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Abstract 

 
Seed systems are critical for deployment of improved varieties, but also serve as major 

conduits for the spread of seed-borne pathogens. We evaluated the structure of an informal 

sweetpotato seed system for its vulnerability to the spread of epidemics, and its utility for 

disseminating improved varieties. During the 2014 growing season, vine sellers were surveyed 

weekly in the Gulu Region of Northern Uganda. Our analysis draws on tools from network 

theory to evaluate the potential for epidemic spread in this region. Using empirical seed 

transaction data and estimated spatial spread, we constructed a network of seed and pathogen 

movement. We modeled the introduction of a pathogen, and evaluated the influence of both 

epidemic starting point and quarantine treatments on epidemic progress.  Quarantine of 30 out of 

99 villages reduced epidemic progress by up to 66%, when compared to the control (no 

quarantine), over 20 time steps. The starting position in the network was critical for epidemic 

progress and final epidemic outcomes, and influenced the percent control conferred by 

quarantine treatments. Considering equal likelihood of any node being an introduction point for a 

new epidemic, villages of particular utility for disease monitoring were identified. Sensitivity 

analysis identified important parameters and priorities for future data collection. The efficacy of 

node degree, closeness, and eigenvector centrality was similar for selecting quarantine locations, 

while betweenness had more limited utility. This analysis framework can be applied to provide 

recommendations for a wide variety of seed systems. 
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Introduction  

Seed systems, both formal and informal, are a critical component of global food security, 

but often also serve as human-mediated pathways for the regional and global dispersal of plant 

pathogens. Efforts to implement seed systems that work better for smallholder farmers in low-

income countries have often been unsuccessful (Gibson and Kreuze 2015;  Thomas-Sharma et al. 

2016). Improving seed security – defined as timely access to quality planting material by all, at a 

fair price (Almekinders et al. 1994;  Gibson et al. 2011;  McGuire and Sperling 2013;  Sperling 

2008) – is vital for improved livelihoods, particularly for smallholder farmers. The provision of 

‘clean’ or ‘pathogen-free’ seed is a major challenge to any seed system. In most low-income 

countries, seed systems are local and largely of unknown quality, with a majority of farmers 

keeping seed from previous seasons, or obtaining seed from neighbors, local traders, or local 

markets, with some instances of long distance trade (Gildemacher et al. 2009;  Pusadee et al. 

2009). Having robust analytic models of seed systems supports policy development and risk 

assessments against possible system disruption caused by system shocks such as novel pathogen 

or pest introduction, climate change, or political unrest.  

Informal seed systems, without healthy seed certification protocols, may be at higher risk 

for epidemic introduction and spread. Newly introduced viruses can be particularly severe, as 

methods for detection may be limited or unavailable, and host resistance may be unattainable for 

several years. In this study, we consider an informal sweetpotato seed system, where ‘seed’ is not 

true botanical seed, but vine cuttings. In these types of vegetatively propagated seed systems, 

viruses and other seed-transmitted diseases introduce important risks to yield and quality 

degeneration over successive cycles of propagation, and methods of control are limited (Thomas-

Sharma et al. 2016). It is important, therefore, that the risk of novel pathogen introduction and 
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potential epidemic dynamics be understood for the swift recommendation of intervention (such 

as sampling, quarantine, variety deployment, and education).  

The problem of seed-transmitted viral introduction was illustrated in 2014 when Sri 

Lankan cassava mosaic virus (causing cassava mosaic disease) was first detected in Southeast 

Asia, presumably being introduced through infected seed material. Efforts are still ongoing to 

mitigate spread and deploy resistance before this yield-robbing disease takes hold (Graziosi et al. 

2016;  Wang et al. 2016). Another dramatic example occurred in 2011 when maize lethal 

necrosis (MLN) was first reported in Kenya (Wangai et al. 2012) and soon was detected in 

several other Sub-Saharan African countries. MLN symptom expression results from coinfection 

with Maize chlorotic mottle virus (MCMV) and a potyvirus (Mahuku et al. 2015). Since its 

introduction, MLN has been detected in several East African countries including Ethiopia, 

Uganda, South Sudan, Tanzania, DRC, and Rwanda, and up to 22% yearly yield loss has been 

reported (De Groote et al. 2016;  Hilker et al. 2017;  Mahuku et al. 2015).  

Network analysis is a powerful analytic tool, used across many disciplines, with recent 

advances in its utility for analyzing epidemic spread in human, animal, and plant systems (Shaw 

and Pautasso 2014;  Silk et al. 2017). Seed systems are amenable to network analysis because 

they are inherently networks with a suite of actors (network nodes) that move both genetic 

material and information through space and time (dynamic or static network links) (Pautasso 

2015). Until recent years, plant disease epidemiologists have given relatively little attention to 

the study of seed system (and plant trade) networks, although the movement of planting material 

plays a fundamental role in the spread of plant disease and the persistence of epidemics 

(Buddenhagen et al. 2017;  Garrett et al. 2017;  McQuaid et al. 2017;  Nelson and Bone 2015;  

Pautasso 2015;  Pautasso and Jeger 2008). Increasing availability of computational tools, coupled 
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with advances in network analysis in the medical and social sciences, makes the implementation 

of network analysis for plant disease epidemiology more obtainable.  

Network analysis can be used to evaluate nodes important for surveillance and mitigation 

of the movement of pathogens or other contaminants through seed systems and landscapes 

(Sutrave et al. 2012). To accomplish this, network statistics, such as measures of node 

betweeness, closeness, and degree centrality can be calculated to define key nodes and actors in a 

system, and forecast the risk of pathogen introduction, pathogen spread, or technology diffusion 

in a cropping system (Garrett 2012;  Harwood et al. 2009;  Moslonka-Lefebvre et al. 2011;  

Pautasso 2015;  Pautasso and Jeger 2008;  Sanatkar et al. 2015). For example, a study of wheat 

grain movement in the United States and Australia was implemented to identify key locations 

that could be strategically targeted for sampling and management of mycotoxins (Hernandez 

Nopsa et al. 2015). For the U.S. soybean rust epidemic, the utility of different selection methods 

was compared for targeting geographic nodes for sampling to forecast epidemic movement 

(Sanatkar et al. 2015).  Although there are a number of statistics available that are likely to be 

associated with the importance of a node in an epidemic, it is an open question as to which 

statistics are most important for prioritizing nodes for monitoring and management in real-world 

networks (Holme 2017). 

 Previous studies of seed systems have focused on understanding the effects of social ties 

and how well seed system networks may conserve variety diversity in the landscape (Pautasso 

2015;  Pautasso et al. 2013). Abay et al.  (2011) applied network analysis in a study of informal 

barley seed flows in the Tigray region of Ethiopia, with the goal of informing breeding or 

technology deployment strategies.  Network properties, such as betweenness and degree 

centrality, were used to characterize key nodes and their role in connecting the seed system. 
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These metrics measure the importance of a node in terms of the number of connections it has, 

and the number of paths across the network of which it is a part, respectively. Pautasso et al. 

(2015) further analyzed this empirical seed network data, finding that the degree distribution of 

the network, and particularly the out-degree of the starting node, influenced the percentage of the 

network that could be reached by a new variety. 

Our study draws on concepts developed for studying epidemic spread in hypothetical and 

empirical large- and small-scale plant trade networks (Buddenhagen et al. 2017;  Moslonka-

Lefebvre et al. 2011;  Nelson and Bone 2015;  Pautasso 2015;  Pautasso and Jeger 2008;  

Pautasso et al. 2010). We consider theory about the influence of node in- and out-degree on 

variety dissemination (and pathogen transmission) in small-scale, real-world seed networks 

(Pautasso 2015). We also expand on concepts developed to assess quarantine influence on 

disease spread in hypothetical trade networks (Nelson and Bone 2015) in a new set of simulation 

experiments, where quarantine nodes were not selected after initial pathogen detection, but based 

on their network centrality measures. Here we define quarantine as the restriction of the 

exchange of infected seed material, likely though phytosanitary regulation. We further explore 

the question of quarantine efficacy based on the epidemic starting point and the chosen centrality 

predictor.   

We model epidemic spread and mitigation in a landscape of farming villages, where a 

portion of the seed transaction structure is based on geo-spatial proximity of villages. Our model 

of the contact structure (links) between villages is based on the much higher tendency for 

farmers to exchange planting material with neighboring villages than with those that are distant 

(Perales et al. 2005;  Pusadee et al. 2009). We also consider the sensitivity of parameter choices 

in our model and their impacts on epidemic outcomes.  Improvement of these analytic tools is 
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particularly important for understanding the epidemiology of pathogen spread in vegetatively 

propagated crops, where social contact structures via the exchange of planting material is a major 

driver of epidemics.   

Seed systems are a suite of actors, or nodes, including farmers, multipliers, traders, 

NGOs, seed companies, breeding organizations, and communities. The connections between 

these nodes representing formal and informal interactions, are complex and require analyses that 

address this complexity. Network analysis allows us to simulate multiple scenarios in known 

systems, including the impact of epidemic spread or management deployment. In this study we 

propose a general framework for analyzing such networks that can be translated to a broad range 

of seed systems. In this paper, we, i) analyze, as a case study, key network properties within a 

seed system important to regional food security; ii) evaluate variety dissemination within the 

network, comparing the distribution of higher-nutrient introduced varieties and landraces;  iii) 

model the progress of a potential seed-borne pathogen introduced into the network, and compare 

the use of different network statistics as selection criteria for quarantine nodes;  and iv) perform 

sensitivity / uncertainty analysis to determine the influence on epidemic outcomes of the 

parameters used to construct the village-to-village transaction networks.  

 

Materials and Methods 

Study System: Sweetpotato in Northern Uganda  

This study examines sweetpotato vine transactions in Northern Uganda. Sweetpotato is a 

major staple food crop in many African countries, and Uganda is the second largest producer in 

Africa, fourth globally (FAOSTAT 2013). Sweetpotato is generally grown by women in Uganda 

in small plots of land, close to the household, and is important for household food security 
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(Behrman 2011;  Johnson and Gurr 2016).  In the last decade, sweetpotato has increased in 

importance due to the introduction of a β-carotene biofortified crop, Orange-fleshed Sweetpotato 

(OFSP), by HarvestPlus, part of the CGIAR Research Program on Agriculture for Nutrition and 

Health. OFSP varieties were introduced with the goal of addressing vitamin A deficiency in 

women and children in this region (Behrman 2011).  

Viral diseases are major biotic limiters to sweetpotato production in Uganda and 

throughout Sub-Saharan Africa, with the most yield-limiting being sweet potato virus disease 

(SPVD), which occurs when a plant is co-infected with Sweet potato feathery mottle virus 

(SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) (Karyeija et al. 1998). Seed 

degeneration is the successive loss in yield over generations of vegetatively-propagated seed 

planting material due to the accumulation of viruses and other seed borne pathogens (Thomas-

Sharma et al. 2016). Degeneration is highly problematic in informal seed systems where farmers 

tend to save seed season-to-season and where certified seed sources are rare or non-existent. The 

normal planting material for sweetpotato is foliar cuttings, and both SPFMV and SPCSV can be 

transmitted to succeeding generations this way, with evidence of yield degeneration over five 

generations in high pressure fields in Uganda (Adikini et al. 2015). SPVD has not yet been 

reported in Northern Uganda, likely because the extended dry season in this region is often 

unfavorable for the whitefly vector (Richard Gibson, personal observation). Changes in climate 

patterns or vector range, however, could potentially extend the range of this disease into this 

region. The prospect of novel pathogen introduction makes it important to model epidemic 

scenarios to inform intervention strategies. 

In Northern Uganda, sweetpotato seed material is sold in small bundles of vine cuttings. 

Distribution of these vine cuttings is largely informal, consisting of smallholder farmers who 
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have access to fields with adequate moisture to produce roots and vines through the extended dry 

season, which typically lasts from December to April (Gibson 2013). These off-season 

multipliers generally produce local landraces, which tend to be well-adapted white-fleshed 

cultivars. (Gibson 2013). Vine cuttings are not easily stored, and because of the single, extended 

dry season in Northern Uganda, vines need to be obtained by farmers at the beginning of each 

season (Gibson et al. 2011). There are also several formal institutions involved in sweetpotato 

breeding and distribution in Uganda, including the National Sweetpotato Program (NSP), the 

International Potato Center (CIP), private sector enterprises, and NGOs (Gibson 2013). 

Survey Methods  

A survey of vine multipliers and sellers was conducted in 2013-2014 in the Gulu Region 

of Northern Uganda, fully described by Rachkara et al. (2017). A more complete cohort of 

multipliers and sellers was surveyed in 2014, the focus of our analysis. Each seller was visited 

weekly from the start of the growing season (April) and surveyed twice per week to record all 

transactions (purchases and sales) that occurred in the period since they were last visited until the 

end of the season (August). Volume of transaction (number of bundles), price, variety, origin of 

buyer, and buyer type (farmer or seller) were recorded. In this study, a small bundle refers to 50 

vines cut to 40 cm in length. Large bundles are equal to 20 small bundles. Because of the high 

volume of transactions, names of individual buyers were not collected and therefore sales 

transactions were summarized by the buyer’s village.  

Seed Network Analysis  

Nodes in this analysis include sellers and villages, with one set of directed links 

representing vine sales from an individual seller to an individual village (a bipartite graph). 

Villages in this region of Uganda typically are composed of 40-60 households. Although several 
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transactions were recorded on a weekly basis, transactions were aggregated for this analysis so 

that seller-to-village links represent the existence of at least one transaction over the course of 

the season. Seller-village links are based entirely on the data from Rachkara et al. (2017). 

Incorporating village-to-village spread   

To incorporate epidemic risk in the seed system outside of spread through sellers, we 

evaluated a second set of geo-spatially derived links representing village-to-village spread 

through informal exchange of planting materials or vector movement, composing a second 

network.  The existence of village-village links was modeled using a power law function, and 

combined with transaction links to form an expanded adjacency matrix (Fig. 1). The power law 

function captures the tendency for seed exchange to be more likely between villages that are 

geospatially proximate. That is, farmers have a higher chance of exchanging seed with farmers in 

neighboring villages than with farmers in villages that are far away. A link represents a seed 

movement event (transaction) or movement of vectors that may be viruliferous. The power law 

equation used here was y = ad- β, where d is the Euclidean distance between a pair of villages, y 

is proportional to the probability of movement between the villages, and a is a scaling factor. As 

default values, we used a = 1 and β = 1.5. The seed transaction threshold (t) was set to 0.01, such 

that when y > 0.01 for two villages, a link was created between them. Village-to-village links 

were established once and the same underlying adjacency matrix was used across simulation 

experiments for a given parameter combination.  In individual realizations, the underlying 

adjacency matrix was modified as links were maintained with a fixed probability, as described 

below. A sensitivity / uncertainty analysis was performed to determine the influence of the 

parameters β and t on the analysis. It is important to note that only villages of farmers who 
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purchased vines from sellers surveyed in this study were included in this analysis, and there may 

be villages in this region that contribute to risk, but were not included.   

Network properties, such as number of nodes and network density, were calculated for 

the 2014 season. Node measures such as degree, closeness, eigenvector, and betweenness 

centrality were evaluated for both villages and sellers (Table 1). All analyses were conducted in 

the R programing environment (R Core Team 2017) using custom code along with software 

packages including igraph (Csárdi and Nepusz 2006). 

Modeling Epidemic Spread  

This study draws on tools from graph theory to better understand the potential for 

epidemic spread within a real-world seed network. This analysis used both observed 2014 seed 

transaction data and estimated spatial transactions to simulate the invasion of a potential seed-

borne pathogen. Utilizing the above described network, we performed simulation experiments to 

address the following questions. (1) What are the optimum risk-based surveillance locations for 

pathogen monitoring, if there is equal likelihood of pathogen introduction at each node?   (2) 

What effect does seller at which disease is introduced have on disease progress and final disease 

outcome?  (3) How much can disease spread be limited by implementing quarantine treatments, 

where quarantined nodes cannot become infected or spread disease?  (4) How do network 

statistics compare for their utility for selecting quarantine locations? In each experiment, 

simulations were conducted over 20 timesteps and repeated 500 times. The probability of 

pathogen transmission (Pt) occurring in each of the generated links was set to 0.10. The 

probability of persistence (Pp; entries on the diagonal of the adjacency matrix) was set to 1.  
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Experiment 1: The value of villages as risk-based surveillance locations  

We evaluated the importance of each village as a risk-based pathogen surveillance 

location. In this scenario analysis, all nodes (sellers and villages) were assigned an equal 

likelihood of being the starting point for epidemic introduction.  For each possible combination 

of an epidemic starting node and a sampling node, we determined the number of nodes that could 

become infected by the time the pathogen is detected at the sampling node, as in Buddenhagen et 

al. (2017). In this analysis we compare only villages, not sellers, for their relative value as 

locations for epidemic monitoring. In 500 realizations, the mean and variance of the number of 

nodes infected by the time the pathogen was detected in each village were evaluated, and each 

village was assigned a “surveillance score”. Summarizing over all the potential starting nodes 

allows for the comparison of the importance of each village as a potential location for 

monitoring, with each potential starting location equally likely.  Simulations were implemented 

using custom R code (R core team 2017). 

Experiment 2: Modeling epidemic progress with variable starting sellers  

The second simulation experiment evaluated the potential spread through the seed 

network, where the epidemic starts with a single seller that either sells only landraces (86% of 

sellers, Fig. 3) or sells only orange fleshed sweet potato varieties (14% of sellers, Fig. 3). The 

two sellers with the highest out-degree in each category (OFSP and landrace seller) were chosen 

for comparison in this analysis, representing the greatest risk for each type. The out-degree of the 

starting node is generally strongly correlated with final epidemic outcome (Pautasso 2015;  

Pautasso et al. 2010). At the start of each realization (Time 1), the “starting seller” had an 

infection status of 1 and all others were set at 0. The starting seller maintained this infection 

status throughout the realizations, and all other sellers remained uninfected. In each timestep, 
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10% of the links from the infected seller node resulted in an “infection event” where the status of 

the linked village node became 1. Villages that became infected after one time step maintained 

infected status in the subsequent time step (Time t+1) and could thus infect villages to which 

they had links with the same probability (Pt = 0.01) in the subsequent time step (Time t+2; 

probability of infection persistence, Pp = 1; see Supplemental Figure 1).  Infection was evaluated 

across 20 timesteps in 500 realizations, to evaluate the frequency distribution of outcomes. 

Simulations were carried out using custom R code (R core team 2017). To evaluate the 

differences in disease progress between starting nodes, the area under the disease progress curve 

(AUDPC) was calculated by summing the trapezoids between timesteps under the curve. 

Experiment 3: The influence of quarantine on infection dynamics 

We evaluated the influence of quarantine on disease spread over time. Quarantine was 

defined here as the removal of the potential for a node to transmit or acquire infection in each 

time step. The influence of 10, 15, 20, 25 and 30 quarantined nodes on infection spread over time 

was compared with a control in which there was no quarantine treatment. Quarantined nodes 

(villages only) were selected initially based on node degree, with villages with the highest node 

degree selected first. For consistency, the same two sellers (S_25 and S_15) that were chosen to 

start the epidemic in the previous experiment were used in this analysis. Simulations were 

implemented as described above, over 20 timesteps in 500 realizations, with the AUDPC 

calculated for each quarantine treatment. To further explore the influence of starting seller on 

quarantine treatment, we calculated quarantine efficacy, or the proportional reduction in disease 

as compared to the non-quarantined treatment, as (AUDPCno quarantine –AUDPCquarantine ) / 

(AUDPCno quarantine) for all 27 sellers.   
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We also compared the utility of key network node statistics (Table 1) for the selection of 

nodes as quarantine candidates. We performed the above quarantine analysis (for quarantine of 

30 nodes, two starting sellers) with villages selected for quarantine based on their node 

betweenness centrality, closeness centrality, and eigenvector centrality, in comparison to a 

scenario where 30 villages were drawn at random (Table 1). The value of each villages as a risk-

based surveillance location, calculated in Experiment 1, was also compared for its utility to select 

quarantine candidates. In the evaluation of each method for ranking the likely value of nodes for 

quarantine, nodes were ranked in importance based on that method and the top ranked 15, 20, 25 

or 30 nodes were selected for quarantine. 

Sensitivity analysis and uncertainty quantification   

To evaluate the influence of parameter choices for parameters describing system-specific 

and often unknown features such as the dispersal kernel, we evaluated the effects of varying 

parameter values on the epidemic outcome (summation of infection status of all nodes at the end 

of 20 timesteps) for each of the parameter combinations described in Table 1. Parameters β and t 

influence the number of links formed between villages, ultimately influencing the likelihood of 

transmission of a pathogen at each time step. The probability of transmission (Pt) influences the 

percentage of links that will transmit infection in each timestep, ultimately influencing epidemic 

progress. These analyses were done for both infection starting at S_15 (the highest degree 

landrace seller) and S_25 (the highest degree OFSP seller).  
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Results  

Network Properties 

In 2014, 27 sellers were tracked, resulting in a total of 878 individual vine sales to buyers 

from 99 distinct villages. The seller-to-village portion of the adjacency matrix was estimated 

based on aggregated transactions from sellers to villages (Figure 2a). This network has a total of 

126 nodes and 205 links (link density = 0.013). After the addition of village-to-village links (link 

density = 0.047, Figure 2b), the number of links increased to 743, roughly representing the 

number of potential vine transactions in each time step in simulation experiments. Node degree, 

or the number of incoming (in-degree) and outgoing (out-degree) links was calculated for both 

seller nodes (mean = 7.6, min =1, max =42) and village nodes (mean = 12.9, min = 1, max = 60; 

Supplemental Fig. 2). The degree distribution of this network indicates scale-free properties 

(Barabasi and Albert 1999), with a high number of nodes having few link and fewer nodes 

having many links.  The 30 villages with the highest node degree (both in- and out-degree) were 

selected as candidates for quarantine in subsequent analyses. Betweenness, closeness, and 

eigenvector centrality were also measured for all villages in this analysis (Table 1) and used in 

subsequent analysis. These four measures of centrality were positively correlated based on 

Pearson’s correlation coefficient (Supplemental Fig. 3).  

Variety Dissemination  

A total of 15 cultivars were sold during the 2014 season (Fig. 3). These cultivars were a 

mix of landraces (all white-fleshed) and cultivars introduced by the national breeding program 

(Fig. 3). Six of these cultivars were OFSP cultivars, and were disseminated by only two sellers, 

in many individual transactions (Fig. 3). In comparison, the most common white-fleshed 

landrace, Ladwe Aryo, was sold by 25 distinct sellers in hundreds of transactions throughout the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/107359doi: bioRxiv preprint 

https://doi.org/10.1101/107359


Andersen et al.    
 

16

season. When the network is examined separately by variety, disaggregation becomes apparent 

(Fig. 4). Although both Ladwe Aryo and the OFSP cultivar, Ejumula, reached 51 villages each, 

only 8 of these villages were overlapping (Fig 4).   Evaluating networks representing the 

distribution of the top eight varieties to villages in the network (Fig. 4) indicates that only a small 

number of sellers and villages were exchanging orange-fleshed varieties. It appears, from this 

survey, that most individuals from a single village only buy a single variety, even when they 

have access to multiple sellers.  

Experiment 1: The value of villages as risk-based surveillance locations  

For the scenario where each node is an equally likely starting point for an epidemic, we 

evaluated the value of each village as a risk-based surveillance location. A village was 

considered a more effective location if only a small proportion of other nodes were colonized 

before the pathogen could be detected at that village. The village with the highest surveillance 

value was V_58, with the lowest mean number of villages affected by the time the pathogen 

would be detected there (Fig. 5). This village was close to the town seller, where many of the 

sellers sold their vines, likely accounting for high access to vines and a central position in the 

network.  

Experiment 2: Modeling epidemic progress with variable starting sellers  

 The two sellers with the greatest out-degree for their product, S_25 (OFSP seller) and 

S_15 (landrace seller), were compared as starting nodes for an introduced epidemic simulated 

over 20 timesteps (Fig. 6). These sellers had an out-degree of 42 and 19, respectively. Infection 

starting with the landrace seller (S_15) approached epidemic saturation (where the maximum 

number of villages that can be reached, has been reached (50 of the 99 villages)). For the OFSP 

seller, saturation was at approximately 70 nodes out of 99. Overall, the mean number of nodes 
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infected by time 20 was lower when infection started with the landrace seller (50.2 sd = 2.1) than 

for the OFSP seller (69.4 sd = 2.5). Disease progress, therefore, differed between starting nodes 

as well, with AUDPC being higher for infection starting with the OFSP seller (977, sd = 54.6) 

compared to starting with the landrace seller (697, sd = 57.2). 

Experiment 3: The influence of quarantine on infection dynamics 

  We evaluated the influence of quarantining villages so they cannot become infected or 

transmit infections to other villages, representing the common practical scenario of phytosanitary 

quarantine by regulatory agencies after the detection of pathogens in new regions. Nodes were 

selected based on node degree rank (with comparison to other methods of selecting nodes in the 

next step). Node degree for the 30 nodes selected as quarantine candidates ranged from 60-17 

(with the highest selected first). Epidemic simulations, as previously described, were repeated for 

both sellers (S_25 and S_15), for each quarantine scenario based on degree (Fig. 7). For infection 

beginning with a landrace seller (Fig. 7a) the mean number of nodes infected by the end of the 

simulation (timestep 20) decreased by 6%, 16%, 28%, 46%, 66%, 71%, 78%, 79% and 81% for 

each quarantine treatment (quarantine of 10, 15, 20, 25, 30, 35, 40, 45, and 50 nodes, 

respectively) when compared to the no-quarantine control. The AUDPC decreased similarly with 

increasing number of quarantine nodes (Fig 7b).  

For the OFSP seller, the mean number of nodes infected at the end of time 20 decreased 

by 5%, 17%, 28%, 44%, 57%, 70%, 79%, 88%, and 94% for quarantine of 10, 15, 20, 25, 30, 35, 

40, 45, and 50 nodes, respectively (Fig. 7c). Across treatments, final epidemic outcome was 

higher when infection starting with the OFSP seller (S_25), and although a similar effect of 

quarantine was observed, the percent control imposed by the treatment appeared to variable 

between sellers (S_17). To further explore whether the node degree of the starting seller was a 
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main driver of the success of quarantine, quarantine efficacy, calculated as (AUDPCno quarantine –

AUDPCquarantined ) / (AUDPCno quarantine), was examined for all sellers (Fig. S4) and accounted for 

~17% of the variation in AUDPC response.   

 We compared the selection of quarantine candidates based on node degree centrality 

(used in analysis described above) to closeness, betweenness, eigenvector centrality, the 

estimated risk-based surveillance score, and villages drawn at random, in terms of how they 

affected AUDPC outcomes across realizations (Figure 8). It was not surprising that, after 

quarantining at least 15 nodes , the “smart” selection criteria (centrality measures and monitoring 

efficiency) outperformed the “naive” selection criteria (randomly selecting villages to 

quarantine) (Supplemental Figs. 5 and 6). It was somewhat surprising, however, that this trend 

was not clear for the 10 node quarantine treatment, indicating that the invasion may be able to 

“overcome” quarantine of less than 10 nodes, even if the nodes are those with the highest 

centrality scores.  

 In this system, it appears that closeness, eigenvector, and degree centrality are equally 

good predictors of quarantine hubs and confer a similar reduction to AUDPC (Figure 8). This is 

consistent for each of the starting nodes. Interestingly, independent of starting node, betweenness 

centrality consistently resulted in a higher mean AUDPC when 20 and 25 nodes were 

quarantined.  

Sensitivity analysis and uncertainty quantification  

Sensitivity analysis was performed to examine the influence of key parameters, 

describing  the network and epidemic spread, on final epidemic outcomes. Both the exponent of 

the power law β and the threshold for link formation t influence the epidemic progress curve 

(Fig. 9). As β and t decrease, we see an increase in the number of nodes infected by the end of 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/107359doi: bioRxiv preprint 

https://doi.org/10.1101/107359


Andersen et al.    
 

19

the epidemic, time 20 (Fig. 9). At time 20, with β = 0.5 and t = 0.001 all villages are infected, in 

each of the 500 realizations. Alternatively, when β = 2.5 and t = 0.02, little or no epidemic 

progress is made. The same trend is apparent for infection starting with each of the two sellers 

(Supplemental Fig. S7). These dramatic differences are likely due to the number of links formed 

between villages with each parameter set. With the network highly saturated with links, as is the 

case with β = 0.5 and t = 0.001, the epidemic can move across the system rapidly. A similar 

trend was also seen when the probability of transmission (Pt) varied from 0.1 to 0.05 and 0.15 

(Supplemental Fig. S8).  

 

Discussion 

In this study, we layered empirical survey data with geo-spatial data to construct a 

network model of the sweetpotato seed system in Northern Uganda. Using this model, we 

simulated epidemics under several scenarios and identified key villages (nodes) in the region for 

both monitoring and for the deployment of management tactics, like quarantine. Epidemic 

starting point influenced not only epidemic outcome, but also the efficacy of quarantine 

interventions for limiting disease spread. In this system we compared several centrality measures 

for their utility to limit epidemic spread when placed under quarantine. We found that node 

degree performed as well as or better than centrality measures that take into account the broader 

network topology (eigenvector centrality, betweenness centrality, and closeness centrality), a 

finding with practical management implications.  

The analysis of network topologies presented here shows how sales of OFSP varieties 

and landrace varieties differed. When vine distribution was disaggregated by variety, it is clear 

that most cultivars are not well disseminated by seller-to-village links (Fig 4). We found that a 
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single white-fleshed landrace variety, Ladwe Aryo, dominated landrace sales in this season, 

while a single OFSP vine, Ejumula, dominated OFSP sales (Figs. 3 and 4). Interestingly, there is 

little overlap between the villages where farmers bought these varieties. Based on the observed 

data, we cannot determine whether preference or availability of planting material of OFSP 

varieties drove sales, or a combination of the two. This distinction is important, however, 

because much effort has been made to promote improved OFSP varieties in recent decades (Low 

et al 2017). In a study in 2015 (Obong et al. 2017), 89% of 51 multiplier fields sampled in the 

Gulu region during the 2015 off-season grew local landraces, with the remainder of area planted 

to improved varieties. This proportionally low rate of adoption might be attributed to the very 

recent introduction of OFSPs into the region (with promotion by HarvestPlus and affiliated 

NGOs), and may increase in coming years if these varieties become accepted by farmers and 

there remains an adequate local supply of vines provided by these informal sellers. Seed 

exchange is often highly related to kinship ties, language, and social organization patterns 

(Abizaid et al. 2016;  Labeyrie et al. 2016;  Perales et al. 2005;  Westengen et al. 2014) and 

future research to better model the influence of social structure on variety diffusion in this seed 

system network would be useful.  

Our findings are consistent with previous studies indicating that the epidemic starting 

point influences both epidemic progress and epidemic outcome (Pautasso 2015;  Pautasso et al. 

2010). This was illustrated in experiments 2 and 3 where we found that when the epidemic 

started with the highest out-degree OFSP seller, when compared to the highest out-degree 

landrace seller, more villages in the landscape became infected by the conclusion of the 

epidemic. It appears that one main driver of this phenomenon is the out-degree of the “starting 

seller” (or the seller with infected seed material). We also found that the epidemic starting seller 
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influenced the efficacy of quarantine interventions, with a lower percent control conferred by the 

same quarantine treatment when infection started with the OFSP seller, compared to a landrace 

seller, up to a certain number of nodes quarantined (30) after which the trend was reversed. This 

indicates that not only does the introduction point of a pathogen in this network impact the risk 

of spread through the network, but it also influences the efficacy of management strategies. 

Similar methods have also been used to simulate variety diffusion through seed systems 

(Pautasso 2015). Future studies should assess the rate of adoption over time in the landscape, to 

determine the implications of the models of spread that we presented for each type of variety 

(Fig 5).  

In experiment 1 we characterized villages in Northern Uganda for their utility as 

pathogen surveillance locations, based on a set of simulations where all nodes had an equal 

chance of being the point of entry into the network. Villages were identified as potential risk-

based surveillance targets based on the observed frequency, in simulations, that the pathogen 

would be detected in these locations before substantial parts of the rest of the network become 

colonized. This method can be used to identify “high utility” sentinel locations to focus sampling 

efforts for new and emerging pathogens, a critical effort to avoid large-scale epidemics. This 

method of prescribing surveillance locations can complement new field-based diagnostic 

technologies, such as loop-mediated amplification (LAMP) assays (Yasuhara-Bell et al. 2016) or 

smartphone-assisted crop disease image detection (Mohanty et al. 2016), which are becoming 

increasingly available to practitioners and have the potential for rapid on-site detection of viruses 

and other pathogens. The method used here, applied to a region in northern Uganda, can support 

pathogen surveillance efforts on a national or greater scale.     
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Centrality measures are important indicators of risk within epidemic networks (Banks et 

al. 2015;  Holme 2017;  Kiss et al. 2006). There is a trade-off of high centrality within this seed 

network. That is, it is favorable to be a village with high degree (many links) because of the 

increased availability of a diversity of cultivars (like OFSP varieties), from more sellers. 

Availability is often defined as the physical presence of seed at planting time within a reasonable 

proximity of farmers (McGuire and Sperling 2011), and is a component of seed security for a 

village. On the other hand, high connectivity makes a village more susceptible to pathogen 

invasion and increases its likelihood of serving as an epidemic “super-spreader”, as illustrated by 

our quarantine experiments (Fig 7) where, after high-degree villages were quarantined, the 

epidemic was successfully reduced. Node degree was a good measure for the informed selection 

of quarantine locations (Fig. 8). The utility of node degree for prioritization is consistent with 

literature on pathogen spread in animal trade networks, where centrality measures (such as 

degree) have been significantly associated with on-farm disease levels and disease progress (Kiss 

et al. 2006;  Lee et al. 2017;  Salines et al. 2018).  

We compared the use of node degree, with node betweenness, closeness, and eigenvector 

centrality, and found each performing similarly, with betweenness conferring the least control. 

Practically, this is an important finding for the mitigation of invasive pathogens in plant 

exchange networks, as node degree is one of the simplest centrality measures to collect 

(Christley et al. 2005) and confirms findings from human epidemiology literature (Lloyd-Smith 

et al. 2005). In times of epidemic emergence, these high degree villages should be the first to be 

targeted with control strategies, such as quarantine in the form of phytosanitary regulation. 

Similar methods to those described here may be utilized to target villages for development 

projects that aim to disseminate varieties to key hubs and maximize their distribution.  However, 
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betweenness may prove to be more important for identifying key nodes in some other types of 

seed systems, in which there are many nearly separate modules with a small number of links 

between them.  In such seed systems, the nodes with high betweenness centrality that bridge 

these modules might be particularly important. 

 Although quarantine was effective at slowing epidemic progress when sufficient nodes 

were included, here we found that quarantine was not sufficient (at < 50 nodes quarantined) for 

halting epidemic spread under any scenario. This property of rapid disease spread is consistent 

with other scale-free networks, where high-degree “super-spreaders” can rapidly transmit disease 

to other nodes in the network in a small number of steps (Banks et al. 2015;  Jeger et al. 2007;  

Lloyd-Smith et al. 2005).  

 Future research should consider incorporating the influence of the deployment of other 

components of an integrated seed health strategy (Thomas-Sharma et al. 2017) into the model for 

epidemic mitigation, such as positive selection, resistant varieties, clean seed, and education 

about disease progress and management strategies. Integrated seed health may be easier and 

more cost effective to deploy than strict phytosanitary restrictions or introducing complete 

‘quarantine’ of villages in these systems, where ethnobiological associations are major drivers of 

exchange between villages, and access to certified clean seed may be minimal to non-existent.  

 It is important to note that this study was based on data limited to sellers that participated 

in weekly monitoring in the Gulu region of Northern Uganda. Although this dataset was 

expansive, there may have been other sellers or sources of vines that were not captured. In 

addition, there are other villages with sweetpotato fields in the region of study that were not 

included in this analysis because they were not associated with a buyer in the dataset. These 

fields could also be a source of disease. Furthermore, links in this study were unweighted and 
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fixed through time. It may be valuable to examine the influence of a weighted, dynamic contact 

structure on epidemic progress in such seed networks. To our knowledge, this has not been 

examined in the literature. The model used here is a susceptible-infected (SI) model, where once 

nodes become infected, they remain infected (and infectious) through the duration of the time 

course. In human epidemiology, diseases that follow an SI model are known to be difficult to 

control. Because there may be options for epidemic recovery in this sweetpotato seed system 

(through reversion, roguing, or positive selection), future studies may include a recovery term in 

the model, which would result in more effective quarantine measures. Another outstanding 

question is the influence of multiple starting points on epidemic progress and outcome.  

Understanding the dynamics of epidemics in seed systems is critical for effective pathogen 

monitoring, risk assessment, and epidemic management (Buddenhagen et al. 2017;  Harwood et 

al. 2009;  Shaw and Pautasso 2014). Although some plant disease literature explores this topic, 

research on real world seed network epidemics remains limited. Results from these studies can 

be strategically used to prioritize surveillance efforts and to disseminate new varieties in 

informal seed systems. Future surveys that include questions about social ties and the movement 

of information among farmers would support better models of variety adoption and distribution 

in this system. Next research steps will include more finely parameterizing transmission patterns, 

including the impact of variety resistance and vector biology, and modeling system adaptation to 

sustained exogenous shocks and stressors. There is the potential to include data about known 

yield degeneration rates and known environmental conditions to predict regional yield loss in the 

case of pathogen introduction. Understanding these system components supports better strategies 

for seed system development.  
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Table 1.  Common network node centrality measures  
 
  

  

Measure Definition  Relevance for Epidemics in 
Seed Systems  

Density plot for distribution 
of each measure for villages 
in this network  

Degree Centrality The number of links a node 
has to other nodes in the 
network (both incoming and 
outgoing) 

Node degree of epidemic starting 
point (number of links) has been 
shown to influence epidemic 
outcomes. Those with high degree 
may be “super spreaders” once 
infected 

 
Betweenness 
centrality   

The number of shortest paths 
through the network of which 
a node is a part 

A measure of how much a node 
serves as a “bridge” to new nodes. 
Removal of nodes with high 
betweenness may contain an 
epidemic within a region 

 
Eigenvector 
centrality  

A weighted sum reflecting 
both direct links to a node 
(degree) and the node degree 
of neighbors 
 

If a node does not itself have a 
high node degree, but is 
connected to nodes with high 
degree, it may be at increased risk 
of infection and spreading 
infection  

 
Closeness 
Centrality  

The inverse of the average 
length of the shortest path 
to/from all the other nodes in 
the network  
 

Efficiency of the node to spread 
disease to any other node in the 
network 
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Table 2. Parameters describing dispersal probabilities in a seed system network 

Parameter Definition Values Comments 
β Exponent of the power 

law, where  β > 0. 
Influences the shape of 
decay  

0.5-2 (0.5, 1.0, 1.5*, 2.0, 
2.5) 

Larger values of β result 
in steeper decay, and 
fewer village to village 
links  

t Seed transaction 
threshold. Applied to 
power law transformed 
distance data.  

0.001-0.15 (0.001, 0.005, 
0.01*, 0.015, 0.02) 

Influences how close 
neighboring villages need 
to be to have a link 
formed in the village-to-
village network.  

Pt Probability of 
transmission of infection 
at each timestep, over an 
established link  

0.05-0.15 (0.05, 0.01*, 
0.015) 

Influences the probability 
that infection will be 
transmitted along a 
network link in each time 
step, from seller to 
village, or village to 
village 

    
*indicates the value that was used as the default in simulation experiments  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/107359doi: bioRxiv preprint 

https://doi.org/10.1101/107359


Andersen et al.    
 

31

Figure 1  

A schematic illustrating how two types of data were combined: A) seller-to-village links reported 

in the 2014 vine seller survey, and B) village-to-village links estimated based on the distance 

between villages using a power law function to estimate the probability of movement. The 

schematic represents a hypothetical network of three sellers and five villages, each represented as 

a node in the network. A link between nodes is represented as a 1 in the matrix, and absence of a 

link is indicated by a 0. Matrices were combined in C) a “complete network” with both seller-to-

village and village-to-village links. Note that in this study all seller-to-seller links and village-to-

seller links were set to zero, with no transactions taking place in this direction. A “complete 

network” based on the Ugandan sweetpotato data was used in the simulation experiments 

presented in this study. 

1 

2 

Figure 2 

The network structure of sweetpotato vine transactions reported in the 2014 growing season in 

Northern Uganda with both sellers (darker nodes) and villages (lighter nodes). Links represent 

the occurrence of at least one transaction in the 2014 growing season. Note that the network 

layout is generated by the Fruchterman-Reingold force directed algorithm, which locates nodes 

with links closer together and those without links further apart, and not the geographic 

coordinates of villages. Plot A) represents empirically sampled seller-to-village links and, B) 

represents village-to-village links estimated as a function of inter-village distance. 
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Figure 3  

Bar chart indicating the reported transaction count per seller for A) varieties grouped as landrace 

or orange-fleshed sweetpotato (OFSP) varieties, and B) all individual varieties that were sold in 

2014. Sellers were visited once per week during the growing season to obtain their reported 

transaction history for the previous week. Two sellers in the seed network sell OFSPs, with the 

rest selling only landraces. The landrace variety Ladwe Aryo is sold by 93% of sellers surveyed, 

with a higher number of transactions than any other variety in 2014.  

 

Figure 4  

Networks of dissemination of the top eight cultivars sold during the 2014 growing season, in 

terms of number of transactions reported. All sellers and villages surveyed are represented in 

each network, while filled nodes represent sellers and villages involved in the sale or purchase of 

the specified cultivar. Unfilled villages did not access a given variety in 2014 through this 

surveyed seed network. Node shade indicates white-fleshed landraces (darker) and OFSP 

(lighter) cultivars.   
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Figure 5 

Network resulting from a simulation (500 realizations) where each node had equal likelihood of 

being the introduction point of an invasive pathogen. Node color indicates the total number of 

nodes that would be reached in the network before detection at that node. If few nodes were 

reached (lighter shading) the node was considered an effective monitoring location, while if 

many nodes were reached (darker shading) the node was considered ineffective for monitoring. 

Nodes labeled with an “S” and depicted with gray boxes are sellers, and circles (“V”) are 

villages. Only villages were considered in this analysis for their efficacy as sampling locations.  

 

 

 

Figure 6 

Epidemic progress through the seed network over 20 hypothetical time  steps in 500 realizations 

(each realization indicated as a gray point) with the darker line indicating the smoothed 

conditional mean (local regression) of disease progress across realizations. Epidemics were 

modeled with two starting sellers, A) the seller with the highest out-degree of landrace sales 

(S_15), and b) the seller with the highest out-degree of orange-fleshed sweetpotato cultivar sales 

(S_25). Number of nodes infected represents the sum of the infection statuses of all nodes at 

each time step.  
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Figure 7 

Disease progress over 20 time steps under specified quarantine regimes (None = no quarantine, 

and 10, 15, 20, 25, 30, 35, 40, 45, or 50 nodes quarantined). A) and C) Disease progress, for each 

quarantine status, with infection starting with the seller with the highest out-degree of landrace 

sales (S_15) in A, or the seller with highest out-degree of orange-fleshed sweetpotato sales 

(S_25) in C. Lines represent smoothed conditional means. B) and D) Area under the disease 

progress curve boxplot and distribution (violin plot) for each of the 500 realizations in A and C, 

respectively.  

 

 

Figure 8 

Mean AUDPC values for six quarantine scenarios (0 = no quarantine, and 10, 15, 20, 25, or 30 

nodes quarantined, respectively) for infection starting with A) the seller with the highest out-

degree of landrace sales (S_15), and B) the seller with the highest out-degree of orange-fleshed 

sweetpotato sales (S_25). Four different centrality measures were compared for their utility in 

selecting quarantine locations (betweenness, closeness, degree, and eigenvector). These were 

also compared to a scenario where nodes were selected at random for quarantine, and nodes that 

were selected as effective monitoring locations (“Sampling Location”) in the previously 

described simulation experiment (Fig. 5).  
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Figure 9 

Uncertainty quantification for the number of nodes infected at time step 20 across 500 

realizations for a range of values for parameters β (0.5-2.5) and t (.001-.02). β is the exponent of 

the power law equation, and t is a threshold applied to the power-law transformed distance 

village distance matrix. β and t were used to evaluate seed transaction links between villages, 

and therefore influenced disease spread. The simulated epidemic started at node 15 (S_15). 

Similar analyses for other starting nodes and a range of transmission rates (Pt) were also 

performed (Figs. S5 and S6).  
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