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Abstract 

 

Functional Connectivity (FC) in resting-state or task conditions is not frozen but inherently 
dynamic. Yet, there is no consensus on whether fluctuations in FC resemble isolated 
transitions between discrete FC states rather than continuous changes. This quarrel 
hampered advancing the study of dynamic FC. This is unfortunate as the structure of 
fluctuations in FC can provide crucial information about developmental changes, aging, or 
progression of pathologies. We merge the two perspectives and consider dynamic FC as 
continuous network reconfiguration, including a stochastic exploration of the space of 
possible steady FC states. The statistical properties of this random walk deviate both from 
an “order-driven” dynamics, in which the mean FC is preserved, and from a “randomness-
driven” scenario, in which fluctuations of FC remain uncorrelated over time. Instead, 
dynamic FC turns out to have a complex structure endowed with long-range sequential 
correlations giving rise to transient slowing and acceleration epochs in the continuous flow 
of reconfiguration. When applying our analysis to an fMRI dataset in healthy elderly, we 
find that the dynamic FC tends to slow down, becomes less complex and more random 
with increasing age. All these effects are strongly associated with age-related changes in 
cognitive performance. 

 

Highlights 

• Dynamic Functional Connectivity (dFC) at rest and during cognitive task performs 
a “complex” (anomalous) random walk. 

• Speed of dFC slows down with aging. 

• Resting dFC replaces complexity by randomness with aging. 

• Task performance correlates with the speed and complexity of dFC. 

 

Keywords 
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Abbreviations 

rs: resting-state; RSN: resting-state network; fMRI: functional magnetic resonance imaging; 
BOLD: blood oxygen level dependent; SC: structural connectivity; FC: functional 
connectivity; dFC: dynamic functional connectivity; DFA: detrended fluctuation analysis; 
MoCA: Montreal Cognitive Assessment; SO: spectral overlap 
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Introduction 
Recent studies emphasised the structured temporal variability of resting-state (rs) and 

task Functional Connectivity (FC; Tagliazucchi et al., 2012; Allen et al., 2012; Liu & Duyn, 
2013; Hutchison et al., 2013; Chen et al., 2015; Preti et al., 2017; Gonzalez-Castillo & 
Bandettini, 2018), whose study is the defining focus of a research direction recently 
designated as “chronnectomics” (Calhoun et al., 2014). If rs-FC is dynamic, a wealth of 
information may be lost by averaging over long imaging sessions, and averaged temporal 
variability might be mistaken as inter-subject variability. Temporal FC variability –which 
we will refer to as dynamic FC (dFC)– may carry an inherent meaning. It has been suggested 
to manifest ongoing cognition at rest (Gonzalez-Castillo et al., 2015) with an immediate 
impact on cognitive performance (Bassett et al., 2011; Braun et al., 2015; Shine et al., 2016; 
Cohen, 2018) and attentional or awareness levels (Kucyi et al., 2017; Cavanna et al., 2018; 
Lim et al., 2018). It may reflect the sampling of an internal repertoire of alternative 
dynamical states (Hansen et al., 2015; Golos et al., 2015; Cabral et al., 2017a; Glomb et al., 
2017). From a biomarking perspective, pathological conditions, such as Alzheimer’s 
dementia, schizophrenia and other mental disorders (Jones et al., 2012; Damaraju et al., 
2014; Braun et al., 2018), or differences in general attributes like gender (Yaesoubi et al., 
2015) or development and aging (Hutchison & Morton, 2015; Qin et al., 2015; Davison et 
al., 2016; Schlesinger et al., 2016; Chen et al., 2017; Viviano et al., 2017), may alter dFC 
more than they affect time-averaged FC.  

The growth in the number of dFC studies, based on both fMRI and electrophysiological 
signals, has been paralleled by an increasing number of possible technical approaches to 
estimate dFC (Preti et al., 2017). A non-exhaustive list ranges from sliding window 
approaches (Allen et al., 2012), to statistical modelling of signals (Lindquist et al., 2014) 
and state transitions (Baker et al., 2014; Vidaurre et al., 2016; Cabral et al., 2017b), temporal 
network approaches (Thompson & Fransson, 2016), or the study of “coactivation 
patterns” (“CAPs”: Chen et al., 2015; Matsui et al., 2016). However, several concerns have 
been raised on whether dFC reflects genuine neural network dynamics or rather artefactual 
fluctuations, linked, e.g., to head motion (Laumann et al., 2016) or signal processing aspects 
(Leonardi & Van de Ville, 2015). There are also several statistical concerns about whether 
resting-state FC is really non-stationary (Zaleski et al, 2014; Hindriks et al., 2016) or 
whether discrete connectivity states exist that might be reliably extracted (Shakil et al., 
2016; Liégeois et al., 2017). In fact, while “FC clusters” can always be extracted using ad 
hoc algorithmic methods, as of yet that is not evident that such clusters correspond to 
well-defined, distinct attractor states (Zaleski & Breakspear, 2015). 

Here, we introduce yet another way to look at dFC, which, we believe, circumvents 
some of the concerns mentioned above on the difficulty of assessing the actual non-
stationarity of FC fluctuations in time. We do not attempt segmenting dFC in a sequence 
of sharp switching transitions between FC states but instead describe it as a smooth flow 
across continually morphing connectivity configurations. Conventional analyses of static 
FC emphasise the spatial structure of FC networks discarding most information about 
time. We adopt the opposite approach: de-emphasizing space and collapsing FC networks 
to a “point” in the space of possible FC network realisations. And, we interpret its erratic 
evolution as a random walk, a stochastic exploration of a high-dimensional space. With 
this picture in mind, it appears natural to ask questions about the speed at which the 
observed time-resolved FC instances diffuse through FC space –rather than just the largest 
distances travelled, as when probing non-stationarity– or about the shape of the paths that 
dFC follows. Even in the absence of provable non-stationarity, there are many different 
ways of being stationary, e.g., an infinite spectrum of anomalous diffusion processes 
beyond the classic Brownian motion –“noises” with different colours– that may all give 
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rise to stochastic exploration paths with alternative fractal geometries (Mandelbrot & Van 
Ness, 1968; Mandelbrot, 1983). In particular, anomalous scaling properties of fluctuations 
(Metzler et al., 2014) have been found in neural datasets at different spatial and temporal 
scales (He, 2014) and associated to critical behaviour in both rest and task conditions 
(Linkenkaer-Hansen et al., 2001; Chialvo, 2010; Palva et al., 2013).  

We extend previous results that indicated how ongoing FC fluctuations implement a 
complex random walk, endowed with non-trivial statistical properties. The features of this 
dFC random walk appear to be intermediate between two possible trivial null hypotheses: 
a first “order” scenario in which stationarity is strictly imposed, and a second 
“randomness” scenario in which the time ordering of the observed time-resolved FC 
matrices is shuffled to destroy any long-range sequential correlations. For FC time series 
dominated by stochastic properties, a direct means of characterizing such scenarios of 
time-dependent observations is detrended fluctuation analysis (DFA, Peng et al., 1993), 
which quantifies self-similarity and auto-correlations among increments in a time series. 
Using DFA analysis and statistical comparisons with suitable surrogate dFC streams, we 
find that dFC deviates from both “order” and “randomness”, being thus “complex” 
(Crutchfield, 2011).  

We also investigate how random walk properties of rest and task dFC may be modified 
over the healthy human adult lifespan (see a companion paper, Lombardo et al., jointly 
submitted, for a more refined analysis of dFC random walk alterations along with cognitive 
decline after sleep deprivation). As we age, our brain undergoes characteristic structural 
and functional changes, with a tendency toward increased structural ‘disconnection’ (Salat, 
2011), disruptions in rs-FC (Andrews-Hanna et al., 2007; Betzel et al., 2014) and modified 
structural-to-functional connectivity inter-relations (Zimmermann et al., 2016). 
Analogously, changes in dFC have been reported at the level of the temporal stability of 
FC network modules (Davison et al., 2016; Schlesinger et al., 2016), general or specific 
network variability (Qin et al., 2015; Chen et al., 2017), “FC state” occupancy (Hutchison 
& Morton, 2015; Viviano et al., 2017), and complexity of phase synchrony (Nobukawa et 
al., 2019). We complement these previous findings and show that dFC random walks may 
occur at an increasingly reduced speed and complexity with age, slowing down and 
becoming increasingly more “random”. These reductions in dFC speed and complexity 
correlate with the level of general cognitive and behavioural performance, as probed by 
both standard clinical assessments of cognitive impairments (Nasreddine et al., 2005) and 
a simple visuomotor coordination task (Houweling et al., 2008). The fact that slowing 
down and complexity loss in dFC are associated with degraded performance can be linked 
to prominent theories of cognitive aging, speculatively establishing alterations of dFC 
random walk properties as novel imaging correlates of processing speed reduction 
(Salthouse, 1996; Finkel et al., 2007) and de-differentiation (Baltes, 1980; Sleimen-Malkoun 
et al., 2014). 
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Material and methods 
 

Experimental subjects 

 

Overall N = 85 healthy adult subjects (N = 53 females, N = 32 males) were recruited 
at Charité - Universitätsmedizin Berlin to voluntarily participate in rs-fMRI and DSI scans 
and, for a subset of them, also in a visuomotor study. The first subset of N = 49 subjects 
(‘rs-only’) had ages uniformly distributed over the 18-80y range. The second set of N = 36 
subjects (‘rs+tasks’) was further split into a first (N = 15, 20-25 yrs) and a second (N = 21, 
59-70 yrs) age groups. These two subsets of subjects were scanned in the framework of 
initially independent studies (using the same MR-scanner) but could be combined at least 
for subsets of the analyses, to increase sample size when possible. 

All subjects had no self-reported neurological, psychiatric, or somatic conditions. For 
the ‘rs+tasks’ subset, we assessed healthy cognitive function with the Montreal Cognitive 
Assessment (MoCA) (Nasreddine et al., 2005). For all the rs analyses of Figs. 1-5 and S1-
4, in which cognitive performance was not relevant, we merged the two subsets of subjects. 
We distinguished for inter-group comparisons between a ‘Young group’ composed of 
subjects with lower than median age (overall N = 42, 18-42 yrs, median age = 24 yrs), and 
an ‘Older group’ composed of subjects with larger than median age (overall N = 42, 47-80 
yrs, median age = 63 yrs). 

In addition to general exclusion criteria for participation in an MRI experiment, we 
excluded subjects with a self-reported musical background, as musical training may affect 
the performance of rhythmic visuomotor tasks. Left-handed subjects, identified using the 
Edinburgh Handedness Inventory, were also excluded. Subjects were informed of the 
procedure of the study and basics of fMRI acquisition, and written consent was obtained 
before data collection. The studies were performed in accordance with the local medical 
ethics committee protocol at the Charité Hospital (Berlin, Germany). 

 

MRI acquisition 

 

Magnetic resonance imaging (MRI) acquisition was performed on a 3T Siemens Trim 
Trio scanner. Every subject was scanned in a session that included a localizer sequence (3, 
8mm slices, repetition time [TR] = 20 ms, echo time [TE] = 5 ms, voxel size = 1.9×1.5×8.0 
mm, flip angle [FA] = 40°, field of view [FoV] = 280 mm, 192 mm matrix), a T1-weighted 
high-resolution image (MPRAGE sequence, 192, 1mm sagittal slices, voxel size 
1×1×1mm, TR = 1940 ms, TE = 2.52 ms, FA = 9°, FoV = 256 mm, 256 mm matrix), a 
T2 weighted image (2:16 minutes, 48, 3mm slices, voxel size 0.9×0.9×3mm, TR = 2640 
ms, TE1 = 11 ms, TE2 = 89 ms, FoV 220 mm, 256 mm matrix), followed by diffusion 
weighted imaging (61, 2mm transversal slices, voxel size =2.3×2.3×2.3 mm, TR = 7500, 
TE = 86 ms, FoV 220 mm, 96 mm matrix). Subjects were then removed from the scanner 
to have their EEG cap put on, and then simultaneous fMRI-EEG images were acquired 
in a single run (BOLD T2*weighted, 32, 3mm transversal slices, voxel size = 3×3×3 mm, 
TR = 1940 ms, TE = 30ms, FA = 78°, FoV = 192 mm, 64 mm matrix). Five dummy scans 
were automatically discarded by the Siemens scanner.  

During resting-state scans, subjects were to remain awake and reduce head movement. 
Head cushions served to minimize head movement, and earplugs were provided. Scans for 
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the ‘rs-only’ and the ‘rs+task’ subsets of subjects had different durations. For the ‘rs-only’ 
subset, 20 min of uninterrupted rs scan were performed. For the ‘rs+task’ subset, 5 min 
of rs were collected before 20 min of task acquisition (see later), and then further 5 min 
after the task. We ignored differences between the two rs blocks by concatenating them 
prior to subsequent analysis. 

 
fMRI processing 

 

fMRI data were pre-processed following Schirner et al. (2015). Here, FEAT (fMRI 
Expert Analysis Tool) first-level analysis from the FMRIB (Functional MRI of the brain) 
software was used. Motion correction was performed using EPI field-map distortion 
correction, BET brain extraction, and high-pass filtering (100s) to correct for baseline 
signal drift, MCFLIRT to correct for head movement across the trial. As an additional 
correction measure, we further regressed out six FSL head motion parameters from the 
measured BOLD time-series. Functional data was registered to individual high-resolution 
T1-weighted images using linear FLIRT, followed by nonlinear FNIRT registration to 
Montreal Neurological Institute MNI152 standard space. Voxel-level BOLD time series 
were reduced to 68 different brain region-averaged time series, according to a Desikan 
parcellation (Desikan et al., 2006). See Table S1 for the regions of interest. We neither 
performed a slice-timing correction, smoothing, normalization of BOLD intensities to a 
mean, nor global regression.  

 

Visuomotor coordination task 

 

The N = 36 subjects in the ‘rs+tasks’ subset performed a visuomotor coordination task 
while in the scanner. The task followed a unimanual paradigm, which was adapted from a 
bimanual paradigm introduced in (Houweling et al., 2008). During the task, subjects were 
told to lay still inside the scanner with an air-filled rubber ball in their right hand. A screen, 
animated using a custom-made LabView program, was projected in the scanner. To reduce 
eye movement, subjects were instructed to fix their gaze at a cross, displayed in the middle 
of the screen between two rotating disks. The left disk served as a visual cue, rotating at a 
computer-generated speed, while the subject’s squeezing of the ball controlled the speed 
of the right disk. The goal was to make the subject-generated rotating disk align in (counter) 
rotation with the computer-generated rotating disk, which was done by squeezing the 
rubber ball in a 4:3 frequency to the visual cue. For perfect performance, the two disks 
would rotate in synchrony. Because the computer-generated disk rotated at a 4:3 frequency 
to the subject-generated circle, subjects had to squeeze the ball at 1.35 cycles per second 
to match the 1.8 cycles per second of the computer-generated disk to achieve synchrony 

Behavioural measures were collected (one performance score per trial) based on the 
frequency locking of the two rotating circles. If the two disks rotated perfectly in-
synchrony (i.e., subject was able to match the frequency of bulb-squeezing to the 
computer-generated cue), the performance score would be 1. Not frequency-locked 
rotations of the two disks would result in a performance score of 0. More specifically, the 
frequency locking of the computer-generated circle and the subject-generated disk was 
quantified by the Spectral overlap (𝑆𝑂) between the power spectra of the two forces, Px and 
Py, as described in detail in (Daffertshofer et al., 2000): 
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𝑆𝑂 = 	
2 ∫𝑃((𝑓)𝑃,(𝜌𝑓)𝑑𝑓
∫/𝑃(0(𝑓) + 𝑃,0(𝑓)2𝑑𝑓

 

with ρ = 4/3, corresponding to the target frequency ratio between the two rotating disks. 
Behavioural performance was expected to improve across trials as subjects learned the 
task; here we focused ‘only’ on the average performance over trials, ignoring all learning 
effects. 

 

Cognitive assessment 

 

MoCA assessment was performed by N = 21 elderly subjects of the ‘rs+tasks’ subset. 
The MoCA includes multiple sub-tasks probing different cognitive domains such as: short-
term memory and delayed recall; visuospatial abilities; phonemic fluency, verbal 
abstraction and naming; sustained attention and concentration; working memory; 
executive control in task switching; spatio-temporal orientation. The test was administered 
in a German version (downloadable from http://www.mocatest.org). The maximum 
global score ‘MoCA’ achievable is of 30 points, up to 5 of which are contributed from the 
partial score ‘MoCA-wm’ from the working memory (‘Erinnerung’) task. Participants were 
considered in good/healthy mental state, when achieving scores higher than 25. All details 
can be found in (Nasreddine et al., 2005). 

 
Extraction of time-dependent Functional Connectivity and dFC matrices 

 

Methods are also explained in Lombardo et al. (submitted to this issue). In brief, we 
estimated the sequence of time-dependent Functional Connectivity matrices 𝐹𝐶(𝑡) –or 
dFC stream– by sliding a temporal window of fixed duration 𝜏 (cf. Allen et al., 2012) and 
by evaluating zero-lag Pearson correlations between resting-state BOLD time series from 
different brain regions 𝑖 and 𝑗: 

𝐹𝐶9:𝑐𝑜𝑟𝑟/𝐵𝑂𝐿𝐷9(𝑡’), 𝐵𝑂𝐿𝐷:(𝑡C)2	over	the	interval	𝑡 −
O
0
≤ 𝑡′ ≤ 	𝑡 + O

0
 

All entries were retained in the matrix, independently of whether the correlation values 
were significant or not or without fixing any threshold (i.e., we treated 𝐹𝐶9:  entries as 
descriptive features operationally defined by the above formula). 

To evaluate the dFC matrices of Figures 2, 4 and S2 we introduced a notion of similarity 
between 𝐹𝐶(𝑡) matrices following (Hansen et al., 2015), based on the Pearson correlation 
between the entries of their upper-triangular parts: 

𝑑𝐹𝐶(𝑡R, 𝑡0) = 𝑐𝑜𝑟𝑟/𝑈𝑝𝑝𝑒𝑟𝑇𝑟𝑖W𝐹𝐶(𝑡R)X, 𝑈𝑝𝑝𝑒𝑟𝑇𝑟𝑖W𝐹𝐶(𝑡0)X2 

The dFC matrices thus depend on the window-size 𝜏 adopted when evaluating the dFC 
stream. To perform the two-dimensional projections of the sequence of 𝐹𝐶(𝑡) matrices 
in Figure 2, the vectors 𝑈𝑝𝑝𝑒𝑟𝑇𝑟𝑖W𝐹𝐶(𝑡)X served as input features into a t-Stochastic 
Neighbourhood Embedding algorithm (exact method) as described by Hinton & Van der 
Maaten (2008), with default perplexity = 30 and exaggeration = 4 parameters in the 
employed MATLAB® (MathWorks R2017b) implementation. To compare projections of 
actual empirical dFC and dFC evaluated for surrogate data (see below) we determined a 
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common projection based on a unified training set combining empirical and surrogate 
𝐹𝐶(𝑡) matrices. 

 
Surrogate dFC models 

 

We compared dFC streams between actual empirical data and two different types of 
surrogate, to probe deviations from two alternative null hypotheses. 

We constructed phase-randomized surrogates following Hindriks et al. (2016). In this 
approach, multi-variate time-series of BOLD signals were, first, Fourier transformed. 
Subsequently, we applied a common random phase rotation –different and uncorrelated 
between them for each time steps– to each of the brain regions. This construction 
guarantees that the covariance matrix of the original empirical data is maintained but 
destroys any systematic deviation from stationarity. Phase-randomized surrogates are thus 
compatible with a null hypothesis of stationary inter-regional FC. Once phase-randomized 
BOLD time-series have been generated, the dFC stream can be constructed based on them 
as for the original data. 

We then constructed time-shuffled surrogates. After constructing a dFC stream on the 
actual empirical data, we generated a time-shuffled version by randomly permuting the 
order of the 𝐹𝐶(𝑡) timeframes but maintaining them individually unchanged. By this, the 
mean and variance of each of the FC connections independently are preserved but any 
sequential correlations are disrupted. Time-shuffled surrogates are thus compatible with a 
null hypothesis of absence of sequential correlations in the dFC stream. 

When presenting results for surrogate ensemble we usually generated 1,000 different 
random realizations of each of the surrogate types for each subject and present average 
results or over these different realizations, unless differently specified. 
 
Analysis of dFC speeds 

 
Using correlation as a measure of similarity between matrices implied to use the 

correlation distance between two observations of functional connectivity as a measure of 
the amount of change between two 𝐹𝐶(𝑡)  observations. By measuring the distance 
between two FC observations separated by a fixed amount of time set to be equal to the 
window-size W we thus defined the instantaneous global dFC speed as: 

 
𝑉Z[\,O(𝑡) = 1–𝑑𝐹𝐶(𝑡, 𝑡 + 𝜏) 

 
We refer to this dFC speed as “global” because it is evaluated by comparing whole-

brain FC matrices (see the companion paper Lombardo et al., submitted to this issue, for 
a definition of dFC speed restricted to specific subnetworks). Note that by this definition 
hte dFC speed depends on the chosen window size 𝜏 . We improved the dFC speed 
histogram estimates by increasing the number of sampled speed observations and avoided 
potential aliasing artefacts due to the use of a single window (Leonardi & Van de Ville, 
2015) by pooling window sizes, given that speed distributions for close enough 𝜏 were 
similar. We could realise that for a vast majority of subjects and for most dFC speed bins, 
as binned counts in the histograms extracted at contiguous window sizes were statistically 
indistinguishable. For 76 out of the 85 included subjects, the binned dFC speed counts in 
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the histograms extracted at window sizes 𝜏_ and 𝜏_ + 1 were statistically indistinguishable 
(overlapping confidence intervals, Agresti-Coull estimation) for at least 12 out of 20 bins, 
where 𝜏_  denote the window sizes included (this holds for any of the considered 𝜏_-s, 
ranging from 3 to 150 TRs for rs scans in the ‘rs-only’ subset and task scans in the ‘rs+task’ 
subset and from 3 to 105 TR in the –shorter– resting-state scans for the ‘rs+task’ subset). 
Given this substantial degree of redundancy between speed distributions for contiguous 
window sizes, we chose to pool speed samples to form just three histograms, over three 
(arbitrary) window ranges: a “short” window-size range, ~6 < 𝜏 < ~15 s (3 to 8 TRs); a 
“mid” window-size range, ~15 s < 𝜏  < ~60 s (9 to 32 TRs); and a “long” window-
size range, ~60 s < 𝜏 < ~210 s (33 to 105 TRs). Window pooling leads to smoother dFC 
speed histograms (cf. Battaglia et al., companion paper). The three different ranges were 
chosen to construct in each range histograms with close numbers of speed observations 
after pooling (note that for longer windows less speeds are computed because there are 
less non-overlapping windows pairs, so that more window sizes must be pooled to reach 
a number of observations close to the short windows range).  

 
Correlations and scatter plots between age or cognitive scores and dFC speeds were 

constructed based on the median of dFC speed distributions, either computed at single 
window sizes or pooled, depending on the different analyses. The same procedures were 
followed for all dFC speed analyses for the actual empirical and for the two types of 
surrogate data. For comparing dFC speed histograms between empirical and surrogate data 
(as in Figures 3 and S3 or S4), we used a same binning in 20 bins for the three types of 
data for every subject, but adapted the binning to each specific subject’s range, always 
keeping the same number of bins. Next, we compared subject-by-subject the normalized 
counts between empirical and surrogate histograms, proceeding from the leftmost to the 
rightmost bin. Finally, we tested in how many subjects the dFC counts – bin-by-bin – for 
empirical data were under- or over-estimated (lack of overlap between 95% Coull-Agresti 
confidence intervals for the count) with respect to histograms for a given surrogate type. 

 
Detrended Fluctuation Analysis 

 

Detrended Fluctuation Analysis (DFA) allows for detecting intrinsic statistical self-
similarity embedded in a time series. It is particularly adapted to the study of time series 
that display long-range persistence, and it is in this sense similar to other techniques, such 
as Hurst exponent analysis, the latter requiring however the stationarity of the analysed 
signal. See Witt & Malamud (2013) or Metzler et al. (2014) for a review. DFA infers a self-
similarity coefficient by comparing the detrended mean square fluctuations of the 
integrated signal over a range of observation scales in a log-log plot. If the log-log plot has 
an extended linear section, (i.e. if the scaling relation is a genuine power-law over a 
reasonably broad and continuous range of scales, see later for the meaning of ‘genuine’), it 
means that fluctuations ‘look the same’ across different temporal scales, i.e. we have 
statistically the same fluctuations if we scale the intensity of the signal respecting the DFA 
exponent. 

To perform DFA we first evaluated dFC streams (using a given window size τ) and 
then evaluated its instantaneous dFC increments:  

 
𝑣Z[\,O(𝑡) = 1–𝑑𝐹𝐶(𝑡, 𝑡 + 𝛿𝑡) 
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where 𝛿𝑡 corresponds here to the minimum possible sliding time-shift in our discretely 
sampled time-series, i.e. 1 TR (one data point of shift). Note that these instantaneous 
increments 𝑣Z[\,O(𝑡) continue to depend on the window-size 𝜏 because the dFC streams 
are computed adopting a specific window-size. Therefore, we perform a different fractal 
scaling analysis over each of the dFC streams evaluated for different window sizes 𝜏. 

To perform DFA, we first converted the time-series of instantaneous dFC increments 
𝑣Z[\,O(𝑡) into an unbounded process: 

𝐷O(𝑡9) =b𝑣Z[\,O(𝑡c)
9

cdR

 

Let 𝐾  denote the number of samples in the time series, that are split into 𝑀  non-
overlapping segments 𝑞 = 1…𝑀 of length 𝑘 each, with 𝑀 = ⌊𝐾/𝑘⌋. For each segment q 
the fluctuation strength was computed as the squared difference between 𝐷O(𝑡) and its 
trend 𝐷O

(mnopq)(𝑡) (in the linear case this is the regression line of 𝐷O(𝑡) over the interval 
𝑡 = 1…𝑘) : 

𝐹r0(𝑘) =
R
_
bs𝐷OW𝑡rtcX − 𝐷O

(mnopq)W𝑡rtcXu
0

_vR

cdw

 

In the case of scale-free correlation this fluctuation strength scales with segment size 𝑘. 
That is, (on average) one finds a linear power law of the form: 

log〈𝐹r(𝑘)〉 = 𝛼|}~ log 𝑘 + 𝐶 

In figure S5 we denote 𝐹|}~(𝑘) = 	 〈𝐹r(𝑘)〉. The scaling parameter αDFA is the primary 
outcome measure of DFA. In the case of the scale-free processes with the aforementioned 
power law, 𝛼|}~  resembles the Hurst exponent (Metzler et al., 2014), leading to the 
interpretation: 

. 0 < 𝛼|}~ < 0.5: 𝑣Z[\,O(𝑡) displays anti-persistent fluctuations 

. 𝛼|}~ = 0.5 : 𝑣Z[\,O(𝑡)  displays uncorrelated Gaussian fluctuations (or, 
equivalently, Dτ resembles Brownian motion) 

. 0.5 < 𝛼|}~ < 1 : 𝑣Z[\,O(𝑡)  displays persistent fluctuations (approaching “pink 
noise” when 𝛼|}~ is close to 1) 

. 1 ≤ 𝛼|}~: 𝑣Z[\,O(𝑡) is non-stationary (strictly speaking, DFA is undefined in this 
case) 

Prior to construing outcome values, however, it is mandatory to verify that a linear 
power law scaling actually exists. If it was not the case indeed the output value 𝛼|}~ could 
not be interpreted as a scaling exponent. Following (Ton & Daffertshofer, 2016), we tested 
the hypothesis of power-law scaling using a (Bayesian) model comparison approach. This 
allowed identifying the subjects for which the DFA log-log plot was better fitted by a 
straight line than by any other tested alternative model. Only these subjects with a proper 
linear section in the DFA log-log plot were retained for the following steps of DFA 
exponent extraction and analysis of correlations with age. 

In order to test the hypothesis of power law against alternative models, we evaluated 
the density of fluctuations over the consecutive segments, i.e. the density of 𝐹r(𝑘) – 
beyond its mean value 〈𝐹r(𝑘)〉 – using a kernel source density estimator. Based on this 
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probability density, one can estimate the log-likelihood for a certain model to generate 
fluctuations of a given strength (on a log-scale) as a function of log 𝑘. To perform model 
selection, the toolbox then computes the corrected Akaike Information criterion, AIC� , 
for each one of the tested models: 

AIC� = 2logℒ��� − 2𝑝 +
2𝑞(𝑝 + 1)
𝑀 − 𝑝 − 1 

where 𝑝 is the number of free parameters to fit in the model and the number of points 
used to estimate the density of 𝐹r(𝑘) . Note that this model selection criterion 
automatically embeds a penalization for models with larger number of parameters, thus 
protecting against over-fitting. The model yielding the lowest AIC�  was selected as the 
relatively best one, and if this was the linear one, the corresponding ℒ���-fitting parameter 
was considered as 𝛼|}~. 

We used a range of 10 < 𝑘 < 80, to discard data chunk sizes that were too short or 
long data chunk sizes yielding an overall number 𝑀 of chunks that was too small. A 
genuine power-law scaling in the DFA of subjects could be found for all subjects in the 
‘rs-only’ and ‘rs+task’ subsets in at least 80 out of the 105 different window-sizes (3 to 105 
TRs) used to estimate the dFC streams. Given this general evidence for widespread power-
law scaling of the 𝑣Z[\,O(𝑡) increments in all subjects, during both resting-state and task 
scans (apart from sporadic exceptions), we computed 𝛼|}~ exponents in all cases. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 17, 2020. ; https://doi.org/10.1101/107243doi: bioRxiv preprint 

https://doi.org/10.1101/107243
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Results 
 

Dynamic Functional Connectivity as a stochastic walk 

 

A widespread manner to extract FC from rs- or task-fMRI is to parcellate the brain into 
𝑁 macroscopic regions – we follow here a parcellation described first by Desikan et al. 
(2006) (see Table S1) – and to compute pairwise linear correlations 𝐹𝐶9: =
𝐶𝑜𝑟𝑟/𝑎9(𝑡), 𝑎:(𝑡)2, between the region-averaged time series of neural activity 𝑎9(𝑡) and 
𝑎:(𝑡) of regions 𝑖 and 𝑗, based on the entire fMRI imaging session (tens of minutes). The 
result of this procedure is a square 𝑁-times-𝑁 matrix of static FC. To estimate how FC 
fluctuates in time around the session averaged static average, we adopted a common sliding 
window approach – followed e.g., by Allen et al. (2012) –, repeating the FC construction 
separately for each time-window (of a fixed duration τ) and generated a time-ordered 
sequence of 𝐹𝐶(𝑡) matrices, or dFC stream (Fig. 1A).  

Next, we studied the similarity between time-resolved networks observed at different 
times. To quantify the amount of FC network variation, we introduced a metric of 
similarity between FC matrices and evaluated the so-called dynamic Functional Connectivity 
(dFC) matrices (cf. Hansen et al., 2015). The dFC matrix entries 𝑑𝐹𝐶��  provide the 
normalized correlation 𝑐𝑜𝑟𝑟[𝐹𝐶(𝑡�), 𝐹𝐶(𝑡�)]  between any two 𝐹𝐶(𝑡)  networks 
observed at times 𝑡� and 𝑡�, as depicted in Fig. 1B). A rs-dFC stream for a representative 
resting-state recording is shown in Fig. 2A, with its associated dFC matrix in Fig. 2B (to 
the left). From the inspection of this matrix, we can recognize that the rate of variation of 
𝐹𝐶(𝑡) matrices was not constant along time, but rather heterogeneous. The associated 
dFC matrix of Fig. 2B (left) displayed characteristic patterns composed out of square-
shaped red-hued blocks, corresponding to epochs of transiently increased similarity 
between consecutive 𝐹𝐶(𝑡) network frames. Such epochs of relative FC stability increase 
–or ‘dFC knots’– were intertwined with transients of relative instability, shown in Fig. 2B 
(left) by light green or blue stripes in the dFC matrix, denoting strong dissimilarity from 
previously visited FC(t) networks. During such transients –or ‘dFC leaps’– 𝐹𝐶(𝑡) quickly 
morphed before stabilizing again into the next dFC knot. Knots and leaps could be 
observed when computing dFC streams and matrices over the whole broad range of 
window-sizes we tried (between 6 s to 5 mins). Additional examples for representative 
subjects and window sizes are shown in Fig. S2A. 

To provide a more quantitative description of the heterogeneous 𝐹𝐶(𝑡) change, we 
determined the rate of change of FC networks along the dFC stream. As said, we 
considered the dynamics of FC as a stochastic exploration of the space of possible FC 
configurations and assumed pairs of 𝐹𝐶(𝑡) matrices to be separated by an observation 
window equal to the window-size itself τ used for 𝐹𝐶(𝑡) estimation. We defined the global 
dFC speed at time t as the quantity 𝑉Z[\,O(𝑡) = 1– 𝑐𝑜𝑟𝑟[𝐹𝐶(𝑡), 𝐹𝐶(𝑡 + 𝜏)]. As illustrated 
on the bottom of Fig. 1A, this global dFC speed can be interpreted as the distance travelled 
in FC space between two ‘stroboscopic’ observations at times 𝑡 and 𝑡 + 𝜏 (i.e. over a fixed 
time interval corresponding to the closest possible interval separating two windows 
without overlap). Hence, the time-resolved 𝐹𝐶(𝑡) matrix may be seen as performing a 
stochastic walk in the space of possible FC network configurations. The global dFC speed 
𝑉Z[\,O(𝑡) thus informs us about how fast and far away is the time-resolved FC network 
moving along the stochastic path given by the observed dFC stream, at a time 𝑡. 
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We sampled the statistical distributions of 𝑉Z[\,O(𝑡) for different subjects and values 
of τ (see Materials and Methods). We also computed window-pooled dFC speed, 
simultaneously mixing estimations from different window sizes within three different 
ranges –long (one to three minutes), intermediate (tens of seconds) and short (6-15 s) 
window sizes–, also to avoid detection of artefactual fluctuations due to the use of a unique 
fixed window (Leonardi & Van de Ville, 2015). A distribution of resting-state pooled dFC 
speeds over all subjects is shown by the blue curve in Fig. 2C, for the three long, 
intermediate and short window-size ranges (from top to bottom). Analogously, examples 
of pooled dFC distributions sampled for single subjects are given in Fig. S2B. For all 
considered τ-s (both at the group and at the single subject level), these global dFC speed 
distributions displayed a clear peak near a median value 𝑉Z[\ , i.e. the typical dFC speed. The 
dFC speed distributions were generally skewed and/or kurtotic, deviating from 
Gaussianity (over three quarters of computed distributions, for different subjects and 
window sizes, Lilliefors test, p < 0.05) and had generally fat tails, in particular evident for 
long or short window sizes. Before we discuss the implications of these deviations from 
Gaussianity, we here want to highlight these fat tails indicate that FC reconfiguration 
events of an anomalously small (low dFC speed) or large (high dFC speed) size are 
observed with anomalously large probability. 

Overall, the FC reconfiguration speed along the dFC stream appeared not to be 
constant. To show this, we performed a non-linear distance-preserving projection of the 
sequences of 𝐹𝐶(𝑡)  matrices observed along the dFC stream into a space of lower 
dimension. We used two-dimensional projections of dFC streams via t-Stochastic 
Neighborhood Embedding (t-SNE, Hinton & van der Maaten, 2008). In these plots, each 
dot corresponds to the projection in two dimensions of a different time-resolved FC 
network and temporally consecutive dots are linked by a line (see Materials and Methods). 
The dFC stochastic walk can thus be explicitly visualized, as in the example of Fig. 2B 
(right), showing the projection of the dFC stream associated to the dFC matrix plotted on 
the left. In this t-SNE projection, 𝐹𝐶(𝑡) within dFC knots form smooth and continuous 
segments, interrupted by a few cusp points, associated instead to dFC leap events. Here 
we would like to note that that dFC speed fluctuations did not reflect mere head motion 
artefacts because the size of instantaneous dFC variations (estimated using two alternative 
forms of motion correction, cf. Materials and Methods) did not correlate with the size of 
instantaneous head displacements; see Fig. S1A. After motion correction, large dFC speeds 
could still be detected even in absence of head movement. Conversely, large head 
movements could occur without big changes of FC. Therefore, dFC fluctuations are most 
likely not artefactual. We would also like to note, that the very fact that dFC speed varied 
does not readily imply that dFC stream to be trivial: To assess “non-triviality”, one must 
be able to prove deviations of the statistical properties of empirical dFC streams from 
trivial null hypotheses. Below we discuss possible deviations from two alternative null 
hypotheses of “order” and “randomness”. To anticipate, empirical dFC streams have dFC 
speed distributions lying between these two null hypotheses (Crutchfield, 2011; see 
Discussion). 

 
Dynamic Functional Connectivity deviates from “order” 

 
𝐹𝐶(𝑡)  variability might not be indicative of genuine dynamics but represent 

fluctuations around an underlying “order” described by an unchanging, static FC. This 
“order” scenario corresponds to a null hypothesis of FC stationarity. In contrast to this is 
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the possibility that a multiplicity of separate FC states exists. As represented in the 
graphical cartoon of Fig. 1C, deviations from stationarity would imply that well-defined 
clusters of 𝐹𝐶(𝑡) matrices exist along the stochastic walk described by the dFC stream. 
The step lengths travelled in FC space –measured by dFC speed– would thus be 
significantly shorter between 𝐹𝐶(𝑡) matrices belonging to a same cluster than the distance 
travelled between 𝐹𝐶(𝑡) matrices belonging to different clusters. A possibility is thus that 
at least some of the red-hued “knots” observed in dFC matrices (cf. Fig. 2B) correspond 
to well-separated clusters, associated with distinct FC states. To test for this possibility, we 
generated phase-randomized surrogate dFC streams, following Hindriks et al. (2016). In this 
type of surrogates (Fig. 2D), a phase-shift –randomized at every timepoint but identical 
for all regions– is applied to fMRI time-series, such to preserve by construction the static 
time-averaged FC of the measured session but to destroy any coherent fluctuations around 
it that may result in deviations from stationarity (see Materials and Methods and Hindriks 
et al. (2016)). When computing dFC streams, dFC matrices and dFC speed distributions 
for phase-randomized surrogates, we found that 𝐹𝐶(𝑡) fluctuations were not suppressed. 
Phase-randomized dFC matrices still appeared to have blocks and stripes reminiscent of 
“knots” and “leaps” in empirical dFC streams (Fig. 2E, left). Analogously, when 
performing a low-dimensional projection via the t-SNE algorithm, phase-randomized dFC 
streams still gave rise to stochastic exploration paths alternating continuous sections with 
discrete jumps (Fig. 2E, right). The observed larger-than-average fluctuations of 𝐹𝐶(𝑡) 
were well compatible with the null hypothesis of stationarity. However, when computing 
the distributions of dFC speed for phase-randomized surrogates, we found that they 
generally differed from empirical distributions, both at the group level and at the level of 
single subjects. The green dashed curves in Fig. 2C show distributions of resting-state 
pooled dFC speeds over phase-randomized surrogates for all subjects, for the three long, 
intermediate and short window-size ranges (from top to bottom). Once again, these 
distributions were skewed and/or kurtotic, tending to deviate from Gaussianity (Lilliefors 
test, p < 0.01 for long and short windows, not significant for intermediate windows). Most 
importantly, these pooled dFC speed distributions for phase-randomized surrogates were 
statistically different from equivalent empirical distributions for two out of three window-
size ranges (two-sided Kolmogorov Smirnov test, Bonferroni corrected, p < 0.01 for long 
windows; p < 0.05 for intermediate windows; not significant for short windows). The 
distribution mode was smaller than for the empirical dFC streams. 

We performed comparisons at the level of single-subject dFC speed histograms. As 
shown in Fig. 3A, the probability of observing speeds in the slow range was significantly 
smaller in empirical distributions than in phase-randomized distributions for a majority of 
subjects. At the same time, the probability of observing speeds in the fast range was 
significantly larger (95% binomial confidence interval speed bin-by-speed bin comparison). 
We obtained similar results when analyzing single subject distributions of dFC speeds 
during task blocks, rather than resting state (Fig. S3A). Hence, both at the group and single-
subject levels, phase-randomized dFC speed distributions appeared shifted toward slower 
speeds, with respect to empirical dFC streams. Note that this deviation of empirical dFC 
speed distributions from the stationary “order” scenario still does not imply that red-hued 
“knots” in the dFC matrix are actual clusters and that “leaps” are FC state transitions. 
Indeed these “knots” and “leaps” are visible even in dFC matrices for stationary phase-
randomized surrogates (Fig. 2D), as previously mentioned. Furthermore, by construction, 
phase-randomized surrogates must yield the same covariance matrix of empirical data and, 
therefore, the level of 𝐹𝐶(𝑡) variability for empirical and phase-randomized data should 
be the same. How can these observations be reconciled with a statistically significant 
difference in dFC speed distributions? We will comment on this apparent contradiction in 
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the Discussion. However, for now, we would like to remark that deviations from the 
stationary order expressed by the phase-randomized surrogates do not mean automatically 
that dFC streams are non-stationary. Still, it means that they are “differently stationary”.  

 
Dynamic Functional Connectivity deviates from “randomness” 

 

The notion of dFC speed does not capture generic variance across 𝐹𝐶(𝑡) matrices 
observed at any point in time but specifically focus on sequential variability, i.e. on variability 
occurring along a time-ordered dFC stream between a matrix 𝐹𝐶(𝑡) and a second one at 
a fixed time-distance 𝐹𝐶(𝑡 + 𝜏) . The null hypothesis of stationarity imposes a static 
covariance matrix but does not make differences about the “when” relatively larger and 
smaller fluctuations occur. “Knots” and “leaps” are localized in specific time-epochs. 
Waxing and waning knots have a beginning, a duration and an ending, depicted as blocks 
in the dFC matrix. To test for sequential aspects in the empirical dFC streams, we designed 
a second trivial scenario of maximal sequential “randomness”. In this alternative null 
hypothesis –associated with shuffled surrogate dFC streams–, 𝐹𝐶(𝑡) means and variances 
are preserved, while sequential correlations along the stream are destroyed by randomly 
shuffling the order of timeframes in the empirical dFC stream (Fig. 2F). Contrary this 
scenario is the possibility that “flight lengths” in the space of FC matrices are sequentially 
correlated. For instance, as sketched in the cartoon of Fig. 1D, short steps may be followed 
by short steps with a larger than chance probability –a property of the stochastic walk 
known as persistence (Witt & Malamud, 2013; Metzler et al., 2014; see later). If “knot” 
epochs are sufficiently long-lasting, 𝐹𝐶(𝑡) may evolve considerably –and do so smoothly 
and very gradually– through the composition of a multiplicity of small steps. In this way, 
transient slowing downs would not be automatically associated to the emergence of FC 
clusters (as in Fig. 1C). Distances between 𝐹𝐶(𝑡) matrices visited during a slowing-down 
epoch could indeed be even larger than distances between matrices visited during different 
slowed-down transients (compare e.g., the distances marked by an exclamation mark in 
Fig. 1D). However, slowing down transients and transient accelerations would still appear 
in the dFC matrix as red-hued “knot” blocks and blueish “leap” stripes. Incidentally, this 
discussion confirms once again that the appearance of “knots” and “leaps” in the dFC 
matrix is not proof per se of the existence of FC clusters and states. But are the “knots” 
indicative of significant transient slowing-downs with respect to chance level set by the 
“randomness” null hypothesis? The full proof will require a direct, explicit study of the 
persistence of the dFC stochastic walk (see below). Here, we first study differences at the 
level of the distribution of dFC speeds, as we already did with the “order” null hypothesis. 

In Fig. 2E we show the dFC matrix and the two-dimensional projection associated to 
a typical shuffled dFC stream. The dFC matrix (Fig. 2E, left) appears powdery and 
scattered without visible knot and leap patterns. This fact is not surprising, because this 
matrix contains precisely the same entry values of the original empirical dFC matrix in Fig. 
2B but in a randomly permuted order. Analogously, the individual 𝐹𝐶(𝑡) matrices of the 
shuffled dFC stream are identical to the matrices composing the empirical dFC stream, 
but appear in a permuted order. As a result, in the t-SNE projection of Fig. 2E (right), the 
points associated with each of the individual 𝐹𝐶(𝑡) timeframes are precisely identical to 
the ones in Fig. 2B (right). The path linking them is erratic and unstructured, much related 
to Brownian motion.  

When computing the distributions of dFC speed for shuffled surrogates we found that 
they generally differed from empirical and phase-randomized distributions, both at the 
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group level and at the level of single subjects. The red dashed curves in Fig. 2C show 
distributions of resting-state pooled dFC speeds over shuffled surrogates for all subjects, 
for the three long, intermediate and short window-size ranges (from top to bottom). These 
distributions had a residual skewness but differed significantly from a Gaussian only for 
short window sizes (Lilliefors test, p < 0.05 for short windows, not significant for other 
windows). Once again, they significantly differed from matching empirical dFC speed 
distributions in all the window ranges (two-sided Kolmogorov Smirnov, Bonferroni 
corrected, p < 0.01 for long and intermediate windows; p < 0.05 for short windows). The 
distribution modes were larger than for empirical dFC streams. When performing speed 
bin-by-speed-bin comparisons at the level of single-subject dFC speed histograms, the 
pattern was reversed with respect to the comparison with phase-randomized surrogates. 
Notably, as shown in Fig. 3B, the probability of observing speeds in the slow range was 
significantly larger in empirical distributions than in shuffled distributions for a majority of 
subjects. At the same time, the probability of observing speeds in the fast range was 
significantly smaller (95% binomial confidence interval speed bin-by-speed bin 
comparison). We obtained similar results when analysing single subject distributions of 
dFC speeds during task blocks, rather than resting state (Fig. S3B). 

Both at the group and single-subject levels, shuffled dFC speed distributions appeared 
shifted toward faster speeds relative to empirical dFC streams. Summarizing, the results of 
comparisons of the empirical dFC speed distributions with the two alternative types of 
surrogates, we conclude that, in both rest and task conditions, the empirical dFC speed 
distribution lies between the trivial “order” and “randomness” scenarios. It is thus 
reflecting a non-trivial disorder, a.k.a. complexity (see Discussion). 

 

Slowing of dFC through the human adult lifespan 

 

Our fMRI dataset included subjects over a wide age range of 18 to 80 years. The enabled 
us to study how dFC stream properties are affected by “healthy aging” (none of the 
subjects were diagnosed with a pathological decline of cognitive abilities). Fig. 4A shows 
dFC matrices for representative subjects of different ages (see Fig. S2A for different τ-s). 
It is visually evident that the typical duration of dFC knots varied with subject age, seeming 
to become longer for older subjects. 

To quantify this visual impression, we computed in Fig. 4B resting-state pooled dFC 
distributions separately for the group of subjects younger (blue curves) and older than 
median age (magenta curves), for the three long, intermediate and short window ranges 
(from left to right). For all the three window ranges, the distribution of dFC speeds for 
older subjects was significantly shifted toward slower values (one-sided Kolmogorov-
Smirnov, p < 0.01 for long and intermediate windows, p < 0.05 for short windows), 
reflecting the longer duration of the slowing-down epochs associated to knots in the dFC 
matrix. Similar results held for task dFC speed as well. 

At the level of single-subject pooled dFC speed distributions, we tracked for every 
subject the position of the distribution medians, giving the typical dFC speed 𝑣Z[\  and 
computed its correlation with subject age over the different window ranges. As shown by 
the scatter plot in Fig. 4C, 𝑉Z[\  significantly decreased with age (bootstrap with 
replacement c.i., see caption for p values) for all three pooled window ranges, for resting-
state and –with even stronger correlations– for task dFC speeds. The correlations of dFC 
speed with age where robust even when considering single window estimations, without 
pooling. As visible on the top of Fig. 4D (blue ranges), single window 𝑉Z[\-s correlated 
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negatively with subjects age over a broad range of sizes ranging from very-short window 
sizes (6-15 s) up to window sizes of several minutes. 

We also found that these negative correlation between 𝑉Z[\  and age held as well for 
both phase-randomized and shuffled surrogates, and over broad window ranges well 
matching the ones found for empirical data (see green and red ranges in Fig. 4D). This 
suggests that dFC slowing down may be linked to a general reduction of FC(t) variance, 
which is retained as well when constructing the surrogate dFC streams (see Discussion). 
More specifically, we found that the differences between surrogate and empirical dFC 
speed distribution tended to smear out with increasing age. In Fig. 3C-D (for the 
intermediate window range) and in Fig. S4 (for short and long window ranges), we repeated 
the speed bin -by- speed bin comparison of empirical with surrogate single subject dFC 
distributions, separating now, however the subjects into two age groups, younger or older 
than the median age. The patterns of comparison with surrogate distributions have the 
same overall directions for younger or older subjects: slower speeds tend to be under-
represented (over-represented) and faster speeds over-represented (under-represented) 
when comparing empirical with phase-randomized (shuffled) dFC distributions. However, 
for the older subjects, the fraction of subjects for which the bin-by-bin comparisons with 
surrogates were not substantially increased (cf. the broader green central band in Figs. 3C-
D or S4). In a sense, therefore, the dFC speed distributions get more “trivial” with aging 
(i.e., less complex). 

 

Dynamic Functional Connectivity is an anomalous stochastic walk 

 
As previously said, stochastic processes can be “memory-less” –the next step is 

uncorrelated from the preceding– or display long-range correlations (Witt & Malamud, 
2013; Metzler et al., 2014), positive (persistence) or negative (anti-persistence). The classic 
“Drunkard’s walk”, associated with Brownian motion (or white noise), corresponds to a 
Gaussian, memoryless process. However, other stationary stochastic processes can display 
long-range sequential correlations resulting in different statistics of fluctuation, toward 
“pink noise” (for positive correlations and persistence) or “blue noise” (for negative 
correlations and anti-persistence). Such anomalous –i.e., deviating from Gaussianity– are 
common in a variety of contexts (see Discussion) and has been already identified in resting-
state and task fluctuations of both electrophysiological and fMRI signals (Linkenkaer-
Hansen et al., 2001; Van de Ville et al., 2010; He, 2014). 

To characterize deviations from Gaussianity in the FC(t) fluctuations along the dFC 
stream, we used a quantitative approach, Detrended Fluctuation Analysis (DFA, 
Kantelhardt et al., 2001) to quantify the degree and type of long-range correlations along 
the dFC stream of 𝐹𝐶(𝑡) networks. The DFA procedure quantifies the strength of auto-
correlations in a sequence by detecting a power-law scaling – described by a scaling 
exponent αDFA – in the divergence of a quantity 𝐹�[�(𝑘), probing the strength of the 
fluctuations of the sequence at different scales of observation k (see Material and Methods). 
A value of αDFA = 0.5 corresponds to a Gaussian white noise process, in which the standard 
deviation of the fluctuations grows as √N after N uncorrelated steps. In contrast, larger 
values 0.5 < αDFA ≤ 1 correspond to anomalously persistent and 0 < αDFA ≤ 0.5 
anomalously anti-persistent fluctuations. Here, specifically, we measured along the dFC 
stream sequences of instantaneous increments vdFC,τ (t) = 1 – dFC(t, t+δt), where δt 
correspond to the time-step between one FC(t) network frame and the following (i.e., 1 
TR). This choice yielded a description of the dFC stream as close to continuum in time as 
possible. We then applied the DFA procedure on sequences of vdFC,τ supplemented by a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 17, 2020. ; https://doi.org/10.1101/107243doi: bioRxiv preprint 

https://doi.org/10.1101/107243
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

(Bayesian) model-selection step (see Material and Methods), which allows for discarding 
subjects, for which a genuine power-law scaling is not present (Ton & Daffertshofer, 
2016). Note that the DFA exponents αDFA will continue depending on the window τ chosen 
for FC(t) estimation. Indeed, instantaneous increments vdFC,τ (t) –analogously to 
“stroboscopic” dFC speeds VdFC,τ (t)– are necessarily evaluated on a given input dFC 
stream. Therefore, different dFC streams are obtained for different choices of τ. It will 
thus be necessary to study how αDFA depends on τ, since different fluctuation statistics 
could be found for the different ways of measuring FC(t) (see Discussion for possible 
alternatives and their drawbacks). 

We show in Fig. 5 the results of DFA analyses on our data. First of all, we found robust 
power-law scaling relations in 𝑣Z[\,O  fluctuations over most subjects and window sizes. 
Fig. S5 shows examples of robust power-law scaling under DFA for representative 
subjects and window sizes 𝜏. We also found that for window sizes 𝜏 ≥ ~20s (i.e., roughly 
over the intermediate and large windows ranges) the exponent αDFA was systematically and 
significantly (lack of overlap between 95% mean c.i.) larger than 0.5, for both empirical 
resting-state and task data (sample mean of αDFA is given by the blue curves in Fig. 5A), 
indicating persistence of dFC fluctuations. On the contrary, for window sizes 𝜏 ≤ ~15s 
(i.e., over the short windows range), the exponent 𝛼|}~ was significantly smaller than 0.5, 
denoting anti-persistence. For nearly all window sizes, dFC stream was thus significantly 
deviating from a Gaussian random walk displaying important long-range correlations.  

When performing DFA analysis on surrogate dFC streams, we found by construction 
that the “randomness” shuffled surrogates corresponded for all probed windows to a 
Gaussian uncorrelated walk with 𝛼|}~~0.5 (sample mean given by the red curve in 
Fig. 5A). Within computational limits, the “order” phase-randomized surrogates (sample 
mean given by the green curve in Fig. 5A) had an 𝛼|}~  spectrum statistically 
indistinguishable from the one of empirical data, in agreement with the literature (Dingwell 
& Cusumano, 2010), and providing therefore a robust benchmark to probe for eventual 
correlations between 𝛼|}~  and behaviour or cognition. Note that the αDFA exponents 
measured for dFC streams strongly differ for analogous exponents estimated from head 
motion time-series (cf. Fig. S6A), hinting at their origin in genuine fluctuations of neuronal 
activity (see Discussion).  

 

Loss of complexity of dFC through the human adult lifespan 

 

We then studied how the scaling properties of dFC stream fluctuations varied with age. 
We show in Fig. 5B sample resting-state distributions of 𝛼|}~, pooled over the long (top) 
and short (bottom) window size ranges, separately for the two groups of subjects with 
smaller (blue curves) or larger (magenta curves) than median ages. For younger subjects, 
the distributions for the long (short) window ranges are peaking at 𝛼|}~ values well above 
(below) the Gaussian expected value at ~0.5. For older subjects, however, the distributions 
were shifting significantly toward 0.5, indicating Gaussianity (one-sided Kolmogorov 
Smirnov, Bonferroni corrected, p < 0.05 for long windows; p < 0.01 for short windows; 
not significant for intermediate windows). Interestingly, the median 𝛼|}~  increased with 
aging in the short windows range, correspondingly to reduced anti-persistence and decreased 
in the long windows range, reducing persistence. In other words, aging lead invariantly to 
replacing complexity with randomness. 
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Moving from group to subject-by-subject analyses, Fig. 5C shows the window size 
ranges for which correlations between subject-specific αDFA and age were significant. For 
both empirical resting-state and task fMRI, correlations were significantly positive for 
short window sizes. There were also significantly negative correlations for several windows 
in the intermediate and long window size ranges. The range of significance was broader 
for resting-state than for task dFC streams.  

We also performed a similar analysis for surrogate dFC streams. There were no 
correlations with age for shuffled dFC streams for which 𝛼|}~  was always fluctuating 
around the Gaussianity value of ~0.5. For phase-randomized surrogates whose 𝛼|}~-s 
were very close to the empirical data, although not precisely identical, we also found 
significant positive correlations in the short window range. However, the negative 
correlations with age in the intermediate and long window sizes ranges were tendential but 
not significant (even before applying multiple comparison correction). The replacement of 
complexity by randomness is thus more marked in empirical than in phase-randomized 
data. 

Finally, in Fig. S6B we show that the 𝛼|}~  computed from head motion time-series (cf. 
Fig. S6A) were not correlating significantly with age. Therefore, variations of 𝛼|}~ with 
age for empirical dFC streams do not reflect –or at least, not uniquely– variations of head 
motion fluctuations (see Discussion). 

 

Dynamic Functional Connectivity correlates with task and cognitive performance 

 

We tested whether dFC stream properties –as its speed 𝑉Z[\  and the scaling properties 
of its instantaneous increments summarized by αDFA– were indicative of behavioural or 
cognitive performance. We analysed in particular correlations with fluency in a simple 
visuomotor task or with the score obtained general in a common clinical assessment –the 
Monreal Cognitive Assessment (MOCA), probing several cognitive domains affected in 
age-related dementias (Nasreddine et al., 2005). In short, we found that speed of dFC 
measured during the task –but not at rest– correlated positively with task performance, 
measured by the spectral overlap (𝑆𝑂, Fig. 6A and Fig. S7A-B). We also found that αDFA 

measured at rest correlated positively with the general composite MOCA score (Fig. 6B) 
and that variations of αDFA between rest and task could correlate with visuomotor task PLI 
(Fig. S7C-D). More specifically, concerning dFC speed analyses, we found that window-
range pooled task 𝑉Z[\  correlated with task’s 𝑆𝑂 for all three long (Fig. S7A), intermediate 
(Fig. 6A) and short (Fig. S7B) window ranges (bootstrap with replacement c.i., see captions 
for p values). Correlations were particularly strong in the intermediate window ranges. 
Considering single-window 𝑉Z[\,O , we also found significant positive correlations over 
wide ranges of short, intermediate and long window sizes, as shown in Fig. 6C (blue 
ranges). Therefore, the faster were dFC streams during the task and the best manual 
movement could remain phase-locked with the displayed visual motion. 

The correlations between dFC speed and 𝑆𝑂 also held for surrogate task dFC streams 
of both phase-randomized and shuffled types, over window size ranges close to the ones 
for empirical data (Fig. 6C, red and green ranges). Therefore, as in the case of correlations 
with age (Fig. 4D), it seems that 𝑆𝑂 correlations with dFC speed can be accounted for by 
a general increase of dFC variance, which is preserved when constructing the surrogates 
dFC streams (see Discussion). Correlations between resting-state dFC speeds and 𝑆𝑂 were 
not significant. 
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Concerning DFA analyses, we found (Fig. 6D) that resting-state αDFA correlated 
positively with the general MOCA score over a substantial range of window sizes located 
within the long window size range (τ > 90 s). There was also a small range within the short 
windows range for which  𝛼|}~ was negatively correlated with MOCA. Therefore, the 
more the dFC stream deviated from memoryless random walks and the higher was the 
composite MOCA score. Remarkably and differently from dFC speed analyses, we found 
that these correlations between 𝛼|}~  and MOCA reached significance only for empirical 
data but not anymore for surrogate data, including phase-randomized data. Note also that 
the MOCA scores were quite diverse across the subjects and that the correlation between 
age and MOCA was mildly negative but not significant. Therefore, correlations between 
subject-specific 𝛼|}~ and MOCAs seem to depend on fine details of the empirical dFC 
increment sequence rather than on generic statistical aspects rendered as well by the phase-
randomized surrogates. 

The task 𝛼|}~-s were generally different from the rest ones, sometimes larger and 
sometimes smaller. It was thus possible to calculate for each subject the quantity Δ𝛼|}~, 
positive or negative depending on the subject, that could be negative or positive depending 
on the subject. In Fig. S7C, we show a scatter plot of task-vs-rest Δ𝛼|}~  against 𝑆𝑂 for a 
representative window size. The more the scaling exponent increases –get more 
persistent- during tasks relative to rest and the better the visuomotor task will be 
performed. In Figure S7D we show the windows for which positive correlations between 
ΔαDFA and 𝑆𝑂 remained significant. This range, once again located within the long window 
sizes range, is smaller than for correlations between 𝛼|}~  and MOCA. However, these 
correlations only appeared in the empirical data but not in the two surrogate streams. 
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Discussion 
 

We characterise dFC by allowing 𝐹𝐶(𝑡) fluctuations to be interpreted as a stochastic 
walk in the space of possible network configurations. By this, dFC forms a continuous 
stream without the need to segment epochs belonging to sharply separated “FC states” or 
clusters. We focused on two aspects: the speed at which the stochastic exploration of the 
FC space is performed and the geometry of the resulting stochastic walk. 

As for speed, the key idea is that variability of 𝐹𝐶(𝑡) occurs at all times and not 
necessarily just restricted to specific switching events. In this sense, our approach 
quantifying rate of continuous variation along the dFC stream is conceptually akin to 
temporal derivative methods introduced by Shine et al. (2015) or used in EEG analyses 
(Schurger et al., 2015; He, 2018). However, these previous studies addressed variations at 
the level of signals or activation states, rather than at the FC network level. Distributions 
of dFC speed were clearly unimodal for all considered subjects, through all the probed 
window sizes and for both task and rest. The peak of the dFC speed distribution could 
thus be interpreted as a “typical dFC speed”, a first indicator of the expected scale of time-
to-time network variability along the dFC stream. We found that this typical speed 
decreases with age, and this not only for empirical rest and task data but also for both 
considered surrogate types. Overall, our findings hint toward a reduced network variability 
in aging, in the same direction as other dFC analyses (Chen et al., 2017) and previous 
reports of reduced variability in elderly already at the level of the BOLD signal itself (Grady 
& Garrett 2014). Other studies, however, reported increased “noise” in the elderly relative 
to the younger subjects, at least at specific scales and in certain regions (Yang et al., 2013). 
In even stronger apparent conflict with our findings are studies indicating that, along dFC, 
network nodes tend to fluctuate between network modules more dynamically in elderly 
than in younger subjects, resulting in a more flexible modular structure (Schlesinger et al., 
2016; Davison et al., 2016). Such divergences are not necessarily in contradiction with our 
results. Our metric of dFC speed is a mere correlation distance at the level of whole 
network comparison. First, being normalized, it is not sensitive to variations in signal 
variances, as long as the signal correlation structure is preserved. Second, enhanced 
flexibility of modules also indicates that, overall, the separation between modules observed 
in young is blurred by node exchange, resulting in decreased within-module and increased 
between module average connectivity (Betzel et al., 2014). Thus, the overall differences 
between time-resolved network frames with soft modules (with different “nuances of 
gray”), as observed in the elderly, could be smaller than the differences between frames 
with neat modules (“black or white”), as observed in the young. 

Even if network reconfiguration never stops, the rate of reconfiguration is not 
constant. Analyses focusing on the detection of non-stationarity and state changes in FC, 
emphasized the role of long jumps –which we called here dFC leaps– across which the 
variance is so large to be interpreted as a significant change of the FC network link 
strengths (see e.g. Zalesky et al., 2014; 2015). Here, we instead insist on the fact that short 
jumps are abundant in empirical resting-state and task data relative to surrogate dFC 
streams in which the shuffling of timeframes removes sequential correlations. The 
“agglutination” of these many small variation events results in temporally connected 
epochs of transient slowing down. Famously, even the tortoise can beat the fast runner 
Achilles. Through the concatenation of many short steps, it becomes possible, indeed, to 
travel overall long distances. Thus, dFC knots are not necessarily indicating the existence 
of compact clusters separated by long gaps (cf. the comparison between Figs. 1C and 1D). 
Still, it may be that at least some dFC leaps are large enough to be qualified as proper FC 
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state transitions (cf., the over-expression of large speeds in Fig. 3). We insist here once 
again on the fact that the debate “stationary vs. non-stationary” (see e.g., Hindriks et al., 
2016) may not be the more pertinent when attempting to capture the nature of dFC 
specificities. It instead appears that what makes empirical dFC unique relative to surrogate 
ensembles are its specific sequential correlation properties, deviating from trivial Gaussian 
stationarity. 

We used fractal scaling analysis to assess “how” empirical dFC streams manifest long-
range sequential correlations. We identified for most window sizes deviations of empirical 
dFC streams from Gaussianity, finding strong evidence for long-range correlations, 
positive –denoting persistence– or negative –denoting anti-persistence– depending on the 
window size. Long-range persistence has been observed since long in contexts as diverse 
as water flooding (Hurst, 1951; Mandelbrot & van Ness, 1968), fluctuations of musical 
rhythms (Hennig et al., 2011), foraging in ecosystems (Viswanathan et al., 1999), prices on 
the stock market (Lo, 1991), internet traffic (Cleveland and Sun, 2000), etc. In 
neuroscience; long-term persistence has been identified in resting-state and task 
fluctuations of electrophysiological and imaging signals (Linkenkaer-Hansen et al., 2001; 
Van de Ville et al., 2010; He, 2014) and found to correlate with behaviour (Palva et al., 
2013; Ciuciu et al., 2014). Anti-persistence is less frequently discussed, but it has also been 
routinely found, for instance, once again in nonlinear dynamics (Penna et al., 1995), 
sportive scores series (Gabel and Redner, 2011) or in heartbeat (Peng et al., 1993), more 
relevant here since it may be a potential contaminating artefact of physiological but not 
neural origin in the BOLD signal.  

A possibility is that higher than Gaussian 𝛼|}~  exponents are the ultra-slow range 
extension or at least the surviving observable shadow of faster scale-free microstate 
fluctuation dynamics (Van de Ville et al., 2010) that cannot be tracked with the too-low 
temporal resolution of fMRI. We observed this persistence of dFC streams very robustly 
over the whole intermediate and long window size ranges. Over time windows from ~20s 
up to several minutes, exponents are safely lying above the Gaussian value of 𝛼|}~~0.5. 
The extension of the range for which persistence holds also means that, although the exact 
dFC speed and 𝛼|}~ values may quantitatively change for different window sizes, our 
random walk analyses are describing essentially the same qualitative phenomenon, as long 
as the adopted window size is larger than 𝜏 > 20s. 

Our observation of multifractal scaling in dFC is not completely unexpected. Quite 
on the contrary, it is well known that fMRI time-series at rest and during tasks display very 
characteristic multifractal spectral properties, relating to both behavioural performance 
and pathological alterations and modulated by task difficulty or aging (Maxim et al., 2005; 
Ciuciu et al., 2012; He, 2014; Churchill et al., 2016; Dong et al., 2018). Tools way more 
sophisticated than the ones we adopt here have been used to characterize and confirm 
multifractality in fMRI signals (Ciuciu et al., 2017; La Rocca et al., 2018). Furthermore, the 
multifractal properties of fMRI signals hold not only at the level of univariate spectra but 
also of cross-spectra therefore translating into specific signatures even at the level of static 
networks, once again with behavioural correlates (Ciuciu et al., 2014). Therefore, our 
findings reconnect with solid, cumulating evidence about the fact that fluctuations of 
coordinated neural activity have non-Gaussian components. Most likely, the multifractality 
of the original underlying signals contributes to the multifractality of the derived dFC 
streams. It is however only when discussing multifractality directly at the higher level of 
time-resolved networks, that the interpretation of dFC as an anomalous random walk in 
FC space naturally arises. Beyond merely proposing variants of previously used 
quantitative biomarkers, the fact itself of lifting up multifractal analyses from the level of 
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activations to the level of the “chronnectome” enables a qualitatively new vision of what 
dFC really is: a non-random, complex search for a coordinated brain state –captured by 
the transient FC(t)– within a large dimensional space of possible dynamic configurations. 

Persistent random walks have been associated to optimality in local search for 
resources during foraging in ecosystems (Viswanathan et al., 1999) but also for “mental 
space search” of optimal strategies during bidding (Radicchi et al., 2012). Intriguingly, we 
observed that higher αDFA exponents –i.e. deviating more from unstructured Gaussian 
random walk and more approaching persistent walks of the Levy type (Metzler et al., 
2014)– were associated with better general cognitive performance (Fig. 6B and 6D). 
Following up on our interpretation of dFC as an anomalous stochastic walk, we may thus 
speculate that dFC serves as a neural process to efficiently ‘forage’ for cognitive processing 
resources. Specifically, the non-trivial fluctuations of FC(t) may play the functional role of 
searching for FC patterns adapted to the information routing demands (Battaglia et al., 
2012; Kirst et al., 2016) of ongoing mental computations. 

The anti-persistence of dFC at very short window-sizes also correlated with cognitive 
performance. However, this correlation was not anymore holding at the partial correlation 
level when we regressed age out as a common covariate (unlike the stronger positive 
correlations found for intermediate and long window ranges, which robustly survived even 
at the partial correlation level). This anti-persistence was not specific to empirical dFC, 
since it was found as well in phase-randomized surrogates and varied with age. Since “blue” 
anti-persistent noise is associated to heart-beat variability (Peng et al., 1993) and that the 
fractal scaling of heart-beat dynamics is also affected by aging (Iyengar et al., 1996) –as well 
as in the case of many other physiological signals (Goldberger et al., 2002)– is likely that 
dFC estimation over these very short scales is affected by physiological artefacts of not 
neural origin. However, persistence observed for window size 𝜏 > 20 s is more robust, and 
the measured DFA exponents are very different from the ones concomitantly measured 
from head-motion (cf. Fig. S6). 

Ultimately, a strong indication of the non-artefactual nature of empirical dFC is the 
fact that its random walk properties do correlate to a certain extent with behaviour and 
cognitive performance. Theories of cognitive aging have advanced that a cause for 
declining performance would be the insufficient access to cognitive resources due to a 
reduced speed of information processing (Salthouse, 1996; Finkel et al., 2007). Cognitive 
aging has been associated with deficits in disengaging from active brain functional states, 
more than to alterations of the states themselves (Clapp et al., 2011; Cashdollar et al., 2013). 
Aging affects dFC streams by reducing their speed. Thus, it may seem that slowing down 
of cognition is paralleled by slowing of dFC. To move beyond mere conjectures, we do 
believe that more and better-adapted experiments should be designed to probe speed of 
processing or task switching. Indeed, the fact that dFC speed correlations with task 
performance are significant during task fMRI but only tendential during resting-state may 
also hint at the fact that dFC “moves slower” because motion during the task is different, 
if not slower. Theoretical studies on task dynamics in behavior and their neural correlates 
emphasize the emergence of low-dimensional subspaces holding task-specific flows (Kelso 
1995; see Huys et al. 2014 for a review), which act as generative models for cognitive and 
behavioral processes. Structured Flows on Manifolds (SFMs) are the mathematical 
representation of the deterministic features underlying behavior, including multistability, 
convergence/divergence of trajectories, as well as task-specific stability and robustness 
(Pillai et al. 2017). They arise from interactions of coordinated brain activations within the 
neuro-skeletomuscular system including visuomotor tasks (Fink et al. 2008; Sleimen-
Malkoun et al., 2014), multi-limb coordination (Kelso 1995; Fink et al. 2000a, 2000b), 
multisensory integration (Lagarde et al. 2006) and learning (Schöner et al. 1992; Zanone et 
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al. 1997), but causal contributions are difficult to disentangle. It is tempting to interpret 
the “randomness replacing complexity” pattern observed here at the level of DFA analyses 
as degradations of SFMS and a novel form of de-differentiation, a collective name 
encompassing several kinds of destructuring and loss of complexity occurring in healthy 
aging at the level of behavior, cognitive strategies and brain activity (Baltes et al., 1980; 
Lemaire & Arnaud, 2008; Sleimen-Malkoun, 2014). 

Interestingly, we also found that performance in our visuomotor task correlated with 
the capacity to actively modify the DFA exponent found at rest toward a different 
functioning value during task (Fig. S7C-D). Our finding suggests that brain systems 
actively tailor the scaling properties of emergent dFC to the specific task demands and that 
the capacity to do so is important to explain the achieved performance. Similar results have 
been found at the level of changes in the scaling properties of static FC correlations (Ciuciu 
et al., 2011), and we now further extend them at the level of dFC analyses. With our dataset 
and analyses did not allow for probing these and other hypotheses beyond speculations. 
In particular, the MOCA global cognitive score provides only a very rough summary 
characterization of the many facets of cognitive performance and its decline. To probe 
relation between random walk features of dFC and cognitive performance, one would need 
a more systematic and controlled cognitive testing setup, probing a spectrum of different 
cognitive functions (attention, working memory, their executive control, etc.) under 
different conditions within the same subject. Furthermore, it is unlikely that cognitive 
performance levels in specific tasks –beyond generic global assessment of performance, as 
the MOCA score which we are using here– is associated to alterations of dFC properties 
at the whole brain level. Indeed, different specific tasks differentially involve alternative 
functional sub-networks.  

To this heterogeneity of regional involvement, may correspond a parallel 
heterogeneity of dFC properties, which we fully ignore in this first study. It is known that 
variance of FC links in time (Chen et al., 2017) or even the fractal scaling properties of 
fMRI signals (Maxim et al., 2005; Churchill et al., 2016; Dong et al., 2018) are affected 
heterogeneously across brain regions. In a companion study (Lombardo et al., submitted 
jointly) we make a further step forward, probing variations of cognitive performance in 
selective attention and other cognitive functions, before and after sleep deprivation. We 
do so by developing modular (i.e. subnetwork specific) forms of dFC speed analysis. We 
can thus show that, beyond the first –useful but rough– approximation of whole-brain 
dFC analyses, distinct subsets of functional links can evolve with different dFC speeds. 
Furthermore, differential modulations of modular speed can result in differential 
modulation of performance through different tasks. The reader is referred to Lombardo 
et al. (submitted jointly) for more details. 

Our random walk analyses may be combined with improved ways of estimating dFC 
streams themselves, for instance, by avoiding the use of sliding windows (Lindquist et al., 
2014; Yaesoubi et al., 2018). More importantly, it would be important to investigate 
potential mechanisms giving rise to complex temporal structure between order and 
disorder in empirical dFC streams. The emergence of long-range correlations has often be 
associated with critical dynamics (Linkenkaer-Hansen et al., 2001; Chialvo, 2010), and 
resting-state is well captured by dynamic mean-field models close to a critical point (Deco 
et al., 2011). Various proposals have been made for the potential clinical use of dFC 
(McIntosh et al. 2019) and related metrics (such as DFA and multiscale entropy) 
quantifying the changes of flow and manifold structure across pathological conditions. 
More in general, long-range correlations are also generated by non-linear behavior at the 
“edge of chaos” (Manneville, 1980; Geisel et al., 1987), well in line with our observation 
that the resulting dFC lies between order and randomness, as also observed in spontaneous 
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activity at the micro-scale (Clawson et al., 2019). Mean-field whole-brain computational 
models, besides providing further confirmations of the non-artifactual nature of dFC – 
virtual brains do not have blood –, may allow identifying the dynamic and 
neurophysiological mechanisms behind its random walk properties. Generic whole-brain 
models are already able to qualitatively reproduce switching dFC (Hansen et al., 2015; 
Cabral et al. 2017a), but enhanced dynamical complexity will be required to account in 
silico for the rich non-linearities of empirical dFC revealed by our approach. 

Future simulations might be fitted to individual subjects via automated pipelines 
(Schirner et al., 2015; Proix et al., 2016) to render the dFC trajectory of evolution across 
aging more quantitatively. Models embedding SC typical of different age classes may 
reproduce the slowing down and complexity loss of dFC as an emergent by-product of SC 
‘disconnection’ itself (Salat, 2011). Or, more likely, they may show that this disconnection 
must be compensated to account for observations by a drift of the global ‘dynamic working 
point’ of operation of cortical networks, which could be possibly induced by altered 
neuromodulation (Bäckman et al., 2006) or metabolism (Arenaza-Urquijo et al., 2013). 
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Figures and figure captions 

 
 
Fig. 1. Streams of dynamic Functional Connectivity (dFC). (A) We adopt a sliding-
window approach to estimate temporal changes of dynamic Functional Connectivity from 
fMRI data (resting-state or task). We call the resulting smooth sequence of time-resolved 
FC(t) matrices a dFC stream. We then measure at any time t the dFC speeds VdFC, τ (t) as the 
variation of FC(t) observed between a time t and a time t + τ, where τ is the size of the 
window used to estimate FC(t) matrices. (B) The degree of similarity (inter-matrix 
correlation) between FC(t) networks observed at different times can then represented into 
a recurrence matrix, or dFC matrix, whose entry dFC(t1, t2) reports the correlation distance 
between the functional networks FC(t1) and FC(t2) estimated respectively at times t1 or t2. 
The block structure of dFC matrices reflects the inhomogeneous speed of variability of 
FC(t) along the flow of the dFC stream. The quantification of dFC speeds allows answering 
different questions about the statistical properties of dFC streams, summarized by two 
graphical cartoons: first, (C) whether FC(t) matrices tend to cluster into FC states dissimilar 
between them, but internally similar (stationarity or non-stationarity of dFC); second, (D) 
whether there are sequential correlations in the dFC stream (e.g. short “jumps” followed 
by other short “jumps” with high probability), which could be possible even in the case of 
stationarity. In panel (D), exclamation marks highlight that “dFC knots” –epochs of 
sequentially correlated short jumps– are not clusters since they can have an internal 
variance larger than the variance between time-resolved FC(t) networks separated by “dFC 
leaps”.   
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Fig. 2. Empirical vs surrogate dFC streams. We compare dFC streams evaluated from 
actual empirical fMRI data (A) with surrogate dFC streams evaluated: from phase-
randomized BOLD time-series surrogates (B), compatible with a null hypothesis of 
stationarity of the dFC stream; and from time-shuffled surrogates (C), compatible with an 
alternative null hypothesis of lack of sequential correlations in the dFC stream. We show 
in panels D-F representative dFC matrices (for a given window size τ = 52 s) for: (D) 
empirical data; (E) phase-randomized data; and, (F) time-shuffled data. To the right of the 
dFC matrices we also show a distance-preserving non-linear projection in two dimensions 
of the associated dFC stream (using the t-SNE algorithm; every dot corresponds to a 
specific observations of FC(t) and the path connecting the dots indicates the temporal 
order in which the different networks are sequentially visited). Note that the projections 
of individual FC(t) networks in panels (D) and (F) are identical by construction but visited 
in different orders. These projections make visually evident the stochastic walk nature of 
dFC streams. (G) Shown here are distributions (smoothed kernel-density estimator) of 
resting-state dFC speeds for empirical and surrogate ensembles (averaged over subjects), 
pooled over three distinct window-size ranges: long windows (top, 60 to 210 s); 
intermediate windows (middle, 15 to 60 s); and short windows (bottom, 6 to 15 s). 
Distributions for surrogate data significantly differ at the global level from distributions 
for empirical data in most cases (differences between empirical and time-shuffled 
distributions in red, between empirical and phase-randomized in green color; stars denote 
significant differences under two-sided Kolmogorov-Smirnov statistics: *, p < 0.05; **, p 
< 0.01).   
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Fig. 3. Empirical dFC streams lie “between order and randomness”. We compare 
empirical and surrogate histograms of resting-state dFC speeds, pooled over three different 
window-size ranges (long, intermediate, and short) at the single-subject level. We perform 
comparisons speed bin by speed bin (overall 20 speed bins, ranked from lower to higher 
speeds), checking whether dFC speeds within a given bin are observed with a probability 
significantly above chance-level (red), significantly below chance level (blue) or compatibly 
with chance level (green), according to a selected null hypothesis: stationarity for 
comparison with phase-randomized surrogates; and lack of sequential correlations for 
comparison with time-shuffled surrogates. (A) Comparison with phase-randomized 
surrogates indicates that, in empirical resting-state data, lower (higher) than median dFC 
speeds are often under- (over-) represented. These effects are particularly evident in the 
long time-windows range (leftmost plot). (B) Comparison with time-shuffled surrogates 
indicates that, in empirical resting-state data, lower (higher) than median dFC speeds are 
often over- (under-) represented, i.e. a reverse pattern relative to phase-randomized 
surrogates. (C-D) When separating subjects into two age groups (younger or older than 
the median), the comparison patterns revealed by panels A and B are confirmed, but 
crisper for young subjects and more blurred for older subjects. Overall, if we dub as 
“order” the null hypothesis of static average FC (i.e. phase-randomization) and as 
“randomness” the null hypothesis of temporally uncorrelated dFC fluctuations (i.e. time 
shuffling), the statistics of resting-state dFC fluctuations appear to lie “between order and 
randomness” (i.e., they are “complex”).  
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Fig. 4. The speed of dFC streams slows down with aging. (A) We show here 
representative resting-state dFC matrices for three subjects of different ages. With growing 
age (top to bottom), red block associated to dFC “knots” become longer-lasting. (B) 
Correspondingly, the distributions of dFC speeds, over all three studied ranges of window 
sizes, are shifted toward lower values for older relative to younger subjects (one-sided 
Kolmogorov-Smirnov statistics: *, p < 0.05; **, p < 0.01). At the single-subject level, 
median dFC speeds significantly correlate with subject’s age. (C) Scatter plots of single 
subject age vs median dFC speeds (empirical data), for three pooled window size ranges 
(long to short, from left to right) and for both resting-state (blue dots) and task (red dots) 
fMRI scan blocks. Significant correlations with age are found for all three window ranges 
and for both rest and task dFC speed analyses (bootstrap with replacement confidence 
intervals for Pearson correlation: *, p < 0.05; **, p < 0.01; ***, p < 0.001). (D) Significant 
age correlations occur robustly as well for single-window dFC speed estimations over wide 
continuous ranges of window sizes. We report ranges of window sizes in which statistically 
significant correlations between median dFC speed and age are detected (a “-” sign 
indicates negative correlation). To the left, resting-state; to the right, task dFC speeds. 
Significant correlations (bootstrap, p < 0.05) are found not only for empirical data but also 
for both types of surrogate data in widely overlapping window ranges.   
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Fig. 5. The dFC stream is an anomalous stochastic walk. (A) We performed 
Detrended Fluctuation Analysis (DFA) of the time-series of instantaneous variations of 
FC(t) along the resting-state and task dFC streams. For every window size, such analysis 
quantifies whether the stochastic fluctuations of FC(t): are uncorrelated, as in a Gaussian 
random walk (corresponding to a DFA exponent αDFA ~ 0.5, akin to “white noise”); 
positively correlated as in a persistent anomalous stochastic walk (corresponding to 
0.5 < αDFA < 1, akin to “pink noise”, observed for most intermediate and long window 
sizes); or negatively correlated as in an anti-persistent anomalous stochastic walk 
(corresponding to αDFA < 0.5, akin to “blue noise”, observed for short window sizes). 
Cartoons of these three types of stochastic walk are represented on the top of the plot. 
Lines report the median αDFA and shaded contours the 95% confidence interval over 
subjects (median ± 1.96*standard deviation of sample mean). The max τ used for single-
window αDFA calculation was shorter than for dFC speed analyses and trimmed to 210 s 
(excluded τ range shaded in gray). (B) Distributions of resting-state αDFA, pooled over all 
subjects and window sizes within distinct ranges (long windows on top and short windows 
on bottom) are shifted from persistence or anti-persistence toward the uncorrelated 
randomness value αDFA ~ 0.5 for older relative to younger subjects (one-sided 
Kolmogorov-Smirnov statistics: *, p < 0.05; **, p < 0.01). (C) Significant correlations 
(bootstrap, p < 0.05) between αDFA and age occur over selected ranges of window sizes (a 
“-” or “+” sign indicate negative or positive correlations). On top, resting state; bottom, 
task dFC speeds. Robust negative correlations are found only for empirical data. (D) 
Scatter plots of age vs αDFA (empirical data), for a representative τ in the long window range 
and for both resting state (blue dots) and task (red dots) fMRI scan blocks.   
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Fig. 6. Correlation between dFC and cognitive/visuo-motor performance. Cognitive 
and behavioral efficiency were evaluated via a bimanual visuomotor task –in which a 
Spectral Overlap index (SO) was measured as a performance metric– and via a general 
cognitive assessment (summarized in a MOCA score). (A,B) Both SO and MOCA scores 
positively correlated with dFC metrics. In (A), we show a scatter plot of SO against the 
pooled dFC speed (here for empirical data in the intermediate speed range), measured 
during the task (bootstrap with replacement confidence intervals for Pearson correlation: 
**, p < 0.01). As shown by (C), significant (bootstrap, p < 0.5) correlations between SO 
and single window size dFC speed during task were found for broad window size ranges, 
not only for empirical data but also for both types of surrogates (a “+” sign indicates 
positive correlations). In (B), we show a scatter plot of the global MOCA score against 
αDFA (here for empirical data at a representative window size in the long window sizes 
range), measured at rest (bootstrap with replacement confidence intervals for Pearson 
correlation: *, p < 0.05). As shown by (D), significant (bootstrap, p < 0.5) correlations 
between resting-state αDFA and MOCA score are found only for empirical data and not for 
surrogates, in selected window size ranges (a “-” or “+” sign indicate negative or positive 
correlations). The max τ used for single-window αDFA calculation was shorter than for dFC 
speed analyses and trimmed to 210 s (excluded τ range shaded in gray) 
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Supplementary figures 

 

 
 

Fig S1. dFC speed analyses are robust against motion artifacts. To verify the potential 
contamination of our dFC speed estimations by motion artifacts we studied the statistics 
of fluctuations of head displacement variables themselves as a function of age and 
correlated them to dFC speed fluctuations, evaluated with two alternative motion 
correction strategies: a weaker one in which a standard motion correction pipeline is 
adopted (providing speed estimations denoted here as 𝑉Z[\��	�.�.); and the stronger one used 
in the main article (providing speed estimations denoted as VdFC) in which, additionally, 
head motion variables are explicitly regressed out the signal after correcting it with standard 
measures. (A) Correlations between dFC speeds estimated with the weaker or the stronger 
motion correction strategies generally remain high for both resting-state (light blue) and 
task (orange). On the contrary, estimating “speed” directly on the stream of 6-variate head 
motion variables to track the alternation of smaller and larger head excursions, lead to 
motion dFC-speed-like sequences which are only poorly correlated with properly motion-
corrected dFC speed VdFC (grey). Therefore, dFC dynamics do not reflect head motion 
dynamics. Boxplots are constructed for speed-to-speed correlations for all window-sizes 
pooled. Boxes denote the interquartile range, whiskers the range between the 5% and the 
95% sample percentiles. A red mark indicates the median, surrounded by a notch, which 
reflects Kruskal-Wallis testing of medians, significantly different (p < 0.05) if notches are 
not overlapping. (B) There are significant negative correlations (bootstrap, p < 0.05) 
between age and dFC-speed-like quantities estimated directly on motion variables, i.e. 
median head displacement speed decreases with age. However, the ranges of window size 
in which age correlations hold for head motion dFC-speed-like quantities and proper dFC 
speeds, with both types of motion correction protocols, are very different, suggesting that 
age effects captured at the level of dFC streams are not merely age variability of head 
motion. 
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Fig. S2. dFC matrices for different sliding window sizes and single subject dFC 
speed distributions. (A) dFC analyses for the same subjects considered in Fig. 4A are 
shown, for three different dFC window sizes τ-s. To simplify comparison, in the left 
column we reproduced the same dFC matrices already presented in Fig. 4A. Blocks of 
relatively elevated inter-network correlation corresponding to dFC knots were visible for 
all time scales and ages. (B) Singe-subject distributions of dFC speed, shown here for two 
representative subjects (log-log scale, pooled window sizes 6 s ≤ τ < 15 s, corresponding 
to the short windows range) displayed a peak at a value VdFC (typical dFC speed) and a fat left 
tail, reflecting an increased probability relative to chance level (shuffled surrogate, null 
hypothesis of “randomness”) to observe short dFC steps (95% confidence intervals are 
shaded: red, empirical; gray, chance level from shuffled surrogates). 
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Fig. S3 Empirical dFC streams lie “between order and randomness” (task 
analyses). Analyses identical in all parameters to Figure 3 but based on single subject dFC 
speed distributions sampled during task blocks. All results are confirmed. (A) Comparison 
with phase-randomized surrogates indicates that, in empirical task data, lower (higher) than 
median dFC speeds are often under- (over-) represented. These effects are particularly 
evident in the long time-windows range (leftmost plot). (B) Comparison with time-shuffled 
surrogates indicates that, in empirical task data, lower (higher) than median dFC speeds 
are often over- (under-) represented, i.e. a reverse pattern with respect to phase-
randomized surrogates. (C-D) When separating subjects into two age groups (younger or 
older than the median), the comparison patterns revealed by panels A and B are confirmed, 
but crisper for young subjects and more blurred for older subjects. Overall, if we dub as 
“order” the null hypothesis of static average FC (i.e. phase-randomization) and as 
“randomness” the null hypothesis of temporally uncorrelated dFC fluctuations (i.e. time 
shuffling), the statistics of task dFC fluctuations appear to lie “between order and 
randomness” (i.e., they are “complex”). 
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Fig. S4. Empirical dFC streams lie “between order and randomness” (additional 
resting-state analyses). As in Figure 3, we compare here empirical and surrogate 
histograms of resting-state dFC speeds, pooled over three different window-size ranges 
(long, intermediate and short) at the singlesubject level. The plots shown here are 
constructed as the ones presented in Figure 3 but age-separated analyses (A-B, for “young” 
group; C-D, for “older” group) are shown for all the three pooled window ranges (long to 
short, from left to right subpanels), for comparisons with both types of surrogate 
(empirical vs. phase-randomized in panels A and C; vs. time-shuffled in panels B and D). 
The deviation of empirical dFC speed distributions from the “ordered” phase-randomized 
surrogates and the “random” time-shuffled surrogates get more blurred with aging across 
all probed window size ranges. 
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Fig. S5. Genuine power-law scaling in DFA analysis. Shown here are examples of 
DFA log-log plots for representative subjects (in the “young” group, in blue; or in the 
“older” group, in magenta) and two representative window sizes for dFC stream estimation 
(a τ in the long window sizes range for panel A and a τ in the short window sizes range for 
panel B). The linearity of DFA scatter plots on the log-log plane (scale of coarse-graining 
vs total fluctuation strength), confirmed by Bayesian model comparison, reveals that 
instantaneous increments along the dFC stream form a self-similar sequence. The black 
dashed lines indicate the slope that would be associated to αDFA = 0.5, i.e. the case of 
ordinary uncorrelated Gaussian random walk (A) For the shown DFA plots, linear slopes 
are steeper than for ordinary random walk, indicating that dFC streams evaluated at this 
long window size follow a persistent stochastic walk. (B) For the shown DFA plots, linear 
slopes are less steep than for ordinary random walk, indicating that dFC streams evaluated 
at this short window size follow an anti-persistent stochastic walk. In both panels A-B, 
linear slopes for the older subjects are closer to an ordinary random walk (“randomness” 
replaces “complexity” with aging). 
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Fig S6. DFA analyses are robust against motion artifacts. (A) We performed 
Detrended Fluctuation Analysis (DFA) of the multivariate time-series of head motion 
(grey color). Reported is also the analogous line for resting-state empirical fMRI data, 
copied from Figure 5A. Lines report the median αDFA and shaded contours the 95% 
confidence interval over subjects (median ± 1.96*standard deviation of sample mean). The 
max τ used for single window αDFA calculation was shorter than for dFC speed analyses 
and trimmed to 210 s (excluded τ range shaded in gray). The spectrum of αDFA exponents 
for motion time-series is completely different from BOLD fMRI, although is also deviating 
from normality. (B) The DFA exponent for motion variables never correlates significantly 
with age at any of the tested time-windows. We report for comparison as well the ranges 
in which fMRI BOLD αDFA exponents correlate significantly with age, copied from Figure 
5C (a “+” or “-” sign indicate respectively positive or negative correlation). Above, resting 
state; below, task dFC speeds (significance tested via bootstrap with replacement, p < 0.05).  
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Fig. S7. Correlation between dFC and cognitive/visuo-motor performance 
(additional analyses). (A-B) The dFC speed of task dFC streams positively correlates 
with performance in a bimanual visuomotor task, tracked by a Spectral Overlap (SO). 
Shown here are a scatter plot for dFC speeds pooled in the long window sizes range (A) 
and in the short window sizes range (B), confirming the result of Figure 6A for 
intermediate window sizes range. (C-D) The variation of αDFA between resting-state and 
task blocks, ∆αDFA = αDFA

task - αDFA
rest, positively correlates with SO during task (bootstrap 

with replacement confidence intervals for Pearson correlation: *, p < 0.05), as shown by 
(C) the scatter plot for a representative single window size in the long window sizes range. 
(D) Such positive correlation (“+” sign over the range) holds significantly (bootstrap, 
p < 0.05) within a selected range of long window sizes and only for empirical data but not 
for surrogate dFC streams.   
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Supplementary tables 

 
Table S1. Used cortical parcellation and abbreviations 

 
Abbreviation Cortical Area 

ENT Enthorinal cortex 

PARH Parahippocampal cortex 

TP Temporal pole 

FP Frontal pole 

FUS Fusiform gyrus 

TT Transverse temporal cortex 

LOCC Lateral occipital cortex 

SP Superior parietal cortex 

IT Inferior temporal cortex 

IP Inferior parietal cortex 

SMAR Supramarginal gyrus 

BSTS Bank of the superior temporal sulcus 

MT Middle temporal cortex 

ST Superior temporal cortex 

PSTC Postcentral gyrus 

PREC Precentral gyrus 

CMF Caudal middle frontal cortex 

POPE Pars opercularis 

PTRI Pars triangularis 

RMF Rostral middle frontal cortex 

PORB Pars orbitalis 

LOF Lateral orbitofrontal cortex 

CAC Caudal anterior cingulate cortex 

RAC Rostral anterior cingulate cortex 

SF Superior frontal cortex 

MOF Medial orbitofrontal cortex 

LING Lingual gyrus 

PCAL Pericalcarine cortex 

CUN Cuneus 

PARC Paracentral lobule 

 
INS Insula 

Parcellation based on Desikan et al. (2006). 

 

Supplementary files 

 

Software toolbox S1. MATLAB toolbox for dFC calculations 

A suite of MATLAB functions and scripts for performing dFC analyses analogous to the 
ones performed in this study can be downloaded as Supporting File S1 or at the web 
address (waiting for release, it can be provided on request to authors) with associated help and user 
guide. 
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