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Abstract

Mutualism describes the biological phenomenon where two or more species are reciprocally beneficial,

regardless of their ecological intimacy or evolutionary history. Classic theory shows that mutual-

istic benefit must be relatively weak, or else it overpowers the stabilizing influence of intraspecific

competition and leads to unrealistic, unbounded population growth. Interestingly, the conclusion

that strong positive interactions lead to runaway population growth is strongly grounded in the

behavior of a single model. This model—the Lotka-Volterra competition model with a sign change

to generate mutualism rather than competition between species—assumes logistic growth of each

species plus a linear interaction term to represent the mutualism. While it is commonly held that the

linear interaction term is to blame for the model’s unrealistic behavior, we show here that a linear

mutualism added to a θ-logistic model of population growth can prevent unbounded growth. We

find that when density dependence is decelerating, the benefit of mutualism at equilibrium is greater

than when density dependence is accelerating. Although there is a greater benefit, however, deceler-

ating density dependence tends to destabilize populations whereas accelerating density dependence

is always stable. We interpret these findings tentatively, but with promise for the understanding

of the population ecology of mutualism by generating several predictions relating growth rates of

mutualist populations and the strength of mutualistic interaction.
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1. Introduction1

Mutualistic interactions describe the ecology of two or more species that reciprocally increase each2

other’s fitness (Bronstein, 2015). These interactions are arguably the most common type of ecological3

interaction, and they have profoundly shaped biodiversity as we understand it. Examples include4
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mutualisms between mycorrhizae and plants (van der Heijden et al., 2015), coral and zooxanthellae5

(Baker, 2003), plants and pollinators (Willmer, 2011), tending ants and aphids or Lepidoptera larvae6

(Rico-Gray and Oliveira, 2007; Stadler and Dixon, 2008), plants and seed-dispersing animals (Howe7

and Smallwood, 1982; Levey et al., 2002), lichens (fungi and algae) (Brodo et al., 2001), and plants8

and rhizobia (Sprent et al., 1987; Kiers et al., 2003). Despite mutualism’s obvious importance, it was9

not until the latter part of the 20th century that the natural history of mutualism underwent rigorous10

ecological study, the conceptual framework for mutualism was laid, and mutualism was no longer11

confounded with the concept of symbiosis. Thus, by the time mutualism was fully introduced to12

the larger ecological community, theoretical ecology had been developing in its absence for decades.13

This resulted in the paucity of theory for mutualisms still very much visible today.14

Gause and Witt (1935) first used the Lotka-Volterra model of interspecific competition to inves-15

tigate the case of facultative “mutual aid” between two species by reversing the sign of the linear16

competition term from negative to positive. They noted that with enough “mutual aid” the zero-17

growth isoclines no longer cross to give a positive equilibrium point and species grow exponentially18

without bound—a biologically unrealistic scenario. More specifically, they found that if the product19

of the strength of mutualism between the two species is ≥ the product of the strength of intraspecific20

competition for each species, then the positive feedback of mutualism would overpower the nega-21

tive feedback of intraspecific competition, resulting in unbounded growth. Following this pioneering22

study, no development of theory around mutualism would happen for over 30 years and ecologists23

were left lacking a basic theoretical explanation for what stabilizes mutualism in nature.24

A key feature of the Lotka-Volterra model is its use of a linear functional response: the effect25

of a mutualist on its partner’s per capita growth rate is linearly proportional to the mutualist’s26

density. Early models of obligate mutualism also shared this feature. Albrecht et al. (1974), May27

(1976), Christiansen and Fenchel (1977), and Vandermeer and Boucher (1978) introduced the idea28

of modeling mutualism through the intrinsic growth rate, shifting it from positive, in the case29

of facultative mutualism, to negative for obligate mutualism. Using linear functional responses,30

they generally found that, first, two obligate mutualists cannot stably coexist and, second, stable31

coexistence is possible if one species is obligate and the other is not, depending on the strength of the32

mutualism. These papers and others (e.g, Wolin, 1985; DeAngelis et al., 1986) further postulated33

that mutualistic functional responses are nonlinear, and thus attributed the unrealistic behavior34

of the Lotka-Volterra and similar models to their use of a linear functional response. Nonlinear35

functional responses were later explicitly modeled (e.g., Wright, 1989; Holland et al., 2002; Holland36

and DeAngelis, 2010; Revilla, 2015), confirming that nonlinear functional responses can indeed37
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stabilize mutualistic populations.38

Each of the aforementioned mutualism models, regardless of the functional response, assumes39

linear intraspecific density dependence; i.e., logistic within-species dynamics. However, nonlinear40

density dependence has been observed in controlled laboratory populations of organisms with simple41

life histories, such as Daphnia sp. and other Cladocera (Smith, 1963; Smith and Cooper, 1982) and42

Drosophila spp. (Ayala et al., 1973; Gilpin and Ayala, 1973; Pomerantz et al., 1980), and in long-term43

datasets on species with more complex life histories (Stubbs, 1977; Fowler, 1981; Sibly et al., 2005;44

Coulson et al., 2008). Models that relax the assumption of linear intraspecific density dependence45

have been proposed for single species (e.g., Richards, 1959; Schoener, 1973; Turchin, 2003; Sibly et al.,46

2005) and communities with two or more competitors (Ayala et al., 1973; Gilpin and Ayala, 1973;47

Schoener, 1976; Goh and Agnew, 1977; Gallagher et al., 1990), but never for mutualism (but see a48

generalized Verhulst-Lotka-Volterra model in Ribeiro et al. 2014 and a specific facultative-obligate49

model in Wang 2016). Given the prevalence of nonlinear intraspecific density dependence, and its50

known influence on dynamics in other ecological contexts, the dearth of mutualism models that51

assume anything besides logistic growth suggests that our understanding of mutualistic dynamics52

may be quite incomplete.53

In sum, the Lotka-Volterra mutualism model makes two separate assumptions that are likely54

violated in many natural systems: a linear effect of mutualistic interactions, and linear intraspecific55

density dependence. The former is widely thought responsible for the Lotka-Volterra mutualism56

model’s unrealistic behavior, but since the latter has never been investigated in the context of mu-57

tualisms, the relative importance of these two simplifying assumptions remains unclear. While we58

agree that many mutualistic interactions are likely nonlinear, the same could be said of competitive59

interactions, and yet Lotka-Volterra competition models endure. Is the need to eschew linear in-60

teraction rates truly fundamental for mutualisms? We approached this line of inquiry by returning61

to the original Lotka-Volterra mutualism model. To complement what is already known, we relax62

the assumption of linear intraspecific density dependence while leaving the assumption of a linear63

mutualistic functional response intact. We accomplish this by using the θ-logistic equation, which64

can decelerate or accelerate as a function of intraspecific density. We found that any accelerating65

model was always stable, and that decelerating models were stable with weak mutualism. We there-66

fore conclude that relaxing either of the Lotka-Volterra model’s major simplifying assumptions can67

prevent unrealistic model behavior. Given that nonlinear intraspecific density dependence appears68

to be widespread, nonlinearity in mutualistic interaction rates may be less important for stabilizing69

mutualisms than was previously believed.70
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2. Methods71

The Lotka-Volterra mutualism model for population densities of two species, N1 and N2, takes72

the form73

1

N1

dN1

dt
= f1(N1) + β1N2 = r1 − α1N1 + β1N2

1

N2

dN2

dt
= f2(N2) + β2N1 = r2 − α2N2 + β2N1.

(1)74

75

That is, the per capita change in population i’s density is a function of intraspecific density, fi (Ni),76

and a linear function of mutualist partner density, βiNj . It is further assumed that intraspecific77

density dependence, fi (Ni), is logistic. This means the per capita growth rate approaches ri when78

Ni approaches 0, and linearly decreases as intraspecific density increases, with slope −αi. Assuming79

positive parameter values, eq. (1) has the following behavior: each population grows when rare,80

each population has a stable positive abundance in the absence its mutualist partner, a feasible 2-81

species equilibrium exists if βiβj < αiαj , and unbounded exponential growth occurs if βiβj ≥ αiαj82

(Vandermeer and Boucher, 1978).83

The first terms in eq. (1) have not received the same scrutiny as the last terms. We suspect this84

has more to do with the ubiquity of the logistic model than careful evaluation of its application here.85

To explore this, we relax the assumption of logistic growth—the assumption that the difference be-86

tween per capita births and deaths linearly decreases as density increases. We relax this assumption87

by modeling per capita growth rates using the θ-logistic model. This causes the per capita growth88

rate to be a decelerating function of density if the exponent (θ) is < 1 and an accelerating function89

if it is > 1 (Fig. 1). An exponent of 0 yields a density independent model and an exponent of 190

recovers the logistic model. We write each density dependent term, fi (Ni), as −αiNθi :91

1

N1

dN1

dt
= r1 − α1N

θ1
1 + β1N2

1

N2

dN2

dt
= r2 − α2N

θ2
2 + β2N1.

(2)92

93

Our main experiment involved assessing stability of eq. (2) by modifying the four types of in-94

traspecific density dependence (density independent, decelerating, linear, accelerating) in a model95

of mutualism with a linear functional response. Additionally, in the Supplementary Material, we96

(1) modeled per capita birth and death rates as separate nonlinear functions, each with their own97

exponent, (2) considered when exponents are different between the two populations, and (3) used98

a saturating functional response instead of a linear one using the procedures described in the re-99
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mainder of this section. A combination of analytical, numerical, and graphical techniques were100

used to assess the behavior of eq. (2). Specifically, we (i) found equilibria and (ii) determined the101

behavior around each equilibrium using local stability analysis. When analytical solutions were not102

possible (i.e., θi 6= 0 or 1), we solved for stable equilibria numerically using the Livermore Solver103

for Ordinary Differential Equations, Automatic (LSODA) (Hindmarsh, 1983; Petzold, 1983) and104

solved for unstable equilibria using Newton’s method. LSODA is an integrator that was used be-105

cause of its generality and ability to automatically handle stiff and non-stiff initial value problems,106

which were properties of our models. Newton’s method is an iterative root-finding algorithm we107

used to find unstable equilibria to a precision of 10−15, across state-space, from Ni = 0–10100 by108

orders of 10. Analyses were conducted in the R language and environment (R Core Team, 2016),109

with LSODA implemented in the deSolve package (Soetaert et al., 2010; Soetaert, 2010) and New-110

ton’s method in the rootSolve package (Soetaert and Herman, 2009; Soetaert, 2009). Graphical111

analyses were conducted using a modified version of the R package phaseR (Grayling, 2014). Specif-112

ically, phase plots were created, using direction fields and zero-growth isoclines (i.e., nullclines)113

to corroborate and visualize our numerical findings. Code to run our analyses can be found at114

https://github.com/dispersing/Mutualism-NonlinearDensityDependence.115

Parameter values for numerical analyses focused on the type of nonlinear per capita intraspecific116

density dependence (i.e., θi) and the strength of mutualism (i.e., βi). For both of these types of117

parameters, we considered values ranging from 10−2–102. The other parameter values (ri and αi) did118

not qualitatively affect the model behavior in terms of number or stability of equilibria (C. Moore,119

unpublished results), so we do not discuss their effects in detail.120

3. Results121

General results. For all analyses with linear functional responses we found between 3 and 5 non-122

negative equilibrium population sizes (Fig. 2). Analytically, we found that (0,0) was always an123

equilibrium and always unstable. Further, there were always two boundary equilibria (N1 > 0, 0)124

and (0, N2 > 0), both of which were saddle nodes. The instability of the trivial and boundary125

equilibria means that populations always grow when rare, as expected. Numerically, we found that126

in cases where interior equilibria were present (N∗
1 > 0, N∗

2 > 0), there were either one or two points.127

In cases where there was only one equilibrium point, it was always stable; in cases where there were128

two equilibrium points, the point proximal to the origin (0,0) was always stable and the point distal129

to the origin was a saddle node. Fig. 3 shows the six qualitatively different types of phase planes130
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found in this study: (i) a trivial density independent case θi = 0; (ii & iii) unstable and stable131

configurations when intraspecific density dependence was decelerating, 0 < θi < 1; (iv & v) unstable132

and stable configurations when intraspecific density dependence was linear, θi = 1; and (vi) a stable133

configuration when intraspecific density dependence was accelerating, θi > 1.134

In general, in the absence of mutualism, decelerating intraspecific density dependence increased135

both species’ densities at equilibrium (βi = 0 plane in Fig. 4, left panel). Oppositely, accelerating136

intraspecific density dependence decreased the equilibrium densities. Strong mutualism (high βi)137

destabilized populations with decelerating intraspecific density dependence, but populations with138

accelerating intraspecific density dependence were always stable (Fig. 4, center panel; note that only139

stable equilibria are shown, so missing portions of the surface at high βi and low θi denote loss of140

stability; see also Supplemental Material, section 2). Further, when a stable interior equilibrium141

was present, adding mutualism to populations with decelerating intraspecific density dependence142

generated a larger benefit of mutualism than with accelerating intraspecific density dependence143

(Fig. 4, right panel).144

Decelerating density dependence, 0 < θi < 1. When 0 < θi < 1, we found that there were 1–2145

interior equilibria (3–5 total equilibria), depending on the strength of mutualism. In the absence146

of mutualism, the interior equilibrium (and consequently the boundary equilibria by setting either147

coordinate to 0) is at148 ((
r1
α1

)θ−1
1

,

(
r2
α2

)θ−1
2

)
. (3)

Notice the θ−1
i exponent. In these cases of decelerating density dependence, as θi decreases from 1,149

the greatest change in growth rate occurs at lower densities (Fig. 1). Furthermore, the equilibrium150

density in the absence of mutualism grows larger as θi decreases.151

Adding mutualism to populations with decelerating density dependence changed the dynamics152

in either of two ways: (i) it destabilized the populations resulting in unbounded population growth153

(Fig. 3, top-center panel) or (ii) it created both a stable and saddle node (Fig. 3, top-right panel).154

For very small values of θi, populations were always unstable with mutualism added (i.e., βi > 0).155

As decelerating density dependence became more linear (i.e., as θi → 1), however, weak mutualism156

(small values of βi) resulted in an alternative configuration in which zero-growth isoclines crossed157

twice. Of these two equilibria, the stable equilibrium point was always larger than in the absence158

of mutualism (βi = 0) and the saddle node was always larger than the stable point. For the same159

values of θi with stable and saddle nodes, increasing βi increased the stable point and decreased160
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the saddle point. Continuing to increase βi ultimately resulted in a saddle-node bifurcation, beyond161

which all configurations were unstable, illustrated as the light-dark gray boundary in Fig. 2.162

Linear density dependence, θi = 1. When θi = 1, there were either 0 or 1 interior equilibrium163

configurations (3 or 4 total equilibria) that respectively corresponded to the absence of presence of164

an interior stable point. Linear density dependence is equivalent to the most traditional formulation165

of mutualism, the Lotka-Volterra competition model with the sign reversed of the effect of another166

population. Although the behavior of this model is well-known, we summarize its properties briefly167

here for ease of comparison. In the absence of mutualism, the interior equilibrium (and consequently168

the boundary equilibria by setting either value to 0) is at169

(
r1
α1

,
r2
α2

)
. (4)

The slope of the zero-growth isocline as it increases from the boundary equilibrium is
βiNj

αi
,170

and zero-growth isoclines form a stable interior equilibrium point anytime βiβj < αiαj . This is171

equivalent to the more traditional notation, αijαji < αiiαjj found in ecology texts (e.g., May, 1981;172

DeAngelis et al., 1986; Kot, 2001). The location of the stable interior equilibrium point is173

(
r1
α1

+
β1r1(β1 + α1)

α2
1(α1 − β2

1)
,
r2
α2

+
β2r2(β2 + α2)

α2
2(α2 − β2

2)

)
(5)

Accelerating density dependence, θi > 1. When θi > 1, there was always one interior equilibrium (4174

total equilibria), irrespective of the strength of mutualism (Figs. 2, 4). In the absence of mutualism,175

the interior equilibrium is again given by (3). Again, note the θ−1
i in the exponent. In these cases of176

accelerating density dependence, as θi increase from 1, the greatest change in growth rate occurs at177

higher densities (Fig. 1). Furthermore, the equilibrium point in the absence of mutualism decreases178

as θi increased (Fig. 4, left panel). With mutualism (βi > 0), in addition to always being stable, the179

benefit decreased as θi increased.180

Supplementary Material: Births and deaths as separate processes, interspecific differences in in-181

traspecific density dependence, and saturating functional response. Assuming per capita birth and182

death rates were independent processes, we modeled them as separate nonlinear functions. Our183

main finding was that as long as one of the exponents was accelerating, the interior equilibrium184

point would always be stable. We found no qualitatively new model behaviors when we allowed the185

two species to have differently shaped intraspecific density dependent functions. Notably, the pres-186
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ence of a single, stable interior equilibrium point is possible as long as either species has accelerating187

density dependence. We also replaced the linear functional response in eq. (2) with a saturating188

functional response, finding that the saturating function would always stabilize the interior equilib-189

rium point, but with less mutualistic benefit (the difference in density in the absence and presence190

of a mutualist partner).191

4. Discussion192

Lotka-Volterra models of mutualism assume that intraspecific density linearly decreases per193

capita growth rates. Other population models of mutualism have inherited this assumption and194

have generally concluded that 2-species models of mutualism are inherently unstable. In real popu-195

lations, however, not only do nonlinear per capita growth rates exist, but they seem to be the rule196

rather than the exception (Stubbs, 1977; Fowler, 1981; Sibly et al., 2005). In this study, we exam-197

ined how relaxing the assumption of linearly dependent per capita growth rates affected stability198

and mutualistic benefit in these models. We found that when per capita growth rates decrease most199

strongly at low densities and are decelerating, mutualism usually destabilizes the model. In contrast,200

when growth rates decrease most strongly at high densities and are accelerating, models are always201

stable with mutualism. Despite the tendency for mutualism to destabilize the 2-species equilibrium202

with decelerating density dependence, the benefit was greater compared to stabilizing, accelerating203

density dependence.204

Our paper presents an alternative way that the classic Lotka-Volterra mutualism model can be205

modified to stabilize mutualism. Simply put, we added a layer of biological realism (nonlinear in-206

traspecific density dependence) to the Lotka-Volterra mutualism model and we found informative207

ways that within-species properties could stabilize mutualism, even with a linear functional response208

modeling the interaction between species. Support for decelerating and accelerating density depen-209

dence has largely been based on large datasets from observational studies (e.g., 1750 species of210

mammals, birds, fish, and insects in Sibly et al., 2005). Further work to determine whether species211

that engage in mutualism are more likely to have accelerating intraspecific density dependence,212

which we found to be stabilizing, would be useful.213

From an ecological perspective, species’ nonlinear responses to intraspecific density arise from214

differences in ecological habits or population structure. Sedentary organisms, like many plants for215

example, exhibit a more-or-less-constant death rate at low-to-intermediate population densities,216

and then at higher densities death rates tend to rapidly increase (as in scramble competition or217
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self-thinning, Yoda et al., 1963) or increase linearly (as in contest competition, Crawley and Ross,218

1990), resulting in accelerating density dependence. Subsets of populations, such as age or stage,219

can experience different vital rates and generate nonlinear density dependence for populations as a220

whole. In African ungulates, for example, increases in density led to increases in adult mortality,221

while juvenile mortality remained relatively constant at all population densities (Owen-Smith, 2006).222

In fact, many mutualisms occur between species with structured populations, so our study may lend223

insights into these interactions. As examples, many plant-mycorrhizal associations are mutualistic224

in the seedling stage (Grime et al., 1987; Jones and Smith, 2004; van der Heijden and Horton, 2009)225

and adult plants engage in mutualistic interactions with pollinators when they reach a reproductive226

stage.227

From an evolutionary perspective, a long-standing theory about why we see nonlinear density228

dependence comes from evolutionary theories of life-history strategies; i.e., r- and K-selected species229

(Gilpin and Ayala, 1973; Stubbs, 1977; Fowler, 1981), including θ-selection (Gilpin et al., 1976).230

Setting aside historical controversies, this body of theory has generated very useful quantities like231

the specific growth rate of a population. The most general prediction made is that populations with232

a high specific growth rate (commonly referred to as r-selected) should exhibit decelerating density233

dependence since their survival probability drops off precipitously at relatively low densities. On the234

other hand, populations with a low specific growth rate (commonly referred to as K-selected) should235

exhibit accelerating density dependence since their survival probabilities drop off at relatively high236

densities (see Figs. 1, 2 in Fowler, 1981). Based on our study we suspect that different life-history237

strategies may both be a result of and a causative factor in the evolution of mutualistic interactions,238

and further work should examine how engaging in a mutualistic interaction should change the shape239

of density dependence and how changing density dependence affects a species ability to engage in a240

mutualistic interaction.241

In conclusion, the linear functional response has historically been the scapegoat for theoretical242

studies of the population dynamics of mutualism. For example, the eminent Lord Robert May (1976)243

writes:244

. . . the simple, quadratically nonlinear, Lotka-Volterra models . . . are inadequate for even245

a first discussion of mutualism, as they tend to lead to silly solutions in which both246

populations undergo unbounded exponential growth, in an orgy of mutual benefaction.247

Minimally realistic models for two mutualists must allow for saturation in the magnitude248

of at least one of the reciprocal benefits.249
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In this paper, we build on May’s idea of modifying the Lotka-Volterra mutualism model; not through250

the saturation of benefits, but through intraspecific density dependence. We found that biologically-251

realistic nonlinear density dependence significantly changes the dynamics of the original Lotka-252

Volterra mutualism model, where we found that accelerating density dependence always stabilized253

our models but with weaker mutualistic benefit relative to decelerating density dependence. We hope254

that this study will further stimulate ecologists to consider all simplifying of assumptions of even the255

most basic models and also to investigate more deeply into the relationships between intraspecific256

density, interspecific density, and population growth to gain a better grasp on mutualistic population257

dynamics.258
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Figure 1: Values of θi used in eq. (2) to represent nonlinear per capita growth rates before accounting for the effects
of mutualism. The figure shows how the per capita growth rates change as a function of intraspecific density, Ni.
The actual values used for numerical analyses are presented in light gray, with highlighted examples of decelerating
intraspecific density dependence (θi = 1/10; short dashes, ), linear intraspecific density dependence (θi = 1;
medium dashes, ), and accelerating intraspecific density dependence (θi = 10; long dashes, ).
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Figure 2: Number of equilibrium points (shades of gray) across all values of intraspecific density dependence (θi)
and strength of mutualism (βi), while holding the remaining parameters constant at ri = 4, αi = 2. Across all
analyses, there were always between 1 and 2 interior equilibria (3 and 5 total equilibria, including the trivial and
boundary equilibria). The light-gray regions corresponds to unstable configurations where no interior equilibrium
existed, the medium-gray regions correspond to stable configurations where one stable interior equilibrium existed,
and the dark-gray regions correspond to areas with two interior equilibria, one stable at low densities and one saddle
at high densities.
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Figure 3: Phase planes representing the qualitative dynamics of 2-species mutualistic interactions for different models
of per capita intraspecific density dependence. Each panel shows the densities of N1 and N2 on the x- and y-axes.
Within each panel, zero-growth isoclines (nullclines) are shown for N1 (red) and N2 (blue): (i) when there is no
mutualism (βi = 0) as solid, light lines ( or ) and (ii) when mutualism is present (βi > 0) as dashed lines
( or ). Arrows within panels show the qualitative direction vectors for N1 (red), N2 (blue), and together
(black) for all changes in direction for each phase plane. Points within panels represent unstable (white), stable
(black), or saddle nodes (gray). The trivial intraspecific density independent result (θi = 0) is shown in the top-left
panel, the two results of decelerating intraspecific density dependence (0 < θi < 1) are shown in the top-center and
-right panels, linear intraspecific density dependence (θi = 1) is shown in the bottom-left and -center panels, and
accelerating intraspecific density dependence (θi > 1) is shown in the bottom-right panel.
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Figure 4: For model (2), nonlinear per capita growth rates with a linear functional response of mutualism, the location
of the interior equilibrium in the absence of mutualism (βi = 0, left), stable interior equilibrium with mutualism
(center), and the benefit of mutualism as the difference between the two (right). The locations of equilibria were

identified as the Euclidean distance from the origin,
√

(N∗
i )2 + (N∗

j )2, for identical parameters for each species:

ri = 4, αi = 2. Each panel shows the aforementioned response on the vertical axis, the type of intraspecific density
dependence (θi from 10−2–102) on the left horizontal axis, and the strength of mutualism (βi from 10−2–102) on the
right horizontal axis. Additionally, each panel shows the relative values of each surface (colors), the absolute values
of each surface (same axes across panels), and contour lines at the base of each plot show changes in the surface.
Further, in areas where there is no surface, there was no stable interior equilibrium when βi 6= 0 (center). In the left
panel without mutualism, there were stable interior equilibria across all values of θi, but we removed the same part
of the surface to aid comparison across panels.
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