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Abstract 

 

The advent of precision medicine is largely dependent on the availability of 

accurate and highly predictive gene scores. While progress has been made identifying 

genetic determinants of polygenic traits, the phenotypic variance explained by gene 

scores derived from genome-wide associations remains modest. Machine-learning 

techniques have proven very useful for solving a broad range of prediction problems, yet 

are not widely applied to complex traits prediction using gene scores. We propose a novel 

machine-learning heuristic (MLH) to improve the predictive performance of gene scores. 

It is based on two innovative features. We first apply gradient boosted regression trees 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 9, 2017. ; https://doi.org/10.1101/107409doi: bioRxiv preprint 

https://doi.org/10.1101/107409
http://creativecommons.org/licenses/by-nd/4.0/


2 

 

models to leverage a large number of SNPs and optimize the weights of individual SNPs 

included in the gene scores. We show a calibration set sample size of ~200 individuals is 

sufficient for optimal performance. We then correct for linkage disequilibrium (LD) 

between SNPs using a novel procedure, enabling retention of all SNPs in the gene score 

irrespective of LD. Our novel heuristic yielded a prediction R2 of 0.237, 0.082 for height 

and BMI using GIANT summary association statistics in the UKBiobank study 

(N=130K; 1.98M SNPs), explaining 46.6% and 32.6% of the overall polygenic variance, 

respectively. Corresponding area under the ROC was 0.602 for diabetes in the 

UKBiobank using DIAGRAM association statistics. MLH outperformed other gene score 

heuristics for height and BMI and was equivalent to LDpred for diabetes. Results were 

independently validated in participants of the HRS (N=8,292) study. Our report 

demonstrates the potential of machine-learning methods for polygenic trait prediction. 

Our method has wide-ranging applications, from predicting medically important traits to 

creating stronger instrumental variables for Mendelian randomization studies. 
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Main Text 

 

Despite moderate to high narrow-sense heritability estimates for most polygenic 

traits, known genetic associations only explain a relatively small proportion of polygenic 

traits variance. It has been proposed that weak, yet undetected, associations underlie 

polygenic trait heritability1. Consistent with this hypothesis, polygenic scores including 

both strongly and weakly associated variants produce vastly superior prediction R2 than 

the ones including only genome-wide significant variants. The most popular heuristic is 

based on linkage disequilibrium (LD) pruning of SNPs, prioritizing the most significant 

associations up to an empirically determined p-value threshold and pruning the remaining 

SNPs based on LD2. This “pruning and thresholding” (P+T) approach has the advantage 

of being simple and computationally efficient, but discards some information because of 

LD pruning. To remediate this issue, a novel method was recently proposed that uses LD 

information from an external reference panel to infer the mean causal effect size using a 

Bayesian approach (LDpred)3. While the latter method has been shown to improve 

prediction R2, we hypothesized that a further gain in prediction R2 could be made by 

tuning the weights of SNPs included in the gene score using machine-learning 

algorithms. 

 

Machine learning encompasses a class of methods widely used to solve complex 

prediction problems. It has proven particularly useful when prediction is dependent on 

the integration of a large number of predictor variables, including higher-order 

interactions, and when sizeable training datasets are available for model fitting. Our novel 
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heuristic leverages the large number of SNPs in genome-wide studies to calibrate the 

weights of SNPs contributing to the gene score. This is done by partitioning the genome 

into non-overlapping, complementary parts. Our method involves two steps (Figure 1) 

and uses the univariate regression coefficients from external meta-analysis summary 

association statistics as a starting point (see Appendix for detailed Methods). First, these 

external univariate regression coefficients are updated with respect to a target population 

by the boosted regression trees models. Second, the updated weights are corrected for LD 

to produce the final gene score.   

 

Boosted regression trees are powerful and versatile methods for continuous 

outcome prediction4 and thus ideal for updating the SNP weights in a gene score. Tree-

based models partition the predictor space according to simple rules to identify regions 

having the most homogeneous responses to predictors and fitting the mean response for 

observations in that region. Boosting is used to efficiently combine a large number of 

relatively simple tree models adaptively, to optimize predictive performance. Our 

approach uses boosted regression trees to adjust summary association statistics regression 

coefficients in order to maximize the prediction R2 in a target population. Regression 

coefficients from large meta-analyses are implicitly assumed to provide the best initial 

estimates and regression trees “tune” them based on the regression coefficients observed 

in the target population. To avoid over-fitting, SNPs are divided into five distinct 

contiguous sets of SNPs (thus circumventing potential LD spillover) and weights of SNPs 

in each set is calculated using the prediction models trained on the remaining four sets. 

For example, the first set comprises SNPs from chromosomes 1, 2 and part of 3 such that 
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SNPs from the remaining part of chromosome 3 and chromosomes 4 to 22 would be used 

to derive prediction models for SNPs in that first set. The observed regression coefficient 

of any single SNP in the target population is thus never used directly or indirectly to 

derive its own gene score weight.  

 

It is advantageous to correct the derived weights for LD when including multiple 

SNPs in a gene score, unless SNPs are first LD pruned. The novel correction we propose 

is based on the sum of pairwise LD r2 of each SNP over neighboring SNPs. Gene score 

weights of each SNP is divided by the corresponding sum of r2. To illustrate with a 

simple example, if five SNPs are in perfect LD (r2=1) with each other but in linkage 

equilibrium with all other SNPs (r2=0), then the gene score weights of these five SNPs 

would be divided by five. As all five SNPs are included in the gene score and the effect 

of all five SNPs summed, the corrected weight contributions are equivalent to including a 

single SNP without correction. This also explains why it is necessary to apply the LD 

correction only after adjusting SNP weights with boosted regression trees as otherwise 

important information on strength of association of individual SNPs would be lost. LD is 

summed over SNPs included in the gene score, such that our correction is specific to the 

set of SNPs included in a given gene score. When the genetic effects are strictly additive 

(i.e. no haplotype or interaction effect), the resulting gene score provides an unbiased 

estimate of the underlying genetic variance although at a tradeoff of increased gene score 

variance as compared to the “true” unobserved genetic model (see Appendix).  
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We applied our machine-learning heuristic (MLH) to the prediction of height on a 

calibration set of 10,000 participants and an independent validation set of 130,215 from 

the UKBiobank (UKB) using Genetic Investigation of Anthropometric Traits (GIANT) 

consortium summary association statistics3, 5 on 1.98M SNPs (Figure 1). Since the UKB 

is not part of the GIANT consortium, the reference and target populations can be 

assumed to be independent. As recently proposed6, principal components were added to 

the model and included in the prediction R2. Prediction R2 of the gene score derived using 

our heuristic was 0.237, corresponding to 46.6% of total polygenic genetic variance 

estimated in UKB using variance component models7 (i.e. 0.509). This compared 

advantageously to the optimal prediction R2 obtained with P+T (0.217; 177K SNPs), 

LDpred (0.202) or an unadjusted gene score (0.163) (p<10-100 for all pairwise 

comparisons with MLH; Figures 2 and 3).  

 

We also tested the performance of MLH for prediction of body mass index (BMI) 

and diabetes in the UKB. The resulting gene score for BMI had a prediction R2 of 0.082, 

outperforming the prediction R2 of unadjusted gene score (0.069), P+T (0.069) and 

LDpred (0.076) (p<0.006 for all pairwise comparisons with MLH; Figure 2). Our 

heuristic accounted for 32.6% of the total polygenic variance, which was estimated at 

0.251 for BMI in the UKB. The MLH gene score for diabetes had area under the receiver 

operator curve (AUROC) of 0.602, which was not statistically different from LDpred 

(0.613; p=0.06 for comparison) and compared favorably to unadjusted gene score (0.583) 

and P+T (0.576) (p<10-5 for comparisons with MLH; Figures 2 and 3).  
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Calibration, or the ability of a gene score to accurately predict real observations, is as 

important as predictiveness when gene scores are used to infer unobserved traits. To 

evaluate calibration, we calculated the average absolute difference between predicted trait 

and actual trait for height and BMI in the validation set. For all methods, gene scores 

were first calibrated in the training set through use of a simple regression coefficient 

(along with principal components regression coefficients). The average absolute 

difference was smallest for MLH for both height (0.701 SD) and BMI (0.744 SD) as 

compared to other gene score methods (p<10-32 for all pairwise comparisons with MLH).  

We tested for calibration of diabetes gene scores using the Hosmer-Lemeshow test, 

dividing the UKB validation set by deciles of predicted trait (Figure 4). There was no 

evidence of mismatch between predicted and observed event rates for any of the gene 

scores (p>0.05).  

 

The set of participants used for calibration of MLH can theoretically also be the test set 

since the regression coefficient of each SNP in the target population is not used to tune its 

own gene score weight. However, doing so presents practical challenges in the situation 

where one wants to predict a trait unobserved in the target population, in which case a 

smaller training sample size is advantageous. We therefore explored the effect of the size 

of the calibration set on gene score performance by sub-sampling an increasing 

proportion of our calibration set for MLH tuning. We determined that a calibration set as 

small as 200 was adequate to provide high prediction R2 for height and BMI (Figure 5). 

For diabetes, we selected an increasing number of case-control pairs. 100 pairs were 

sufficient for adequate performance.  
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For any given SNP, the regression coefficient observed in UKB was not used to 

determine its own gene score weight. Nonetheless, regression coefficients of other SNPs 

in UKB were used, raising the issue of transferability to other populations. We therefore 

tested gene scores derived from the UKB in Health Retirement Study (HRS) participants 

of European descent (N=8,292). Only directly genotyped SNPs were used for this 

analysis and 683K SNPs overlapped with both the UKB and consortia associations. For 

each method, optimal gene score derived in the UKB calibration set was tested in HRS 

without any further fitting or adjustment. Consistent with UKBiobank results, our 

machine-learning heuristic outperformed other methods for height and BMI, and was 

close second to LDpred for diabetes (Figures 2 and 3).  

 

Our proposed machine-learning heuristic led to significant improvements in 

prediction R2 as compared to existing methods. Furthermore, we showed that MLH gene 

scores are well calibrated, requiring only a very small calibration set sample size (N~200) 

to achieve maximal performance. This latter characteristic makes our method 

advantageous for prediction of unobserved traits and stems from the fact our heuristic 

leverages the large number of genetic variants reported in genome-wide association 

studies (GWAS) to train boosted regression trees models through genome partitioning. 

Regression trees can capture nonlinear effects and higher-order interactions while the 

boosting algorithm combines individually weak predictors to produce a strong classifier 

that enables a better prediction of genetic effects.  
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A few limitations are worth mentioning. First, our method is based on the premise 

that SNPs contribute additively to genetic variance. While empirical evidence suggests 

this holds true in most cases, our method is not expected to perform well in genomic 

regions where strong genetic interactions are present (e.g. HLA), and alternative methods 

such as LDpred might be better suited3. Second, there is a possibility that gene scores 

derived using our method are inherently population-specific. However, with the 

exception of unadjusted gene scores, all methods require the determination of parameters 

in the target population and ours is no different. Furthermore, if the genetic architecture 

varies between populations, then no gene score will perform universally well and it will 

be beneficial to tailor gene scores to each population. The observation that our heuristic 

performed as well in HRS as compared to other methods suggests this might not be the 

case. Third, our correction for LD yielded advantageous results yet is expected to lead to 

some loss of information when truly associated SNPs are in partial LD (see Appendix). 

Nonetheless, our correction for LD also has several benefits such as simplicity, use of 

summary association statistics and intrinsic robustness to minor misspecification of LD 

or association strength. 

 

In summary, we propose a novel heuristic based on machine-learning concepts to 

improve the prediction of polygenic traits using gene scores. Our results show that for the 

classic polygenic traits height and BMI, 46.6% and 32.6% of the estimated polygenic 

genetic variance can be captured by boosted regression trees gene scores. These results 

demonstrate the potential of machine-learning methods to harness the considerable 

amount of information from large genetic meta-analyses. This is made possible through 
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partitioning of the genome, enabling training of regression trees over large number of 

observations. Indeed, a small training sample size (~200) was sufficient to greatly 

improve gene scores. As with other prediction problems involving machine-learning 

techniques, incremental improvements are to be expected with increases in sample size, 

use of additional predictor variables and availability of more precise summary association 

statistics. 
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Appendices 

 

Gradient boosted regression trees  

 

Boosted regression trees are powerful and versatile methods that combine otherwise 

weak classifiers to produce a strong learner for continuous outcome prediction4. They are 

thus ideal for prediction of SNP gene score weights (��pred), where each fitted ��pred gives 

the contribution of individual SNPs to the final gene score. The dependent variable used 

in boosted regression trees is constructed following: 

 

�����
� � ��obs � �ext�sign��ext� 

 

In other words, �pred
�  is derived to reflect the amount of deviation towards the null 

hypothesis of no association in the target population (�obs) with respect to the externally 

derived summary association statistics estimates (�ext). When �pred
� � 0 then �obs � �ext, 

implicitly assuming regression coefficients from large meta-analyses provide the best 

initial estimates. While some information is lost because of this construct, the resulting 

estimates are more robust and the overall performance improved. Boosted regression 

trees can be expressed as 

 

E	�����
� 
��, ��, … ���~� � ���� 
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where � is a regression function of trees with input variables � � ���, ��, … ���. The 

gradient boost algorithm aims to minimize the expected square error loss with respect to 

� iteratively on weighted versions of the training data. While multiple SNP annotations 

could be included as inputs (i.e. ��, ��, … ��), we only included the absolute value of the 

SNP regression coefficient from the external consortium to reflect the strength of 

association, irrespective of the direction of effect. Importantly, SNPs are divided into 5 

distinct sets of contiguous SNPs (to avoid LD spillover) and fitted ��pred
�  which are used in 

calculation of the actual gene scores derived using the regression trees models trained on 

the remaining 4 sets. The observed regression coefficient (�obs) of an individual SNP is 

thus never used directly or indirectly to derive its own gene score weight. Furthermore, 

the SNP annotations used in the regression trees model are independent of the population 

in which the gene score is applied as the UKBiobank and HRS were not part of GIANT8, 

9 or DIAGRAM10. The weights used in gene scores ( ��pred�  are given by the 

corresponding inverse transformation:  

 

��pred � 	�ext � ��pred
� �sign��ext� 

 

Gradient boosted regression trees models were fitted using the “GBM” R package 

(version 2.1.1) under a Gaussian distribution and squared error loss function. 2,000 trees 

were fitted with an interaction depth of 5, shrinkage parameter of 0.001 and bag fraction 

of 0.5.  All other parameters were otherwise set to their default values.  

 

Adjustment of regression coefficients for LD 
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We propose a simple method to correct summary association regression coefficients for 

LD in such a way that all SNPs can be included in a gene score, irrespective of LD. 

Genotypes for n individuals at m SNPs are given by a matrix  

 

�	
� � ��� �
 …  �	�� 

 

with each column vector ��, �
, … , �	  representing the coded genotypes for an 

individual. Without loss of generality, we assume each column of � (i.e. genotypes for a 

single SNP) to be standardized to have mean 0 and variance 1. For a standardized 

quantitative trait � with mean 0 and variance 1, the underlying linear model can be 

expressed as: 

 

� � �� � �  (eq.1) 

 

� is a vector of true genetic effects that are fixed across individuals but random across 

SNPs, with mean 0 and covariance matrix ���  such that the total expected genetic 

variance  

�true
� � E�������� � tr������� � !�� 

 

and � the error term with mean 0 and covariance �1 � !���� so that the covariance of � 

is I . Let r2
d,k  denote the pairwise linkage disequilibrium (r2) between the dth and kth 
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SNPs. The LD adjustment (ηd) for the dth SNP is defined by the sum of r2 between the dth 

SNP and the 100 SNPs upstream and downstream: 

 

#� � ∑ %�,�
��������

�������  (eq.2) 

 

with a distance of 100 SNPs assumed sufficient to ensure linkage equilibrium (other 

values might be used). Including only SNPs that are part of the gene score in the 

calculation of ηd, the LD-corrected regression coefficients are given by: 

 

&'� � ��
�

��
   (eq.3) 

 

where &�
�  is the regression coefficient commonly reported in GWAS meta-analysis 

(assumed to have been standardized for allele frequency). Given ��, the genotypes of m 

SNPs for the ith individual, the gene score (���� is: 

 

(���� � ��
�)* � ∑ x�,�

��
�

��
� � ��

�+)� (eq.4) 

 

where + is an ! , ! diagonal matrix with entries � �

��
, 

�

��
, … , �

��
�. The prediction R2 of 

the gene score in the target population is expressed as:  

 

R� � Cov���X�,���

Var���X��Var���
  (eq.5) 
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The expected value can be approximated by: 

 

E���� � E - Cov���X�,���

Var���X��Var���
. � E -Cov���X�,���

Var���X��
. ~ ��Cov���X�,��� 

�!Var���X��"
~ �!Cov���X�,��"�

�!Var���X��"
   (eq.6) 

 

and leading to  

 

E����~ �!Cov���X�,��"�

E[Var���X��"
� �#true

� ��

E[Var���X��"
/ �true

�   (eq.7) 

 

by deriving the following relations: (1) E�Cov�(�X�,��� � �true
� , implying the covariance 

between the gene score and the trait is an unbiased estimator of the true genetic variance; 

and (2) E[Var�(�X��� 0 �true
�  and thus 1���� / �true

� , implying the expected prediction 

R2  must be bounded above by the true genetic variance. We demonstrate the validity of 

these two relations in the following sections and further verify with simulations 

(Supplementary Figure 1).  

 

(1) An Unbiased Estimator of the True Genetic Variance 

 

The sample covariance of the gene score with the observed � in the target sample is given 

by: 

 

Cov�(�X�,�� � 1
2 3 (�x��4�

$

���
 

� �

$
�X+)��%��� � 5�  
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� �

$&
�X+������ ��%��� � 5�  

� 1
26 �X+������ ��%��� � 5� 

� �

$&
(�������+���� � 5�������+��5 � �������+��5 � 5�������+�����   

(eq.8) 

 

where 5�  and 5  are the residual error in the unobserved population used to derive 

summary association statistics and the target population, respectively. The reported )� in 

GWAS meta-analysis are constructed to estimate the univariate regression coefficients 

from the otherwise unobserved genotype matrix ��
'
� and quantitative trait ��: 

 

 

)�~ (��� 

&
� (���(�*�+�� 

&
� (��(�

&
� � (��+� 

&
   (eq.9) 

 

Assume the target population is independent of the meta-analysis, i.e. 5�  and 5  are 

independent, we have the expected value of the quadratic forms in (eq.8): 

 

E[Cov�(�X�,��� 
� 1

26 E7(�������+���� � 5�������+��5 � �������+��5 � 5�������+�����8 

� 1
26 E��������+����� 

� tr 9�� �����

6 + ���
n �; 
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� ��tr 9�����

6 + ���
n ; 

� ��! � �true
�   (eq.10) 

 

This equality holds for all positive definite matrices of the form 
(��(�

&
< (�(

,
, assuming the 

LD structure in the two populations is identical. We have thus shown that Cov�(�X�,�� 

is an unbiased estimator of the true genetic variance.  

 

(2) Variance of the Gene Score 

 

The denominator in (eq.7), E[Var�(�X���, can be shown to be greater than �true
� :  

 

�true
� =E[Cov�(�X�, ��� � E[Cov�(�X�, ���� 

 

E[Cov�(�X�, ���� = E[>Var�(�X��Var����� � E[?Var�(�X���true
� � 

 

And thus: 

 

�true
� =  E[>Var�(�X���true

� � and >�true
� =  E[>Var�(�X��� 

 

Giving: 
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E�Var	(����� @ E�>Var�(������ @ �true
�  (eq.11) 

 

From the above inequality, we can conclude that E[Var�(�X��� is biased and will always 

be greater or equal than the true genetic variance. 

 

A note on prediction R2 of gene score as compared to true genetic variance  

 

The LD correction proposed thus offers a tradeoff between bias and variance, whereby 

genetic variance estimates are unbiased as E[Cov�(�X�,��� � �true
�  but E�Var	(�X��� @

�true
�  implying that �� = �true

� . It can be shown that �� � �true
�  in simple cases where 

pairwise r2 LD is either 0 or 1 and summary association statistics are derived from an 

asymptotically large sample. However, in more common scenarios with partial LD 

�� / �true
�  reflecting the loss of information when, for example, two SNPs are in partial 

LD and have true genetic effects with opposite directions. To assess the importance of 

this effect in plausible situations we performed simulations. 5,000 individuals were 

simulated for 450 contiguous SNPs using phased haplotypes from the 1000 Genomes 

Project. The genetic effect of each SNP was randomly selected from a normal distribution 

according to a pre-defined, unobserved, true regional genetic variance that assumed 

genome-wide heritability varying from 0 to 0.5. For each genetic variance set-point, 

1,000 simulations were completed and a gene score incorporating LD correction derived. 

The average (±SD) gene score prediction R2, gene score variance and covariance between 

gene score and true (unobserved) genetic effect calculated (Supplementary Figure 1). 

Based on these simulations, we confirmed that (1) LD-corrected gene scores are unbiased 
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estimators of true genetic variance (i.e. E�Cov�(�X�,��� � �true
� ), and (2) variance of 

gene score is indeed higher than true genetic variance. We further estimated the loss of 

information at ~12%, or in other words gene score prediction R2 was on average ~88% of 

true genetic effect. 

 

UKBiobank Study 

 

The UKBiobank13 (UKB) is a large population-based study from the United Kingdom. 

152,249 participants were genotyped using either the UK BiLEVE or the UK Biobank 

Affymetrix Axiom arrays. 140,215 participants were of European (British and Irish) 

Caucasian ancestry and included in the present analysis. Genotypes were imputed using 

the UK10K reference panel using IMPUTE2, resulting in ~72M SNPs. Height and BMI 

was adjusted for age and sex in all analyses; and to further mitigate the effect of outliers, 

values outside the 1st and 99th percentile range were removed. All analyses were adjusted 

for the first 15 genetic principal components unless stated otherwise. The UKB was not 

part of the GIANT meta-analysis of height and BMI11, 12, or of the DIAGRAM 

consortium for diabetes10. There are 6,746 individuals with prevalent diabetes in the 

subset of the UKB included in the current report. We randomly selected 6,746 individuals 

without diabetes as paired controls on a 1:1 basis. Next, we randomly sampled 1,000 

case-controls pairs as the calibration set, with the remaining 5,746 pairs constituting the 

validation dataset.  

 

Health Retirement Study 
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We downloaded publically available genome-wide data that are part of the Health 

Retirement Study (HRS; dbGaP Study Accession: phs000428.v1.p1) generated using the 

Human Omni2.5-Quad BeadChip (Illumina). HRS quality control criteria were used for 

filtering of both genotype and phenotype data, namely: (1) SNPs and individuals with 

missingness higher than 2% were excluded, (2) related individuals were excluded, (3) 

only participants with self-reported European ancestry and genetically confirmed by 

principal component analysis were included, (4) individuals for whom the reported sex 

does not match their genetic sex were excluded, (5) SNPs with Hardy-Weinberg 

equilibrium p < 1x10-6 were excluded, (6) SNPs with minor allele frequency lower than 

0.02 were removed. The final dataset included 8,292 European participants genotyped for 

688,398 SNPs. Height and BMI was adjusted for age and sex in all analyses; and to 

further mitigate the effect of outliers, values outside the 1st and 99th percentile range were 

removed. There were 1,815 individuals with diabetes and 6,477 controls. All analyses 

were adjusted for the first 20 genetic principal components unless stated otherwise. HRS 

was not part of the GIANT meta-analysis of height and BMI11, 12, or of the DIAGRAM 

consortium for diabetes10.   

 

Pruning and thresholding gene scores, LDpred and other alternative methods 

 

Pruning and thresholding (P+T) polygenic scores were derived using the “clump” 

function of PLINK14 with an LD r2 threshold of 0.2 and testing p-value thresholds in a 

continuous manner from the most to the least significant association. LDpred adjusts 
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GWAS summary statistics for the effects of linkage disequilibrium, providing re-

weighted effect estimates that are then used in gene scores3. LDpred was run as 

recommended by authors, including both the data synchronization and LDpred steps. 

LDpred requires specification of the fraction of SNPs assumed to be causal. For each 

model, we tested causal fractions of 1 (infinitesimal), 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 

0.0003, 0.0001 as recommended. Results are presented using the causal fraction giving 

the best results only. A heritability estimate is also required by the algorithm and is 

estimated from summary association statistics by LDpred. As a sensitivity analysis, we 

additionally used heritability estimates given by the variance component models in the 

UKB. Results were consistent and only the default option is shown. Polygenic genetic 

variance (i.e. narrow sense heritability) was estimated for height and BMI in the UKB 

using variance components, as implemented in GCTA7. All LD measures or related 

estimates used throughout the manuscript were derived from UKB calibration set 

genotypes. 
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Supplemental Data 

Supplemental data include 1 figure. 
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Figure Legends 

 

 

Figure 1: An overview of Machine-learning Heuristic (MLH) for gene scores and study 

design 
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Figure 2: Discrimination of height, BMI and diabetes gene scores 

 

Gene scores prediction R2 as a function of the proportion of SNPs included for height 

(Panel A) and BMI (Panel C) in the UKB validation set (N=130,215), with 95% 

confidence intervals. A total of 1.98M SNPs were considered and SNPs were ordered 

from the most to the least significant according to GIANT summary association statistics. 
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LPpred requires determining the causal fraction of SNPs and only the best scores are 

illustrated, setting the causal fraction at 0.3 and 0.01 for height and BMI, respectively. 

Prediction R2 of UKB gene scores in HRS (N=8,292) is similarly illustrated for height 

(Panel B) and BMI (Panel D). UKB gene scores were tested in HRS without any further 

fitting or adjustment. The area under the ROC (AUROC) is illustrated for diabetes in the 

UKB validation set (Panel E) and HRS (Panel F), with 95% confidence intervals. The 

LDpred causal fraction was 0.003 for diabetes, as determined in the UKB calibration set. 
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Figure 3: The relative improvement in discrimination for height, BMI and diabetes as 

compared to unadjusted gene scores 

 

The relative improvement in prediction R2 of gene scores as compared to the unadjusted 

gene score is illustrated for height and BMI in the UKB validation set and HRS. For 

diabetes, the relative improvement in AUROC is illustrated. In all cases, the optimal gene 

score was derived from the UKB calibration set and tested without any further fitting or 

adjustment. 
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Figure 4: Calibration of height, BMI and diabetes gene scores. 

 

For each trait and gene score method, the UKB validation set was divided into deciles of 

gene score.  For each decile, the difference between the mean observed and predicted trait 

(95% confidence interval) is illustrated as function of the mean predicted trait for that 
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gene score decile. The trait is expressed per SD unit for height (Panel A) and BMI (Panel 

B). A similar analysis was performed for diabetes, whereby the difference between the 

observed probability of diabetes and predicted probability is illustrated as function of the 

predicted probability for each gene score decile. 
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Figure 5: MLH gene score discrimination as function of calibration set sample size 
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The size of the UKB calibration set was varied from 20 to 10,000 for height and BMI, 

and from 3 to 1,000 case-control pairs for diabetes. For each calibration sample size, 

discrimination of the corresponding gene score was calculated in the independent UKB 

validation set (N=130,215 for height and BMI; N=5,746 case-control pairs for diabetes). 
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