to its theoretical maximum 0.5 (section 2.3, Wei et al. 2015) for large M

with high probability, confirming our previous numerical results (Figure 7c). Second, one can achieve this nearly

optimal performance without increasing the scales exponentially, with the scales chosen from a bounded interval.

Third, this almost optimal efficiency is not only reached for some appropriately chosen scales, but for almost all

choices. Thus, our results demonstrate that no meticulous tuning of the grid scales is required for close to optimal

grid system performance.

3. DISCUSSION

In this paper we developed a novel analytical technique to investigate the coding properties of grid cells. Using

this technique, which is based on Diophantine approximation of real numbers by fractions of integers, we were

able to derive several novel and non-trivial properties of the grid cell code. First, we demonstrated that on the long

run, the capacity of the system depends heavily and chaotically on the number theoretic properties of the scale ratio

between the successive modules. To achieve optimal performance in a system with M modules the scale ratio has

to be an algebraic number of order M . Second, we showed that in the presence of neuronal noise the capacity of

the grid code becomes increasingly more robust to the choice of the scale parameters when the number of modules

is increased: when M ą 2, randomly chosen scales perform nearly as well as the optimal scales. Finally, we

derived that the capacity of MA and nested grid codes are asymptotically identical (in the large M limit), even for

randomly chosen scale parameters for the MA codes.

Information content. Previous works used specific assumptions to derive exponential information content for

the grid cell coding system: they assumed either a nested coding scheme (Mathis et al., 2012b; Wei et al., 2015)

or presumed that the phase space is covered evenly and the noise in a given module decreases with the number of

modules (Sreenivasan & Fiete, 2011). Here we generalised these findings and demonstrated that nested and MA

codes have asymptotically equal capacity.

To derive the capacity of MA codes we realised that achieving uniform coverage of the phase space is not

trivial in the case of two or a small number of modules, but can only be attained with appropriately chosen scales.

Specifically, we recognised that uniform coverage of the phase space by the phase curve at arbitrary distances is

guaranteed if the scale ratio between the two modules is an algebraic number of order 2. Using our formalism

allowed us to generalise this intuition for arbitrary number of grid modules and to demonstrate that even a random

choice of grid scales guarantees uniform coverage of the phase space when the number of modules is high.

To derive exponential information content we also relaxed the assumption of an earlier studySreenivasan & Fiete

(2011) that the total amount of the noise remains constant in the grid system even when the number of modules is

increased, i.e., the coding errors of each module decreases with M . Here we derived these results using the more

realistic assumption that the noisiness of each modules is independent of M and proportional to the scale of the

module.

We confirmed our analytical results by extensive numerical simulations regarding the simultaneous interference

between grid systems with various choices of the scale parameters. In line with previous results (Fiete et al., 2008;

Towse et al., 2014), our simulations confirmed that the grid system is robust to the choice of the scale parameter

and that the coding range is exponential in the number of modules.
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Nested coding versus MA code. Although the efficiency of the coding investigated in this paper is slightly

worse than that of the optimal nested coding (Mathis et al., 2012b; Wei et al., 2015), MA codes also have several

advantages. First it uses orders of magnitude smaller scale lengths than the maximal distance up to which the

coding works properly. The largest grid scales measured experimentally are« 3 m (Brun et al., 2008), substantially

smaller than the typical distances travelled by rodents.

Second, while the consequence of a module failure simple decreases the capacity of the system in the case of

MA coding, it can have more dramatic effect in nested codes: Although malfunction of the largest or smallest

module reduces either the capacity or the resolution of nested codes, respectively, the lack of intermediate modules

functionally breaks the interaction between the remaining modules decreasing both the resolution and the capacity

of the system in a disproportionate manner.

Third, once the scales are set, the capacity of nested grid codes does not depend on δ, therefore, contrary

to MA codes, it is not possible to increase the coding range by inserting more neurons into the same modules.

Conversely, the functioning of the nested codes critically depends on accurate decoding of each modules: If the

readout neuron does not have access to enough presynaptic neurons from a given module, then the corresponding

posterior becomes too wide leading to interference between the modules. This has similar consequences as the

absence of the given module in nested codes. In contrast, in MA codes the coding properties remain similar for

postsynaptic neurons receiving different number of synapses from different modules, although the coding range is

the function of the precision available for the observer (Equation 4.10).

When encoding dynamic trajectories instead of static location, the number of neurons required to participate

in a given module decreases quadratically with the scale of the module, i.e., ni „ 1{αi (Mosheiff et al., 2016).

Specifically, representing the position with a fixed accuracy with αi “ 0.2 m requires „ 4000 neurons while

αi “ 2 m needs only „ 40 neurons. This scaling implies that the coding range of the nested grid system can be

easily and parsimoniously extended by adding a new module with larger scale but containing only relatively few

neurons. Although the relationship between the number of neurons in a module and its scale holds also for MA

codes, the total number of neurons required to achieve similar coding range can be substantially smaller in nested

codes.

Another consequence of dynamical coding is that the time constant of the readout has to be matched to the scale

of the grid modules (Mosheiff et al., 2016). As the grid scale varies over a large range in the case of nested codes,

the postsynaptic neuron has to integrate inputs from different grid cells with time constants ranging from 1 ms to

1 second (Mosheiff et al., 2016). In MA codes, the modules have similar scales and their outputs can be integrated

with similar time constants.

Finally we note that nested coding and MA coding are not mutually exclusive: they are two extreme forms of

decoding the same information, but both can be present in the same system. The MA code has a larger coding

range if cA ą αδ so it is favoured by small α (small differences between scales) and small δ (high accuracy).

Even in this case locations within the largest grid scale can be decoded as in nested coding, while MA decoder is

required beyond this distance.

Optimization and robustness. The bewildering regularity of grid cells’ firing fields motivated theories about

them being evolved to optimally represent the spatial location of the animal (Kropff & Treves, 2008; Sreenivasan

& Fiete, 2011; Mathis et al., 2012a; Moser et al., 2014). Besides the general optimality of triangular grid-like firing

fields (Mathis et al., 2015), recent theoretical work derived optimal scale ratio of successive grid modules in the

case of nested coding (Wei et al., 2015; Stemmler et al., 2015; Mosheiff et al., 2016). These predictions roughly

agree with the average scale ratio observed in the entorhinal cortex (Barry et al., 2007; Stensola et al., 2012; Krupic

et al., 2015), but do not explain the substantial amount of variability characteristic of this data.

The optimization principle assumes that substantial improvement in the performance of the system can be

achieved with precise tuning of its parameters. In the present study we demonstrated that this is indeed the case in
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the absence of noise. However, even in this case, optimization would be almost unfeasible for two reasons. First,

the coding range is an extremely irregular, discontinuous function of the scale parameter, making optimisation

essentially a trial and error game. Second, a scale parameter that is optimal for a given number of modules is

guaranteed to be inefficient when the number of modules is increased precluding the possibility of pairwise or

modular optimization.

However, taking the variability of neuronal firing into account changes the picture dramatically. We demon-

strated that when the coding accuracy of grid modules is limited by neuronal noise, the capacity of the system

becomes surprisingly robust to the choice of the scale parameters making its optimization unnecessary. Note, that

generating the regular, periodic firing fields of grid cells demands accurate integration of velocity inputs (Issa &

Zhang, 2012; Burak & Fiete, 2012) and repeated error correction (Burak & Fiete, 2009; Samu et al., 2009), both

requiring the precise tuning of single neuron and network parameters within a given module.

Predictions. Our finding, that grid cells have an exponentially large coding range even with randomly chosen

grid scales of similar magnitudes makes several important predictions. First, MA coding predicts that the coding

range is substantially larger than the largest grid period. Since grid cells are likely to be involved in path integration

(McNaughton et al., 2006; Moser et al., 2008), this prediction could be tested by probing path integration abilities

of rodents beyond distances of the largest grid period (Etienne & Jeffery, 2004).

Second, in the case of MA coding, different modules have similar contribution to the coding range of the system.

Therefore, the effect of targeted dMEC lesion (inactivating a single module, similar to Ormond & McNaughton

2015) on the rat’s navigation behaviour would be largely independent of the actual location of the lesion (i.e.,

which module is inactivated).

Third, since the performance of the system is independent of the precise choice of the grid scales, we expect

a large variability in the scale ratio of successive grid modules both within and across animals. This prediction

is consistent with the experimental data available (Barry et al., 2007; Stensola et al., 2012; Krupic et al., 2015),

although further statistical analysis would be required to specifically determine the distribution of scale ratios.

Finally, we predict that the performance of the system is not particularly sensitive to changes in the scale

parameter of a subset of modules during e.g., global remapping induced by environmental changes (Fyhn et al.,

2007). It has been shown that under certain conditions simultaneously recorded grid cells respond coherently

within a module and independently across modules to environmental distortions (Stensola et al., 2012). To test

the predictions of our theory, the behavioural consequences of incoherent realignment across modules should be

assessed and compared with the effects of environmental manipulations inducing coherent realignment (Krupic

et al., 2015).

4. METHODS

4.1. Estimating the precision of a single module. We numerically estimated the precision of position coding by

a single module by first simulating the motion of the animal as a one dimensional Gaussian random walk:

(4.1) P pxt`1|xtq “ N pxt,∆tDq

with ∆t “ 1 ms temporal resolution and D “ 0.005 m2/s, which gives « 5 cm displacement in 0.5 s (Mosheiff

et al., 2016). We simulated the activity of N “ r10, 300s grid cells from a single module. Grid cells had a circular

tuning curve:

(4.2) rkpxq “ rmax

ˆ

sin
`2π x

2λ
´ φk

˘

˙n

` r0

with the following parameters: rmax “ 15 Hz, r0 “ 0.1 Hz, λ “ 0.25 m and φk chosen to uniformly cover the

interval r0, 2πs. The power n “ 22 was set to match the mean firing rate of the grid cells, xrpxqy “ 2.5 Hz, to
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experimental data (Fyhn et al., 2007). Larger (λ “ 2.5 m) grid spacing was modelled by decreasing the speed of

the animal by a factor of 10 (D “ 0.00005 m2/s). The firing rate is shown in Figure 1b, right (olive).

Spike trains were generated as an inhomogeneous Poisson process with neurons conditionally independent

given the simulated location:

(4.3) P pskt |xtq “ Poisson
`

∆t rkpxtq
˘

The posterior distribution of the position was numerically calculated by recursive Bayesian filtering:

(4.4) P pxt|s0:tq9
ź

k

P pskt |xtq

ż

P pxt´1|s0:t´1qP pxt|xt´1qdxt´1

The colormap in Figure 1b shows this posterior distribution with N “ 50 cells and λ “ 0.25 m.

At each timestep the posterior distribution was fitted with a von Mises distribution with a location µt and a

concentration parameter κt. The width of the posterior relative to the grid scale was estimated as:

(4.5) δt “
λ

2π
?
κt

To be conservative, we chose δ to be the 99% of the empirical CDF of δt. The largest δ “ 0.12 was found with

λ “ 0.25 m and N “ 10 cells. The smallest δ “ 0.01 corresponds to the parameters λ “ 2.5 m and N “ 300

cells.

4.2. More than two modules: golden ratio is suboptimal.

Proof of (2.8). By the definition of the phases ψipxq when the animal is at distance x from the origin there are

some integers `, k1, k2 so that

x “ `` ψ0pxq “ σpk1 ` ψ1pxqq “ σ2pk2 ` ψ2pxqq.

Using that σ2 ´ σ ´ 1 “ 0 we get that

σ2p`` ψ0pxqq ´ σ
2pk1 ` ψ1pxqq ´ σ

2pk2 ` ψ2pxqq “ 0.

Rearranging terms yields

ψ2pxq “ `´ k1 ´ k2 ` ψ0pxq ´ ψ1pxq

“ rψ0pxq ´ ψ1pxqs mod 1.

�

Clearly the same argument works not only for the powers of the golden ratio, but for powers of any algebraic

number of order lower than the number of modules.

4.3. Interference with M modules. To derive the general solution for M grid modules, we consider on a set of

1-dimensional grids with scales α0 “ 1 ă α1 ă ¨ ¨ ¨ ă αM´1. Again, the interference between the modules can

be expressed by the simultaneous Diophantine approximation of the vector A “ pα1, . . . , αM´1q using fractions

of integers with the common numerator `, i.e., αi « `{ki. Importantly, a theorem by Dirichlet (Section 4.4)

provides an upper bound on the efficiency of the approximation. Namely, for all pM ´ 1q-tuple of irrational

numbers α1, . . . , αM´1 we have infinitely many collections of integers k0, k1, . . . , kM´1 (with k0 “ `), such that

the approximation error defined as

(4.6) rεijp`q “ |kiαi ´ kjαj |

is simultaneously smaller than the upper bound for all items in the tuple:

(4.7) rεijp`q ă
αi ` αj
`1{pM´1q

p@i, j “ 0, . . . ,M ´ 1, i ‰ jq.

Note, that rεij differs from ε defined for two modules (Equation 2.2) as it is not normalised with α.
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For a set of grid scales αi “ αi (i “ 0, . . . ,M ´ 1) where α is an algebraic number of degree M , there exists

a maximal positive constant cA, such that

(4.8) rεp`q “ max
i,j

"

1

αi ` αj
rεijp`q

*

ą
cA

`1{pM´1q

holds, except for at most finitely many integers `.

The position representation is unambiguous if there is at least one pair of modules for which the phase difference

is larger than the threshold set by the noise, i.e., rεi,jp`q ą δpαi ` αjq which holds if

(4.9) δ ă
cA

`1{pM´1q

From here, the critical distance Lmax up to which coding is unambiguous can be expressed as (cf. Equation 2.9):

(4.10) ` ď Lmax :“
´cA
δ

¯M´1

,

for all δ which is small enough (Section 4.6).

4.4. Proof of Dirichlet’s theorem.

Proof of (4.7). First we prove that any vector of irrationals can be approximated to the claimed order with rationals

having the same denominator. Let A “ pα1, . . . , αn´1q. To approximate A with rationals of denominator at most

Q let us define the vectors aj “ jA ´ tjAu, j “ 0, . . . , Q, where floor is understood coordinate-wise. Let us

partition the unit cube r0, 1sn´1 into small cubes of side length Q´1{pn´1q, so that altogether we have Q of them.

Since we have Q` 1 many aj-s each falling into r0, 1sn´1, hence there will be (at least) 2 of them falling into the

same small cube, ak and al, say. Then
ˇ

ˇ|k ´ l|A´ |tkAu´ tlAu|
ˇ

ˇ ď |ak ´ al| ď Q´1{pn´1q,

with the inequalities holding coordinate-wise. Therefore, because of |k ´ l| ď Q, A is approximable with denom-

inator |k ´ l| and numerator (vector) |tkAu´ tlAu| with error not exceeding |k ´ l|´p1`1{pn´1qq.

The desired statement follows then by simultaneously approximating the numbers 1{αi with common denomi-

nator, which is also a simultaneous approximation of αi with common numerator, which completes the proof. �

4.5. Powers of an algebraic number are badly simultaneously approximable. The statement of Drmota &

Tichy (1997) (see also Cassels 1955) is that powers of an algebraic number are badly simultaneously approximable

with common denominator in the following sense. Let β be an algebraic number of order M . There exists cβ ą 0

such that for all integer `, ki there is i P t1, . . . ,M ´ 1u for which

|βi`´ ki| ą
cβ

`1{pM´1q
.

Derivation of (4.8). Our goal is to give a lower bound on |αiki ´ αjkj |, where α is algebraic of order M , 0 ď

i, j ďM ´ 1. Without loss of generality suppose that i ă j.

|αiki ´ α
jkj | “

ˇ

ˇ

ˇ
αi´jki ´ kj

ˇ

ˇ

ˇ
αj ą αj

cA

k
1{pM´1q
i

.

Now the fact that ki „ `{αi implies (4.8) if cA ą 0 is chosen appropriately. �

4.6. Coding is unambiguous up to exponential distance in the number of modules. To derive (4.10) we first

show that interference of the grid representation is equivalent to pairwise interference between all pairs of modules.

To test unambiguity of coding note that the place at distance x from the origin is confusable with 0 if for all

i “ 0, . . . ,M ´ 1 there exists an integer ki such that

(4.11) |kiαi ´ x| ă αiδ,

where δ is the relative uncertainty of modules. It turns out that, as for M “ 2, there is no need to consider all

x P r0, Lmaxs, it is enough to care with integers:
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Claim 4.1. There exists x P r0, Lmaxs for which (4.11) holds for all i exactly when the following pairwise inter-

ference occurs between all modules:

(4.12) |kiαi ´ kjαj | ă pαi ` αjqδ

for all i, j with some integers ki (i “ 0, . . . ,M ´ 1) such that 0 ă kiαi ď Lmax.

Proof. Let us fix ki, i “ 0, . . . ,M ´ 1. Pairwise interference means that there is a point xi,j in the intersection of

pkiαi´αiδ, kiαi`αiδq “ pai, biq and pkjαj ´αjδ, kjαj `αjδq “ paj , bjq. Due to the topology of the line, it is

easy to see by induction that the intersection of all such intervals is nonempty and hence one can chose xi,j “ x.

The statement is obvious for M “ 2. Now suppose that the intersection
Şn
i“0pai, biq ‰ H. Then it is the interval

pa, bq with

a “ max
i“0,...,n

ai and b “ min
i“0,...,n

bi.

If pan`1, bn`1q intersects pai, biq, then both an`1 ă bi and bn`1 ą ai, and therefore an`1 ă b and bn`1 ą a,

which completes the induction. Therefore (4.11) implies (4.12). The other direction is immediate. �

Now using Claim 4.1 (4.10) easily follows by rearranging (4.8).

4.7. Asymptotic capacity of the random grid cell system. Let us fix the relative uncertainty of modules δ ă 1{2

and a number αmax ą p1 ` δq{p1 ´ δq. We show that if scales α1, α2, . . . are drawn uniformly at random from

r1, αmaxs, independently of each other, then for any 0 ă ζ ă 1{2 the representation with M modules having scales

α1, α2, . . . , αM is unambiguous in every spatial position x ą 0 up to

(4.13) x ă Xmax :“

ˆ

ζ

δ

˙M´1

with probability of order p2ζqM as M Ñ8.

Here ζ is the analog of cA which characterises the capacity of a particular grid cell system. As we will see, the

convergence holds for any ζ ă 1{2, but the speed of the convergence depends on ζ: higher efficiency is guaranteed

to be achieved only for larger number of modules.

Proof: Let α1, α2, . . . be independent random variables distributed uniformly on r1, As. Let x be a spatial point

and let rψi “ rψipx, αiq denote the phase of module i (with scale αi) at x, that is

rψi :“ px mod αiq{αi “ x{αi mod 1 “ x{αi ´

Z

x

αi

^

P r0, 1s.

Note that for fixed x the distribution of phases rψi are independent of each other since the α-s are independent. We

also use the notation p1pxq for the probability that the phase rψi is (almost) indistinguishable from 0, defined in the

following way:

p1pxq “ Pαi

´

rψi P
“

0, p1` εqδ
‰

Y
“

p1´ p1` εqδq, 1
‰
ˇ

ˇ x
¯

.

where ε “ą 0 is determined later. It is easy to see that p1pxq does not depend on i, i.e., it is the same

for all modules. Moreover, as the distance increases the distribution of rψi converges to uniform, in particular

limxÑ8 p1pxq “ 2p1 ` εqδ (Figure 8). Hence there exists a critical distance, x0 “ x0pδ, εq for which all x ą x0

we have |p1pxq ´ 2p1` εqδ| ď δε. Therefore, for x ą x0 we have

(4.14) p1pxq ď p2` 3εqδ.

It also implies a bound on the probability of interference of many modules at a given point x. If we consider M

modules with scales drawn uniformly at random from r1, As and independently of each other, then by (4.14) for
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FIGURE 8. ψi as a function of αi for αmax “ 2, x “ 42.6 and p1 ` ε{3qδ “ 0.2. The plot of

ψi consists of line segments more and more vertical as x Ñ 8. Therefore, if x is big enough,

ψipαiq is distributed almost uniformly on r0, 1s.

x ą x0 the probability of all phases being close to 0 is

pM pxq “ P
´

p@i ďMq rψi P
`

0, p1` εqδ
˘

Y
`

p1´ p1` εqδq, 1
˘
ˇ

ˇ x
¯

(4.15)

“ p1pxq
M ď

`

p2` 3εqδ
˘M

where pM pxq is exponentially small in M .

There remains to estimate the probability of interference of many modules anywhere up to a maximally allowed

spatial distance. Our goal is to show that

(4.16) P
´

pDx ă Xmaxqp@i ďMq rψipxq P
`

0, δ
˘

Y
`

p1´ δq, 1
˘

¯

Ñ 0

as M Ñ 8, where Xmax “
`

ζ
δ

˘M´1
, as in (4.13). Note, that satisfying Equation 4.16 is not trivial, since Xmax

increases exponentially with M .

There is no need to investigate all x ă Xmax, it is enough to show, that there is no interference on a set which

is dense enough in r0, Xmaxs in the stronger sense of (4.15). Indeed, let Y be an ε dense set in r0, Xmaxs with at

most 2Xmax{ε elements. Then

tpDx ă Xmaxqp@i ďMq rψipxq P
`

0, δ
˘

Y
`

p1´ δq 1
˘

u

ñ tpDx P Y qp@i ďMq rψipxq P
`

0, p1` εqδ
˘

Y
`

p1´ p1` εqδq, 1
˘

u

where we used the fact that the d
dx

rψi “
1
αi
ă 1 since αi was chosen from the interval r1, As. The corresponding

inequality for the probabilities of these events is

P
´

pDx ă Xmaxqp@i ďMq rψipxq P
`

0, δ
˘

Y
`

p1´ δq, 1
˘

¯

ď P
´

pDx P Y qp@i ďMq rψipxq P
`

0, p1` εqδ
˘

Y
`

p1´ p1` εqδq, 1
˘

¯

.

Now for these finitely many points x P Y we can use (4.15) one by one, if x0 ă x:

P
´

pDx0 ă x P Y qp@i ďMq rψipxq P
`

0, p1` εqδ
˘

Y
`

p1´ p1` εqδq, 1
˘

¯

ď
`

p2` 3εqδ
˘M

2Xmax{ε

ď ¨ ¨ ¨ ď
`

2pζ ` εq
˘M
{εÑ 0,

if ε ă 1{2 ´ ζ, which we assume, where in the first inequality we used (4.15) and union bound, and then in the

second one thatXmax “
`

ζ
δ

˘M´1
. We have to remark that interference in different spatial points is not independent

of each other, but union bound works even in that case.

There remains to show that the grid cell representation works up to x0. Clearly there is no ambiguity up to

x “ 1` δ. To estimate the probability

(4.17) P
´

pDx0 ě x P Y qp@i ďMq rψipxq P
`

0, p1` εqδ
˘

Y
`

p1´ p1` εqδq, 1
˘

¯
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FIGURE 9. Which element of the lattice generated by the above two blue headed vectors is

closest to the origin? Or in other words, what is the shortest nonzero vector which can be

obtained as an integer coefficient linear combination of the above vectors?

we first have to observe that the cardinality of Y X r1 ` δ, x0s is independent of M . Therefore to guarantee that

the probability in (4.17) goes to 0 we need to show that for all 1` δ ď x ď x0 there is a scale α P r1, As which is

able to distinguish x from the origin, that is α such that

rψpαq “ px{α mod 1q P rδ, 1´ δs.

This is so because x{α is monotonically decreasing in α and because

x{1´ x{A ě xp2δ{p1` δqq ě 2δ,

where we used that αmax ą p1 ` δq{p1 ´ δq and x ą 1 ` δ. Therefore rψpαq can not lay in r0, δs Y r1 ´ δ, 1s for

all α P r1, αmaxs. �

4.8. Numerical estimation of the cA with M modules. A common and natural way to numerically investigate

Diophantine approximation is using lattice reduction (Lenstra et al., 1982). By lattice we mean a subset L of Rd

defined by some vectors v1, . . . , vm P Rd, m ď d so that

L “
!

w “
m
ÿ

i“1

bivi | bi P Z
)

.

Given a lattice L, a classical computational problem is to find the shortest non-zero vector of it (Figure 9). In

the followings we show how Diophantine approximation of a vector pα1, . . . , αnq can be investigated with the help

of finding shortest vectors of appropriately chosen lattices.

Let us first consider a simple example. Let the lattice L be defined by the rows of the matrix

V “

»

—

—

–

v1
...

vn`1

fi

ffi

ffi

fl

:“

»

—

—

—

—

—

—

—

–

α1 0 . . . 0 0

0 α2 . . . 0 0
...

...
. . .

...
...

0 0 . . . αn 0

´1 ´1 . . . ´1 ε

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where ε ą 0. For all ε which is small enough the shortest vector w0 “
řn`1
i“1 bivi of L corresponds to a si-

multaneous Diophantine approximation of pα1, . . . , αnq with the common numerator bn`1 and denominators bi,

i “ 1, . . . , n. The parameter ε can be considered as a penalty term: the smaller this term the bigger the numerator

can be.

When speaking about shortest vectors we need to specify the norm with respect to which vectors are com-

pared. Here we are looking for the largest phase difference between the modules so we use supremum norm

(Equation 4.8). The shortest vector in supremum norm of the lattice defined by V is an approximation so that

max
 

bn`1ε, max
i

 

|bn`1 ´ biαi|
(

is as small as possible. By this we can compute what is the maximal phase difference between the module with

scale 1 and all other modules up to distance bn`1.
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Remember that according to (4.8) we are searching for an approximation minimizing

(4.18) max
 

bn`1ε, max
i,j

 

|αiki ´ αjkj |{pαi ` αjq
(

`1{pM´1q
(

.

Similarly to the previous example, it can be done simply by dividing columns i, i “ 1, . . . , n of V by p1`αiq, and

by adding some more columns of similar form which refer to interference between modules i and j. For example,

for n “ 3 the shortest (in sup norm) element of the lattice generated by the rows of the following matrix gives an

approximation minimizing (4.18):
»

—

—

—

—

–

α1

1`α1
0 0 α1{α3

α1`α3
0 α1{α2

α1`α2
0

0 α2

1`α2
0 0 α2{α3

α2`α3

´1
α1`α2

0

0 0 α3

1`α3

´1
α1`α3

´1
α2`α3

0 0
´1

1`α1

´1
1`α2

´1
1`α3

0 0 0 ε

fi

ffi

ffi

ffi

ffi

fl

.

In this way maximal interference in the grid cell system can be computed numerically as shortest vectors of

some lattices in supremum norm. Finding this shortest vector is an integer linear programming (ILP) problem,

which in general is an NP-hard computational problem, and can be solved by e.g. a branch and bound algorithm

(Land & Doig, 1960). There are also efficient methods which find approximation solutions in polynomial time,

such as the LLL algorithm due to Lenstra, Lenstra and Lovász (Lenstra et al., 1982).

The LLL algorithm finds not only a short vector of a lattice, but also another basis of it which consists of

short and nearly orthogonal vectors in the L2 norm, a so called LLL reduced basis. The error made by the LLL

algorithm is too high to precisely compute the constant terms in (4.10), and therefore we could not rely only on

this algorithm. Nevertheless, compared to the ILP solution, we could significantly speed up our computations by

first applying the LLL algorithm to find an approximate solution (and a reduced lattice), and then an ILP solver on

this LLL reduced basis, which could find nontrivial optimal solutions very efficiently if started from this input.

Estimation of cA. As cA is defined asymptotically (Equation 4.8), in order to estimate it numerically we need

an approximation of it for finite distances. An alternative definition of cA (equivalent with Equation 4.8) is

(4.19) cA “ lim inf
`Ñ8

cAp`q,

where cAp`q is defined by

(4.20) cAp`q “ min
K,k0“`

max
i,j

 

|αiki ´ αjkj |{pαi ` αjq
(

`1{pM´1q,

where K “ pk1, . . . , kM´1q. Intuitively, to find the magnitude of interference at location `, for all possible values

of K we first select the maximum phase difference in the set and then choose the set with the smallest maximum.

The distance versus cA (cα) plots of Figure 4 and Figure 7 are indeed distance versus cAp`q plots. From the plots

it is clear that the naive way of approximating cA with cAp`q for some large ` is not a good idea, as cAp`q may

vary heavily with `, especially for non-algebraic scale scale ratios. Note, that estimation of cα is a special case of

cA with M “ 2.

To estimate coding efficiency in the presence of noise we are most interested in the above infemum when ` is

such that the phase difference cAp`q{`1{pM´1q is close to the precision δ of the modules. It motivates to investigate

the (numerically computable) minimum of the set

Cpδ1, δ2q “
!

cAp`q
ˇ

ˇ

ˇ
`2pδ2q ď ` ď `1pδ1q

)

for some pair δ1 ă δ2, where `2 is so that for all ` ě `2 we have cAp`q{`1{pM´1q ă δ2 and `1 is the smallest ` so

that cAp`q{`1{pM´1q ă δ1. In Figure 5 and Figure 7 the α versus cA plots are indeed α versus Cpδ1, δ2q plots, with

the δ1 and δ2 values given in the captions.
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