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ROSTROLATERAL PREFRONTAL CORTEX IN CATEGORY LEARNING

Abstract

Category learning is a critical neurobiological function that allows organisms to simplify
a complex world. Rostrolateral prefrontal cortex (rIPFC) is often active in neurobiological
studies of category learning; however, the specific role this region serves in category learning
remains uncertain. Previous category learning studies have hypothesized that the rIPFC is
involved in switching between rules, whereas others have emphasized rule abstraction and
evaluation. We aimed to clarify the role of rIPFC in category learning and dissociate switching
and evaluation accounts using two common types of category learning tasks: matching and
classification. The matching task involved matching a reference stimulus to one of four target
stimuli. In the classification task, participants were shown a single stimulus and learned to
classify it into one of two categories. Matching and classification are similar but place different
demands on switching and evaluation. In matching, a rule can be known with certainty after a
single correct answer. In classification, participants may need to evaluate evidence for a rule
even after an initial correct response. This critical difference allows isolation of evaluative
functions from switching functions. If the rIPFC is primarily involved in switching between
representations, it should cease to be active once participants settle on a given rule in both tasks.
If the rIPFC is involved in rule evaluation, its activation should persist in the classification task,
but not matching. The results revealed that rIPFC activation persisted into correct trials in
classification, but not matching, suggesting that it continues to be involved in the evaluations of

evidence for a rule even after participants have arrived at the correct rule.
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Highlights
e Differences between rule-based matching and classification tasks were highlighted.
e Rostrolateral prefrontal cortex is involved in evaluation of evidence for a rule in

rule-based category learning tasks.

1. Introduction

Friend or foe? Predatory or prey? Edible or poisonous? Category learning is a
fundamental cognitive capacity that is critical for survival. Grouping objects into categories
allows organisms to generalize information to novel examples and make inferences about their
characteristics. For example, having the category bird can help a person identify new species
they have never seen before as birds, and make predictions about their biological features. As a
complex cognitive function, many brain regions are involved in category learning including the
prefrontal cortex (PFC), medial temporal lobes, striatum, and visual cortex (Ashby & Maddox,
2005, 2011; Poldrack & Foerde, 2008; Seger & Miller, 2010; Smith & Grossman, 2008).

Although there are many types of category learning, one of the most studied types in
cognitive neuroscience is rule-based category learning. In rule-based category learning, people
learn a logical rule that can be used to determine whether items are members of the category or

not. Many real world categories are associated with logical, albeit imperfect, rules. For example,
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members of the category bird can often be categorized based on whether they fly and lay eggs.
Broadly speaking, rule-based categorization is thought to depend upon executive cortico-striatal
loops that connect the PFC and the head of the caudate nucleus (Alexander et al., 1986; Seger &
Miller, 2010). Although early work with patients and fMRI tended to treat the PFC as being
involved in executive functions as a whole (Konishi et al., 1998, Robinson et al., 1980), recent
work in cognitive neuroscience has begun to test whether specific subregions of the PFC serve
distinct mechanisms (Seger, 2008; Seger & Miller, 2010; Ma et al., 2016).

One critical PFC region that has thus far eluded a thorough explanation in terms of its
role in category learning is the lateral parts of the fronto-polar cortex, also known as the
rostrolateral prefrontal cortex (rlPFC). The rlPFC is known to be involved in a broad array of
higher-level cognitive functions including abstract symbolic reasoning and analogical problem
solving (Green et al., 2006; Specht et al., 2009), relational category learning (Davis et al., 2017),
and goal-directed reward learning (Spreng et al., 2010). It is often described as a seat of human
reasoning powers as it is significantly larger in humans than other primates, and its development
across childhood tracks the development of fluid reasoning capacities (Gogtay et al., 2004;
Semendeferi et al., 2011).

In humans, increased rIPFC activation is often observed for rule-based tasks involving
abstract symbolic (Specht et al., 2009) or relational reasoning (Davis et al., 2017; Gray et al.,
2003; Wendelken & Bunge, 2009). The rIPFC’s precise mechanistic role in these tasks has been
described in a number of different ways. One characterization of the rIPFC focuses on switching
between representations. For example, the rIPFC has been found to be more active when

participants switch between cognitive sets in rule-based tasks (Konishi et al., 1998, 2002;
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Monchi et al., 2001; Strange et al., 2001; Liu et al., 2015), in tasks requiring switching between
internally focused and externally focused attention (Burgess et al., 2007), and in reward learning
tasks when exploring the values of different choices (Daw et al., 2006).

Other studies of rIPFC function have focused on its role in forming abstract symbolic rule
representations and testing and evaluating such rules (Badre & D'Esposito, 2009; Vendetti &
Bunge, 2014; Wendelken et al., 2012). Classic examples of the rIPFC’s involvement in symbolic
rule use include its stronger engagement for rules requiring higher-order relational integration
(rules that integrate over multiple lower-order relationships) in tasks akin to Raven’s progressive
matrices (Christoff et al., 2001; Kroger et al., 2002), and tasks requiring participants to answer
whether such a higher order relation is present in a stimulus (Bunge et al., 2009; Nee et al.,
2014). More recently, the rIPFC has also been found to be engaged in the incremental learning of
rules across trials (Badre et al., 2010; Davis et al., 2017). In these cases, the rIPFC may not only
be integrating relationships within stimuli to form rules, but also integrating or accumulating
information across trials to evaluate evidence for a rule and test how it applies to new stimuli.
Indeed, in Davis and colleagues (2017), the rIPFC was active early in learning as participants
acquired a new relational rule, but then later only on trials in which they needed to apply the rule
to novel stimuli. This evaluative role in integrating and accumulating information for a rule
potentially connects the rIPFCs role in rule learning with recent findings of its engagement
during meta-cognitive judgments (Fleming et al., 2012), and may explain why the rIPFC is often
active during learning of rules that do not strictly involve higher-order relational integration
within a stimulus or trial (e.g., Seger & Cincotta, 2006; Liu et al., 2015).

To test the distinction between rule switching and evaluation accounts of rIPFC function,
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we compared activation during two commonly used rule-based tasks from the category learning
literature — matching and classification tasks. Matching tasks, like the Wisconsin Card Sorting
Test (Heaton, 1993), involve matching a multidimensional reference stimulus to a set of target
stimuli that each match the reference on a single dimension. There is a rule that determines
which target to match the reference to that is based on the stimulus dimensions. Participants learn
the matching rule through trial and error. For example, in the matching task that we used in the
present study, reference stimuli were schematic beetles that differed in terms of their legs, tail,
antennae, and mandibles. Participants learned to match these reference stimuli to target beetles
by choosing different candidate targets and receiving feedback. Often matching tasks will cycle
through a number of rules forcing participants to abandon rules and shift to a new rule when old
rules cease to be useful.

As a neuropsychological measure, the primary process of interest in matching tasks like
the Wisconsin Card Sorting Test is the process of shifting between cognitive sets to
accommodate novel rules and suppress the previously correct rules. Consistent with the theory
that the rIPFC governs representational switching, results from a number of neuroimaging
studies have identified activation in rIPFC during trials in which the rule is switched (Konishi et
al., 1998, 2002; Monchi et al., 2001; Strange et al., 2001; Liu et al., 2015). However, switch
trials as well as the immediately following trials in which the novel rule is being acquired also
place demands upon rule evaluation mechanisms. Participants must not only switch between the
previous and new candidate rule representations, but also begin to test and evaluate evidence for
new candidate rules. One critical aspect of simple matching tasks, like the Wisconsin Card

Sorting Test, is that participants gain some conclusive information to evaluate a rule on every
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trial: if a choice is wrong, a candidate rule can be eliminated; if a choice is correct, the rule is
known with certainty. This aspect of matching tasks means that evaluation of evidence for a rule
and switching are strongly intertwined because participants will switch rules whenever they are
wrong (Konishi et al., 1998; Monchi et al., 2001) and quit evaluating new information once they
are correct. Thus, for participants performing rationally, every possible switch trial is also a trial
in which new information is being obtained and evaluated. Likewise, every trial that provides
new information about the rule is a trial in which the participant has switched the rule they are
using.

We contrast matching tasks with another common type of rule-based category learning:
classification tasks. In classification tasks, participants learn a rule that allows them to sort
multidimensional stimuli into two or more categories based on trial and error. When the rule is
based on a single dimension, classification tasks involve very similar mechanisms to
single-dimension matching tasks like the Wisconsin Card Sorting Test. Participants test
candidate rules, update their candidate rules based on feedback, and maintain rules in working
memory once they have arrived at them. Indeed, because of this overlap in processing
requirements, many neurobiological theories of category learning assume that matching and
classification tasks have strong overlap in terms of the systems involved in acquiring and storing
new rules and use results from both types of tasks interchangeably (e.g., Ashby & Maddox,
2005). However, classification tasks differ from matching tasks critically in requiring more
extensive cross-trial evaluation of evidence for a rule, while otherwise keeping the demands on
representational switching constant.

In classification tasks, participants are shown single examples of stimuli and learn, using
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trial-and-error, to classify the stimuli into one or more categories based on the stimulus
dimensions. Psychologically, as in matching tasks, participants must evaluate evidence for the
correct rule by switching their attention between different stimulus dimensions to test various
candidate rules across trials. Also, like matching tasks, it is possible to eliminate a particular rule
based on feedback in a single trial — if a participant tries the rule “thick legs = Category A”,
incorrect feedback will tell them that they need to switch the rule they are using and eliminate
this rule. However, individual correct trials in classification tasks contain less information about
the correct rule than in matching tasks. From an optimal observer standpoint, a single trial in a
matching task can tell whether a rule is correct or incorrect, however, even when behaving
optimally, on average, even several correct trials in a classification task can leave potential
candidate rules to decide amongst (see Figure 1 for an illustration of evaluative demands in the
tasks). This optimal observer perspective suggests that some intrinsic uncertainty about the rule
should remain even after participants begin getting trials correct.

Of course, participants in classification tasks rarely perform like an optimal observer.
Instead, extensive research suggests that participants in classification tasks use a
win-stay-lose-shift strategy where they will not switch from a rule when they are getting correct
feedback and will only switch to remaining candidate rules when they get negative feedback
(Shepard et al., 1961; Nosofsky, Palmeri, and McKinley, 1993; Wilson & Niv, 2011; Niv et al.,
2015). Likewise, they will not tend to eliminate rules based on all of the information they have
encountered (as the optimal observer in Figure 1 does), and instead will eliminate rules
sequentially. Together with the optimal observer perspective, participants’ tendencies to not

switch rules while they are getting trials correct suggests a critical asymmetry between matching


https://doi.org/10.1101/107110
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/107110; this version posted October 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

ROSTROLATERAL PREFRONTAL CORTEX IN CATEGORY LEARNING

tasks and classification tasks that can be harnessed to isolate evaluation processes from
switching. Specifically, because uncertainty will remain regarding the true rule even after
participants begin getting trials correct, but subjects will not switch rules while getting items
correct, we can isolate trials in which they continue to evaluate evidence for a rule but do not

switch between rules.

Legs
Tail
Antennae
andibles

Correct!

Rules to consider:
Legs
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Figure 1. Examples of matching (A) and classification tasks (B) and how rules are eliminated in
both tasks. In matching tasks, when the rule is correctly selected, all other rules are eliminated.
Contrastingly, in classification tasks, even if a correct rule is selected initially, from an optimal
observer’s standpoint, several additional trials may be necessary to rule out other rules that are
possible given the history of stimulus-category pairings participants have seen up to that point. In
both of these cases, participants have arrived at the correct rule dimension (“legs” in bold) on the
first trial of the depicted sequence. In matching, a single instance of correct feedback establishes
that “legs” are the rule-dimension. In classification, although the participant may start out using
the legs rule, they may only fully eliminate other possible rules that are consistent with the
stimulus history after a number of correct trials. For example, if in the first trial the participant

chooses category ‘A’ for the thin legged beetle and gets correct feedback, all rules will still be
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under consideration. When an optimal observer chooses the same category for the thin legged
beetle on the second trial and receives correct feedback, only the rules “pointy tail = ’A’; thick
antennae = ‘A’; and bisected mandibles = ‘A’” become active. They only become eliminated
after the optimal observer encounters variations of the “thin legs = ‘A’” rule, in which these

candidate rules do not also hold.

To test how differences in evaluation demands between matching and classification tasks
impact rIPFC activation, we had participants complete the matching and classification tasks
using schematic beetle stimuli. In both tasks, participants would iteratively learn rules via trial
and error. Once rules were learned (defined by four correct trials in a row) the rule would switch
and the participant would begin learning a new rule. For each rule there was therefore a rule
learning phase, when participants were narrowing down and switching between rules, and a brief
rule application phase, in which participants were using the final rule that they have arrived at

(Figure 2).

Rule learning Rule application

mm

Trial # Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8

Feedback Incorrect Correct Incorrect Incorrect

Figure 2. An example of how the rule learning and rule application phases were separated for
analysis. The last four or more contiguous correct trials were labeled as rule application. In this
phase participants applied a final rule they had learned. All trials before the final four contiguous

correct trials were labeled as rule learning.
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The different accounts of rIPFC function can be used to make predictions for the rule
learning and application phases. If the rIPFC is primarily involved in switching, it should only be
active during the rule learning phases of both matching and classification tasks, when
participants are trying different rules and switching between them. Contrastingly, if the rIPFC is
involved in evaluation, it should be active not only during the rule learning phase of both tasks,
but also during the rule application phase for classification when participants have arrived at the
correct rule, but are still evaluating evidence in support of it. Because rule evaluation is not
necessary during matching once the correct rule is found, rIPFC should not be active during the
application phase of the matching task.

To foreshadow our results, we found evidence consistent with the rule evaluation
hypothesis. The rIPFC was more active in the classification task than the matching task during
both the rule learning and rule acquisition phases, suggesting that the rlPFC’s role extends
beyond when participants are switching between rules in rule-based category learning tasks.

2. Method
2.1. Participants

Twenty-seven participants were recruited from the Texas Tech University community via
an electronically posted announcement. Participants were required to be at least 18 years of age,
right-handed, have a minimum of an eighth grade education, speak English fluently, and not
have any contraindications for MRI research. Participants were compensated with $35 for the
study. Two participants fell asleep during their scanning session and therefore were removed

from the further analyses. One participant opted out from the last two scanning runs, but the rest
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of their data were used in the analyses. The study was approved by Human Research Protection
Program at Texas Tech University.
2.2. Stimuli and Procedure

Participants were asked to sign a consent form, MRI-safety checklist and complete a
computer-based tutorial. The participants were informed that the rules would be based off of the
four different features of the stimuli, about switching rules after several consequent correct trials
(to minimize anticipation of a new rule, we did not tell them after how many trials the rule will
be switched), and were told each rule would be based on a single feature. Participants completed
example trials and a brief test to examine their understanding of instructions, and they were
allowed to ask questions if they were confused about any procedures. Upon completion of the
screening forms and the tutorial, participants were placed into the scanner. In the scanner,
participants completed four runs of the matching task and four runs of the classification task in
an order that was balanced across participants.

Two tasks, matching and classification, utilized sixteen images of schematic beetles
representing all possible combinations of the following four binary feature dimensions: legs
(thick or thin), mandibles (closed or bisected), antennae (fuzzy or dotted), and tail (pointy or
round; see Figure 3 for two examples with opposite features). For both tasks, the sixteen stimuli
were presented in sequential randomized blocks. In a randomized block, a participant would go
through all sixteen stimuli in a random order before seeing any of the same stimuli again. With
this randomization, it was possible for as many as all of the features to change from trial-to-trial,
or as few as zero, if the last stimulus of a randomized block and the first stimulus of the next

block were the same.
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Figure 3. Stimuli of schematic beetles with completely distinct feature dimensions. The feature
dimensions were legs (thick or thin), mandibles (closed or bisected), antennae (fuzzy or dotted),

and tail (pointy or round).
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In the matching task, each screen contained a reference beetle and four target beetles,
each of which matched the reference beetle on a single dimension (see Figure 4). The position of
the beetles on the screen was randomized to minimize effects of feature salience and balance

motor responses.

Choase the beetle that follows the rule (1-4)

Your answer is: _

Stimulus 3500 ms +

Fixation 1000-3000 ms

Feedback 2000 ms +

Fixation 1000-3000 ms

Figure 4. Example of the matching task. Participants saw a reference beetle on the bottom and
four target beetles on top. The target beetles each matched the reference beetle on a single

feature. Participants would select a target beetle and then receive feedback about whether their

choice was correct or incorrect.
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In the classification task, each screen contained a single beetle (see Figure 5). The beetles

were assigned into category A or B, based on a random rule, defined by a single feature.

Category A or B?

Your answer is: _

Stimulus 3500 ms +

Incorrect. The correct category is "A'

Fixation 1000-3000 ms

Feedback 2000 ms +

Fixation 1000-3000 ms

Figure 5. Example of the classification task. Participants saw a single beetle on the screen and
were asked to categorize it as a member of Category A or B. After participants made the choice,

they were given feedback about whether their choice was correct and the correct category label.

In both tasks, participants had 3.5 seconds to categorize a stimulus using a button box
held in their right hand. After a brief fixation (1, 2, or 3s; mean = 2s), participants were provided
with feedback for 2s, during which the beetle was presented again along with a message

“Correct/Incorrect/Failed to respond” in the matching task or “Correct/Incorrect/Failed to
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respond.” and “The correct category is A/B” in the classification task. After the feedback, a brief
fixation was presented (1, 2, or 3s; mean = 2s). Upon achieving a termination criterion of four
correct answers in the row, the rule was switched to a new randomly selected rule. When a run
was completed, participants were presented with a number of correctly solved rules during the
run (i.e., “You successfully learned [number] categories! Good job!”). Participants had
thirty-two trials in each run and eight runs total (four runs in a block for each task), followed by
an anatomical scan. After the scan, participants were thanked, compensated and dismissed from
the study.
2.3. fMRI Data Acquisition

The data were collected at Texas Tech Neuroimaging Institute using a Siemens Skyra 3T
scanner with a 20-channel head coil. A T1-weighted sagittal MPRAGE was obtained with TR =
1.9s, TE = 2.49, flip angle = 9, matrix of 256x256, field of view = 240, slice thickness= 0.9 mm
with a gap of 50%, 1 slice. T2-weighted BOLD echo planar images (EPI) were obtained with
TR=2s, TE=30ms, flip angle = 90, matrix = 64x64, field of view = 192, slice thickness = 4 mm,
35 ascending axial slices, 156 volumes in each scanning run. The slice prescription was tilted off
of parallel with AC/PC to reduce susceptibility artifact in orbital frontal cortex (Deichmann et
al., 2003).
2.4. fMRI Data Preprocessing and Analysis

MRI data preprocessing included the following steps: DICOM imaging files were
converted to NifTI files using dcm2nii from the Mricron software package (Rorden & Brett,
2000). Skulls were removed using the BET tool (Smith, 2002) from FSL software package

(Jenkinson et al., 2012; Woolrich et al., 2009) for the BOLD EPI images and ANTs (Avants et
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al., 2009) with OASIS template (Avants & Tustison, 2014) for the T1 anatomical images.
Motion correction was carried out using a 6-DOF affine transformation implemented in FSL’s
MCFLIRT tool (Jenkinson et al., 2002). Data were smoothed with an 8§ mm FWHM Gaussian
kernel based on the standard criterion of two times the voxel size (Poldrack et al., 2011) and
high-pass filtered (100s cut off). Finally, data were manually checked for quality issues such as
visual spikes produced by the scanner, incorrect brain extraction, and excessive motion. The
quality check revealed visual artifacts in the first run for four participants, and these runs were
thus excluded from further analysis.

Functional MRI data analysis was carried out using a standard three-level analysis in
FSL’s FEAT, as implemented in Nipype (Gorgolewski et al., 2011). The first-level analysis
consisted of prewhitening using FSL’s FILM (Woolrich et al., 2001) to account for temporal
autocorrelation, task-based regressors (see below) convolved with double-gamma hemodynamic
response, and their temporal derivatives. Additional confound regressors of no interest included
six motion parameters, their temporal derivatives and regressors for scrubbing high motion
volumes exceeding a framewise displacement of 0.9mm (Siegel, et al., 2014). The same high
pass filter setting that was used to process the fMRI data was used to process the design matrix.
First-level statistical maps were registered to a standard space in a two-stage registration
consisting of (1) registration of each BOLD timeseries to respective participants’ T1 MPRAGE
using the BBR algorithm (Greve & Fischl, 2009) and (2) registration of the T1 to the standard
space (MNI-152 brain template) using nonlinear ANTs registration (Avants et al., 2009).
Second-level analysis combined across runs within a participant, and was carried out using a

fixed effects model in FLAME (Beckmann et al., 2003; Woolrich et al., 2004; Woolrich, 2008).
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Second-level regressors included task type (matching vs. classification).

Third-level mixed effects analyses, treating participant as a random effect, examined
whether first and second-level contrasts were significant across participants using a permutation
test, implemented in FSL’s Randomise function (Winkler et al., 2014). This permutation test is a
non-parametric approach to group-level analysis and multiple comparison correction that
estimates the null distribution of cluster sizes from permutations of the data, alleviating recently
publicized concerns about the accuracy of the parametric approximations underlying Gaussian
Random Field Theory (Eklund et al. 2016). The final thresholding of statistical maps at p< 0.05
was done via a cluster mass correction (Bullmore et al., 2000), with a primary/cluster-forming
threshold of #(24)=2.49, p < 0.01, one-tailed, and variance smoothing set at 8§ mm. For a priori
ROI analysis within the fronto-polar mask, we used the same cluster-mass based thresholding,
but confined the analysis to the smaller volume.

All trials in both tasks were divided into either a rule learning phase in which participants
were acquiring the correct rule or a rule application phase in which participants had acquired the
rule and were applying it (see Figure 2 for an example of the phases for the classification task).
In the matching task, all correct trials were considered as rule application trials due to the nature
of the task, and all incorrect trials as rule learning. In the classification task only the last four or
more continuous correct trials were considered as rule application, and the rest of the trials as
rule learning. More than four correct trials in a row in which subjects used the same rule could
occur in the classification task, even with the rule being programmed to switch after four correct.
Specifically, due to our use of random blocks of stimuli, there were cases where the old rule

could continue to work temporarily after a switch because stimuli would have features consistent
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with the same category response (A or B) in both the new and old rule. For example, if the
previous rule was ‘thick legs = category A’ and the new rule was ‘thick antennae = category A’
then sometimes participants might see stimuli that had both of those dimensions, and thus the old
rule would continue to work. Because participants would not know the rule had switched until
they received negative feedback, we included any trials that were correct and consistent with the
old rule in the application phase, and the new rule was marked as starting on the next incorrect
feedback.

The following task-based regressors (explanatory variables; EVs) were used in the
level-1 model: (1) stimulus presentation (onsets) for rule application trials, (2) onsets for rule
learning trials, (3) onsets for trials when participants did not answer, (4) correct feedback, (5)
incorrect feedback, and (6) feedback for trials when participants did not answer. These EVs were
compared in the following contrasts: (1) rule application versus baseline, (2) rule learning versus
baseline, and (3) rule application versus rule learning. Each contrast was tested in both directions
(e.g., task > baseline and baseline > task). The baseline (fixation) was implicitly modeled as the
intercept, and thus task-based parameter estimates were interpreted as change in activation for
task relative to the baseline. Statistical maps describing the results of these contrasts were
thresholded to correct for multiple comparisons at the whole-brain level and within an a priori
frontal pole mask (ROI), which was defined as the max-probability frontal pole region from the
Harvard-Oxford atlas included in FSLView (Desikan, et al., 2006).

To test if activation of the rIPFC may be attributed to difficulty or time-on-task
differences, we included a second version of the level-1 analyses, controlling for trial-by-trial

reaction times as a separate EV, and testing the same contrasts as described above.
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3. Results
3.1. Behavioral results

To examine how number of rules solved and trials to the rule termination criterion
differed between task types, we used a Poisson mixed effects model from the Ime4 package
(Bates et al., 2015) and a mixed effects Cox regression survival model from the Coxme package
(Therneau, 2015) in R (R Core Team, 2014). Consistent with the assumption that the
classification task placed more demands on rule evaluation over trials than matching, participants
solved more rules during matching (M = 15.6, SD = 4.14) than during the classification task (M =
9.92, SD =3.22), z=5.58, p <.001. Likewise, participants took fewer trials to reach a rule
termination criterion in matching (M = 6.56, SD = 4.67) than in the classification task (M =
11.73,SD =17.56),z=12.11, p <.001.

To test whether the tasks may have differed in time-on-task, we analyzed the reaction
times from correct trials during the application phase with a mixed effects regression model, also
from the Ime4 package. We found that participants took longer to complete correct matching
trials (M = 1.78 seconds, SD = 0.21) than correct classification trials (M = 1.29 seconds, SD =
0.26), likely due to the more complex display and larger number of response options, #24) =
9.59, p <.001.

3.2. Imaging results

To examine the neuroimaging results, all trials were sorted into either rule learning or

rule application phases. In the matching task, all correct trials were considered as rule application

trials due to the nature of the task, and all incorrect trials were considered rule learning. In the
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classification task only the last four or more contiguous correct trials were considered as rule
application, and the rest of the trials as rule learning. Trials when participants failed to respond
were not included in any phase.

3.2.1. Rule learning and rule application in the matching task.

Both the switching and rule evaluation accounts of rlPFC function predict that there
should be greater rIPFC activation during the learning phase of the matching task than during the
application phase. The switching account predicts greater rIPFC activation during the learning
phase because participants are switching between rules during rule learning but not during rule
application. The rule evaluation account predicts predicts greater rIPFC activation during the
learning phase because participants will know the rule with full certainty and stop evaluating
after a single correct answer is found. Consistent with these accounts, we found a cluster in the
rIPFC ROI that was activated more for learning than application trials (Figure 6). To verify that
this difference was not due to difficulty or time-on-task, we ran a second analysis showing that
this cluster remained active when controlling for reaction times (Supplemental Figure 1). No
significant activation for the task vs baseline contrasts was observed in rIPFC for the whole-brain

or the small-volume corrected ROI analysis.
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Rule Learning > Rule Application in Matching

Figure 6. Brain activations in rule learning > rule application contrast in the matching
task. The red box is included to convey that the analysis was restricted to a small volume (frontal

polar cortex).

Because we did not find any whole brain or ROI-based activation in the rIPFC, to further
elucidate the pattern of activation in the rIPFC during the different phases of the matching task,
we extracted parameter estimates for each phase from an unbiased ROI based on the
classification data. An independent ROI was used to avoid selection bias from the original
contrast, which may magnify the size of the difference or bias the direction of activation
(Kriegeskorte et al. 2006). This ROI was based on an 8mm sphere drawn around the peak for the

rule application versus baseline contrast (MNI coordinates: x = -36, y = 56, z =4 mm).
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As Figure 7 illustrates, the rIPFC is deactivated relative to baseline in the rule application
phase for matching, consistent with the possibility that this brain region may cease to contribute
to categorization performance once switching or rule evaluation are no longer needed. As with
the small volume-corrected ROI analysis, the difference between mean parameter estimates for

rule learning and application in the rIPFC was significant, #24) = 3.36, p = .002.

Mean parameter estimates for the tasks
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Figure 7. Mean parameter estimates for the matching and classification tasks taken from an
rIPFC ROI, where an 8 mm sphere was drawn around the highest peak found in the rule
application > baseline contrast for classification task (MNI coordinates: x =-36, y =56, z=4

mm).

Beyond the rIPFC, additional areas revealed to be more active during learning than

application in the matching task included parietal and lateral occipital regions. These results are
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consistent with other studies examining activation during learning phases of similar rule-based
category learning tasks (Seger & Cincotta, 2006; Liu et al., 2015), and are consistent with
previous suggestions that the superior parietal cortex is involved with cognitive control functions
during rule-based category learning. Whole-brain results for the opposite contrasts (rule
application > rule learning) were also consistent with previous findings from rule-based category
learning studies (Seger & Cincotta, 2006; Nomura et al., 2007), with greater activation in the
MTL (hippocampus and parahippocampal gyrus) during rule application. Theories of category
learning suggest that the MTL is involved in the long-term retention and retrieval of category
information during category learning (Ashby & Maddox, 2011; Ashby et al., 2011; Davis et al.,
2012a, 2012b). Additional regions more active for rule application included the ventromedial
prefrontal cortex, a region we have recently identified as being associated with stronger decision
evidence during categorization (Davis et al. 2017), putamen, parietal cortex, occipital cortex,
temporal cortex, and insular cortex (all brain maps and other project details are posted on Open

Science Framework at https://osf.io/ge8v{/).

3.2.2. Rule learning and rule application in the classification task.

In the classification task, we did not find any significant differences in rIPFC activation
between learning and application phases in the whole-brain or ROI analysis. Looking further at
comparisons between task and baseline, we found that the rlPFC was significantly activated
relative to baseline in both rule learning > baseline and rule application > baseline contrasts in
both the whole brain and ROI analyses (see Figure 7 for the parameter estimates in rIPFC; see
Figure 8 for the whole brain activations in the classification task; also see Supplemental Figure 2

for the whole brain results, controlling for the reaction time). Together, these results suggest that
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the rIPFC is engaged in a more evaluative role that persists into the application phase in the
classification task. This result is inconsistent with switching accounts because participants
generally would not be switching rules once they have arrived at a rule that does not result in
negative feedback. However, they may continue evaluating confirmatory evidence for their
chosen rule because the rule is rarely known with certainty after the first correct trial in the
classification phase.

Beyond the rIPFC, similar to the matching task, parietal and occipital regions were
activated in the rule learning > rule application contrast for the classification task. Additional
areas that were more active for rule learning than application included the dorsolateral PFC (see
Supplemental Figure 3), which is thought to be involved in maintaining and manipulating
information in working memory during rule-based categorization (Monchi et al., 2001; Filoteo et
al., 2005; Seger & Cincotta, 2006), and the cerebellum. No regions were significantly more
active in rule application compared to rule learning (rule application > rule learning) in the whole

brain results.
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Rule Learning in Classification > Baseline

=-32

Figure 8. Task vs baseline comparisons for the classification task. Classification > baseline


https://doi.org/10.1101/107110
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/107110; this version posted October 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

ROSTROLATERAL PREFRONTAL CORTEX IN CATEGORY LEARNING
28

contrasts are in red-yellow and baseline > classification in blue.

3.2.3. Comparing rule learning in the matching and classification tasks.

The rIPFC was more strongly activated in the classification task than in the matching task
during learning (Figure 9) in both whole brain and ROI analyses. These results were not affected
by controlling for reaction time, suggesting that they are not due to time-on-task or difficulty
differences between the task types (Supplemental Figure 4).

In addition to rIPFC, occipital, inferior parietal, temporal, lateral prefrontal cortices, and
cerebellum were more activated for classification compared to matching. Occipital and superior
parietal cortices as well as thalamus were more active during the rule learning phase for

matching than for classification.
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Rule Learning in Classification > Matching
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Rule Application in Classification > Matching

Figure 9. Brain activations for the classification > matching contrasts. Classification > matching
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contrasts are in red-yellow and matching > classification in blue.

3.2.4. Comparing rule application in the matching and classification tasks.

The primary goal of the current study was to compare rule evaluation versus switching
accounts of rIPFC function. Because participants quit switching rules during rule application in
both matching and classification tasks, but the classification task often involves continued
uncertainty and evaluation of evidence for a rule, contrasting rule application during matching
and classification allows us to isolate rule evaluation mechanisms. Consistent with the evaluation
account, rlPFC was more active in the classification task compared to the matching task. This
difference was significant for the whole brain analysis (p = .048) and a priori ROI analysis (p =
.01) in both the main model, and remained significant when controlling for reaction time
(Supplemental Figure 4).

In addition to rIPFC, there was greater activation in superior parietal, temporal, and
lateral occipital regions in the classification task, and inferior parietal and medial occipital
regions in the matching task (see Figure 9 and Table 1 for specific regions covered by the
activated clusters). These brain regions overlap with those found in the analyses restricted to the
classification and matching phases, and in the analysis examining differences between

classification and matching during learning described above.

Table 1

Rule application in the matching and classification tasks

Cluster Region(s) Cluster Local Maximum Region t-value MNI coordinates
Size (X3Ysz)
(voxels),

Cluster
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p-value
Matching > Classification
Occipital Cortex 32910, Lingual Gyrus 18.5 12 -74 -4
Superior Parietal Cortex p =.0002
Cerebellum Intracalcarine Cortex 18.5 10 -80 4
Lingual Gyrus 16.0 -12 -76 -8
Intracalcarine Cortex 15.7 -8 -82 2
Classification > Matching
Occipital Cortex 4263, Lateral Occipital Cortex, 7.01 -42 -68 46
Posterior Parietal Cortex p =.014 superior division
Temporal Cortex Supramarginal Gyrus, 6.73 -48 -50 56
posterior division
Superior Temporal Gyrus, 6.1 -62 -30 -2
posterior division
Supramarginal Gyrus, 5.6 -60 -42 36
posterior division
Occipital Cortex 2931, Angular Gyrus 6.47 60 -48 38
Posterior Parietal Cortex p=.024
Temporal Cortex Angular Gyrus 6.12 54 -50 50
Middle Temporal Gyrus, 5.8 66 -46 -2
temporooccipital part
Lateral Occipital Cortex, 5.51 52 -62 40
superior division
Prefrontal cortex 2037, Inferior Frontal Gyrus, pars 4.88 -50 20 0
Frontal pole p =.048 triangularis
Middle Frontal Gyrus 4.69 -46 12 46
Frontal Pole 4.32 -40 54 4
Middle Frontal Gyrus 4.23 -54 22 28

Note: Clusters activated, their sizes, p-values, and peaks for the rule application in matching > classification and
classification > matching contrasts. Local maxima labels are based on the Harvard-Oxford atlas. The coordinates are
in standard MNI space. The p-values are taken from non-parametric tests produced by Randomise tool in FSL.

3.2.5. Relationship between rIPFC activation and individual differences in rule application
performance
As an additional piece of evidence for the evaluative role of the rIPFC, we also examined

how individual differences in rule solving performance related to rIPFC activation in the
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application versus baseline contrast for classification. We focused specifically on the application
phase in classification because it was in this phase that our optimal observer framework
suggested continued evaluation demands, but how much continued evaluation demands there
were could plausibly be related to how adept individual participants were at solving rules. For
this analysis, we extracted parameter estimates from the same rIPFC ROI as described above for
the matching task and tested whether they were correlated with individual differences in numbers
of rules solved. We found that rIPFC activation was negatively correlated with number of rules
solved, r =-0.34, #(23) =-2.07, p = .05 (Figure 10). Given participants with stronger
performance should, on average, behave more optimally, and arrive at the rule application phase
with less uncertainty and need for continued rule evaluation, this result augments our primary
findings and suggests that individual differences in rule evaluation abilities may drive differences
in rIPFC activation between subjects. Specifically, the worse participants are at narrowing down
rules, the more uncertainty they have when arriving at the rule application phase, and the more

they continue to rely on rule evaluation mechanisms in the rIPFC.
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Parameter Estimates vs. Number of rules solved
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Figure 10. Parameter estimates versus number of rules solved in the classification task.
Parameter estimates are taken from an rlPFC ROI, where an 8§ mm sphere was drawn around the
highest peak found in the rule application > baseline contrast for classification task (MNI
coordinates: x = -36, y = 56, z=4 mm).

4. Discussion

The goal of the current study was to compare rule evaluation and switching accounts of
rIPFC function in rule-based category learning. The rIPFC has been established as a critical brain
region for many higher-order cognitive capacities, yet so far theories of category learning have
not fully established a role for the rIPFC. Based on the broader literature, we developed two
contrasting accounts suggesting that the rIPFC is involved in rule switching or in the evaluation
of evidence for a rule. We tested these contrasting accounts by comparing rIPFC activation

during rule-based categorization tasks requiring either matching or classification learning.
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Although often treated as the same, these two tasks place different demands on rule evaluation
mechanisms. In matching tasks, a rule can be known with certainty after the participant answers
a single question correctly and can be eliminated with certainty with every incorrect answer.
Therefore participants will tend to evaluate evidence for a rule on the same trials in which they
switch between rules. This is not the case in classification tasks, where eliminating a rule can be
accomplished in a single trial, but it may be necessary to evaluate evidence over several correct
trials before a rule can be established with full certainty. Given this asymmetry in switching and
evaluation between matching and classification tasks, we were able to isolate evaluation
mechanisms by comparing activation on trials in which participants were applying a rule in
matching and classification tasks. Consistent with the hypothesis that the rIPFC is involved in
evaluation of evidence for a rule, we found that the rIPFC remained active during rule
application in classification learning, but was not active during rule application in matching.
The current results are consistent with other recent studies revealing rIPFC involvement
in category learning. Seger and Cincotta (2006) and Liu et al. (2015) found the rIPFC was more
active during rule learning compared to rule application in classification-like tasks, and
suggested the rIPFC is a part of a “cognitive” cortico-striatal loop involved in rule-based
categorization. The current findings are consistent with this hypothesis but go further in
suggesting that there may be critical differences between rule-based learning tasks in terms of the
demands they place on these rule evaluation mechanisms. This is an important finding as results
from matching and classification tasks have often been used interchangeably in the literature on
the neural basis of categorization (e.g., Ashby & Maddox, 2005). Our findings suggest that some

fundamental contrasts (e.g., rule application vs. learning) can differ markedly between the types
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of rule-based task employed.
4.1. Relationship to multiple learning systems research

By revealing critical differences between types of rule-based tasks, our results fit well
within the recent multiple systems literature that focuses on between-task differences in how
neural learning systems are recruited (Ell et al., 2006; Nomura et al., 2007; Ashby & Ell, 2001;
Ziethamova et al., 2008; Schnyer et al., 2009; for reviews, see Ashby & Maddox, 2005 and Seger
& Miller, 2010). However, it is important to note that we are not suggesting that matching and
classification involve wholly separate systems, only that they differentially load on these
systems, leading to system-level differences in BOLD activation. Future research attempting to
build a comprehensive account of the neural basis of categorization will need to take more care
in considering commonalities and differences between types of rule-based tasks. Consideration
of the demands of particular rule-based tasks may also be critical for neuropsychological
assessment where matching tasks, like the Wisconsin Card Sorting Test, are currently popular
but may not be as diagnostic of frontal rule evaluation processes as classification learning.

One possible multiple learning systems extension of the current work is to examine
differences between the current A/B classification rules (participants choose between category A
or B) and rules requiring participants to choose whether stimuli are members or not members of
the category (A/not-A). A/not-A rules are mathematically identical to A/B rules (only the labels
change), but surprisingly, previous multiple learning systems research has found that these two
types of tasks may tap different categorization processes and neural systems (Casale & Ashby,
2008; Zeithamova et al., 2008). Whereas A/B rules seem to recruit brain systems consistent with

the episodic memory retrieval, A/non-A may rely more on perceptual memory systems. How
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A/B vs A/non-A rule types may impact rule evaluation mechanisms in the rIPFC is an open
question. One possibility is that A/not-A learning may rely less on explicit rule evaluation
mechanisms due to more nonverbal perceptual or procedural strategy use and thus may not
recruit rlPFC to the same extent as the A/B tasks we use here.

4.2. Relationship to animal learning research

The present results may also inspire future research on rlPFC function in animal models.
Recent work on rlPFC function in animal models has demonstrated a critical role for the rIPFC in
rapid, one-shot learning of rules, but not in application of well-learned rules (Boschin et al.,
2015). Our matching results are consistent with this role of rapid, one-shot rule learning in that
the rIPFC was engaged up until participants learned the rule, but then activation dropped to
baseline during even early application. However, the classification results suggest that the rIPFC
may be engaged even as participants begin to apply the rule, if they need to evaluate additional
evidence for the correct rule (e.g., rule out remaining alternatives). Putting these results together
suggests that rIPFC can allow one-shot learning, but whether it is engaged for longer-term rule
acquisition depends on the demands of the task. Future work with animal models on the rIPFC
function would benefit from examining tasks, like our classification task, where evidence for a
rule must be accumulated and integrated across trials.

Comparing our study to Boschin et al.’s (2015) results from rule-learning in macaques,
one limitation is that we did not have any extended application trials in which participants were
applying very well-learned rules for which they had already achieved automaticity. Thus it is not
possible, within the current data, to establish whether the rlPFC would remain more engaged for

classification learning relative to matching, or if eventually rIPFC involvement would decrease.
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Given the rapid shift in rIPFC involvement during matching, where it was active during learning
but declined in activation as soon as participants began applying the rule, it is likely that rIPFC
activation would also decline rather rapidly in classification once the rule was known with
certainty. This very brief role for the rlPFC would be consistent with Boschin’s findings from
rule learning in macaques as well as other recent studies examining rIPFC involvement in
category learning. For example, we recently found, in a relational category learning task (Davis
et al., 2017), that rIPFC activation was high early in learning, but in later test phases was
re-engaged only when participants needed to generalize the rule to novel relational examples,
and not when applying the rule to well-learned examples. In the future, it will be important to
test whether the rIPFC exhibits similar trajectories in basic rule-based classification tasks.
4.3. Toward a general theory of rIPFC function

Outside of the immediate importance of this work for research on rule-based category
learning, the present study adds to a growing literature on rIPFC function in higher-level
cognition. Just as it has in category learning, ascribing a single cognitive function to rIPFC has
been difficult due to its activation in a wide range of tasks (Duncan & Owen, 2000; Gilbert et al.,
2006). For example, the rIPFC has been found to not only be involved in switching (Konishi et
al., 1998, 2002; Monchi et al., 2001; Strange et al., 2001) and abstract rule evaluation (Christoff
et al., 2001; Kroger et al., 2002; Vendetti & Bunge, 2014; Wendelken et al., 2012; Bunge et al.,
2009; Davis et al., 2017; Nee et al., 2014), but also in reinforcement learning (Daw, et al., 2006)
and metacognition (Fleming et al., 2012; 2014). Perhaps the best candidate for uniting across
these disparate areas of cognition comes from the hierarchical control literature, which suggests

that the rIPFC sits atop a rostro-caudal gradient of rule abstraction (Badre, & D'Esposito, 2007;
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2009, Badre et al., 2010).

In much of the previous research on hierarchical control theory, participants are given the
rules to guide their behavior (e.g., Badre & D’Esposito, 2007)or they learn them in single trials
(e.g., in Raven’s-like tasks). In these cases, the minimum abstractness or rule complexity needed
to follow or solve the rule is related to which part of the PFC is engaged, with the most abstract
rules being processed in rIPFC. Under hierarchical control theory, it is somewhat surprising that
rules like those used in our tasks, or metacognitive evaluations of purely perceptual processes
(Fleming et al., 2012; 2014), would require the use of the rIPFC. One possibility to reconcile
these differences within hierarchical control theory is that the rIPFC is involved whenever
participants use rules that involve a structured predicate-argument representation (Ramnani &
Owen, 2004; Vendetti & Bunge, 2014), even when these may not be strictly necessary in the
task. In the present task, participants may use such representations to guide their initial rule
learning and evaluation, but then move back along the control hierarchy to more perceptually
based representations after the rules are fully learned and established. Under this hypothesis, the
rIPFC may be necessary to learn certain abstract rules, but may be engaged for learning any rule
depending on how participants approach it in a given context. Rules based on abstract relations
may always depend on rlPFC, whereas rules based on very elementary perceptual features, like
the Gabor patches used in Davis et al. (2017) may seldom recruit rIPFC. Between these two
extremes may be rules like those in the present task, which can be solved using symbolic
representations or perceptual representations (or a combination of both). Whether participants
use a symbolic or more perceptual strategy may depend on how easily relevant differences

between stimuli are encodable symbolically (e.g., using language; Davis et al., 2009). Although
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this explanation for integrating the present results with hierarchical control theory is plausible
given the broader literature on rlPFC function (Ramnani & Owen, 2004; Vendetti & Bunge,
2014), it remains to be seen whether it can account for rIPFC’s role in other primarily evaluative
domains such as in metacognitive judgments of perception (Fleming et al., 2012; 2014).
4.4. Limitations and Future Extensions

Relative to some tests of rIPFC function, our study had several limitations in terms of
differences in the display and number of options available during the matching and classification
tasks. The matching task had four options available (match to the beetle with the same legs,
mandibles, antennae, or tail) on every trial, whereas the classification task had only two options
(choose category A or B). Likewise, the matching task had more visual clutter on the screen,
with four target beetles, whereas the classification task presented only a single beetle at a time.
Although we observed various brain regions associated with visual, motor, and feedback
differences between the tasks, the main region of interest, the rIPFC, was found to track
predictions from the stimulus evaluation hypothesis both within and between tasks. For example,
consistent with the prediction that the rIPFC would not be engaged in the matching task once the
rule was known with certainty, rIPFC was engaged during learning but not during rule
application in the matching task. Relatedly, consistent with the idea that rule evaluation would
persist into the rule application phase in classification, the rIPFC was engaged relative to
baseline during both learning and application in the classification task. Because demands were
equivalent within task, this pattern where the difference between rule-learning and application
was greater in matching than classification cannot be driven solely by button or stimulus display

differences. Finally, although theory does not suggest rIPFC should be sensitive to differences in
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stimulus display or response options, if the rIPFC were sensitive solely to task complexity, the
fact that the matching task is more complex in both respects should work against our hypothesis
that it would be more engaged during classification.

Although the matching task was the more complex task in terms of response demands
and visual complexity, it is possible that other factors like general cognitive difficulty differed
between our tasks. Indeed, we expected the classification task to require more rule evaluation
demands, and it is possible that activation in some regions reflected increases in general task
difficulty caused by these higher demands, as opposed to reflecting the rule evaluation
mechanisms themselves. For this reason, we ran additional analyses for all of our main contrasts
to control for reaction time, a practice that is used in many fMRI studies to control for potential
differences in general cognitive difficulty and/or time-on-task (Brown & Braver, 2005;
Grindband et al., 2006; Todd et al., 2013; Davis & Poldrack, 2014; Davis et al., 2014. All of our
rIPFC results remained significant, suggesting that general cognitive difficulty is likely not a
reason for our observed differences in rlPFC between matching and classification. These results
are consistent with findings from the literature on reaction time modeling and perceptual
decision making, which do not typically find correlations between measures of difficulty and the
rIPFC region that we focused on here (Yarkoni et al., 2009; White et al., 2012; Keuken et al.,
2014). For example, in perceptual decision making, measures of decision making difficulty do
not typically track activation in the rlPFC (Heekeren et al., 2008; White et al., 2012). Thus taken
together, our results are likely to reflect differences in rule evaluation as opposed to general
difficulty processing per se. Nonetheless, future studies will want to continue to identify cases

where evaluative demands are prima facie fully separated from task difficulty. One domain in
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which it may be possible to more cleanly separate task difficulty demands from evaluation
demands is metacognition, where the rIPFC is often found to negatively correlate with
post-decisional confidence (Fleming et al., 2012). Because post decisional confidence ratings are
separate from the decisions themselves, they are likely to reflect more pure evaluation signals.

Although differences in task difficulty per se are unlikely to explain our results, there are
a number of other factors that may differ between the tasks and should be noted for future
research aimed at replicating or extending the current findings. First, from an optimal observer
perspective (Figure 1), the classification task may encourage holding more rules in working
memory during the application phase of the classification task compared to the matching task.
Indeed, this optimal observer analysis informed our prediction that there would be more
remaining uncertainty in the application phase in classification. However, given previous
research on how actual participants solve rules in classification tasks that we discuss above
(Shepard et al., 1961; Nosofsky, Palmeri, and McKinley, 1993; Wilson & Niv, 2011; Niv et al.,
2015), we do not expect participants are explicitly rehearsing more than one rule at a time in
either task. Beyond possible working memory differences, however, there remain other
differences between the tasks in the total number of trials per rule, the amount of correct or
incorrect feedback associated with a rule, and the number of rules completed in each section of
the experiment. Although many of these aspects are not expected to affect rIPFC activation given
current theory, future research would benefit from attempting to exert greater control over these
differences.

Finally, the current study found evidence consistent with the predictions from the

evaluation account; The rlPFC’s activation persisted beyond when participants would have been
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switching rules, suggesting that the rIPFC supports rule evaluation mechanisms. However, it is
important to note that these results do not fully establish that the rIPFC is not involved in
switching at all. As we discussed above, switching is almost always confounded with evaluation
demands. On trials when participants switch rules, they also evaluate the new rule. Thus, while
we have provided evidence that the rIPFC is involved in more prolonged rule learning functions,
it is not the case that we can fully rule out the possibility that it also participates directly in
switching functions beyond its role in evaluation. Fully ruling out switching from
uncertainty-related processes like rule evaluation is a major challenge for future research that
may be difficult to overcome even using pre-defined, well-learned rules. Switching naturally
creates event boundaries in a task, which tend to be associated with higher uncertainty and
behavioral variability (e.g., Barcelo et al. 2006; Reynolds et al. 2007). Therefore, it will be
important to carefully consider how to create switching situations in the future that are not
accompanied by higher evaluative demands and uncertainty.
4.5. Conclusion

In conclusion, the present study examines the role of the rIPFC in category learning and
differentiates between two accounts of rIPFC function that have been discussed in this literature:
rule switching and rule evaluation. To test these accounts, we compared activation during
different phases of two types of rule-based tasks, matching and categorization, that differ in their
demands on rule evaluation. Consistent with the evaluation hypothesis, the rIPFC was active for
tasks requiring more evaluation demands, even when participants were not switching between
rules. These results are critical because they help to establish a role for the rIPFC in category

learning literature and because they highlight novel differences in the systems engaged for two
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rule-based tasks that have been used interchangeably in much of the neurobiological literature on
category learning thus far. Future research can build on these results by investigating how
different types of rule-based representations and task demands impact involvement of rIPFC in

rule-based category learning.
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