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Abstract 1 

A detailed understanding of the genome-wide variability of single-nucleotide germline mutation rates is 2 

essential to studying human genome evolution. Here we use ~36 million singleton variants from 3,560 3 

whole-genome sequences to infer fine-scale patterns of mutation rate heterogeneity. Mutability is jointly 4 

affected by adjacent nucleotide context and diverse genomic features of the surrounding region, 5 

including histone modifications, replication timing, and recombination rate, sometimes suggesting 6 

specific mutagenic mechanisms. Remarkably, GC content, DNase hypersensitivity, CpG islands, and 7 

H3K36 trimethylation are associated with both increased and decreased mutation rates depending on 8 

nucleotide context. We validate these estimated effects in an independent dataset of ~46,000 de novo 9 

mutations, and confirm our estimates are more accurate than previously published estimates based on 10 

ancestrally older variants without considering genomic features. Our results thus provide the most 11 

refined portrait to date of the factors contributing to genome-wide variability of the human germline 12 

mutation rate.  13 
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Germline mutagenesis is a fundamental biological process, and a major source of all heritable genetic 14 

variation (see Segurel et al.1 for a review). Mutation rate estimates are widely used in genomics 15 

research to calibrate variant calling algorithms2, infer demographic history3, identify recent patterns of 16 

genome evolution4, and interpret clinical sequencing data to prioritize likely pathogenic mutations5. 17 

Although mutation is an inherently stochastic process, the distribution of mutations in the human 18 

genome is not uniform and is correlated with genomic and epigenomic features including local 19 

sequence context6,7, recombination rate8, and replication timing9. Hence, there is considerable interest 20 

in studying the regional variation and context dependency of mutation rates to understand the basic 21 

biology of mutational processes and to build accurate predictive models of this variability.  22 

The gold standard for studying the germline mutation rate in humans is direct observation of de novo 23 

mutations from family-based whole-genome sequencing (WGS) data9–12. These studies have produced 24 

accurate estimates of the genome-wide average mutation rate (~1 − 1.5 ×  10−8 mutations per base 25 

pair per generation), and uncovered the aforementioned mutagenic effects of genomic features. 26 

However, given the inherently low germline mutation rate, family-based WGS studies detect only 40-80 27 

de novo mutations for each trio sequenced9,10,12. Due to the sparsity of these observed mutations, it is 28 

difficult to accumulate a large dataset to precisely estimate mutation rates and spectrum at a fine scale 29 

and identify factors that explain genome-wide variability in mutation rates. 30 

Other data sources for studying mutation patterns include between-species substitutions or within-31 

species polymorphisms7,8,13–16. However, because these variants arose hundreds or thousands of 32 

generations ago, their distribution patterns along the genome have been influenced by the subsequent 33 

long-term actions of many evolutionary forces, such as natural selection and GC-biased gene 34 

conversion (gBGC), a process in which recombination-induced mismatches are preferentially repaired 35 

to G/C base pairs, resulting in an overabundance of common A/T-to-G/C variants11,17,18. To minimize 36 

the confounding effects of selection, studies that estimated mutation rates from these data tended to 37 

focus on intergenic non-coding regions of the genome, which are less often the target of selective 38 
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pressure. Nevertheless, even putatively neutral loci may be under some degree of selection19–21, and 39 

are susceptible to the confounding effects of gBGC. Consequently, these processes bias the resulting 40 

distribution of variation, making it difficult to determine which trends are attributable to the initial 41 

mutation processes, and which to subsequent evolutionary factors. A further complication of estimating 42 

mutation rates with common variants is that the endogenous mutation mechanisms themselves have 43 

likely evolved over time22, so patterns of variation observed among these data may not necessarily 44 

reflect the same processes that are ongoing in the present-day population.  45 

We therefore adopt an approach that relies exclusively on extremely rare variants (ERVs) to study 46 

innate mutation patterns across the genome. Here we exploit a collection of ~35.6 million singleton 47 

variants discovered in 3,560 sequenced individuals from the BRIDGES study of bipolar disorder 48 

(corresponding to a minor allele frequency of 1/7120=0.0001404 in our sample). Compared to between-49 

species substitutions or common variants in humans, these ERVs are extremely young on the 50 

evolutionary timescale (for a comparably-sized European sample, Fu et al. (2012) estimated the 51 

expected age of a singleton to be 1,244 years23), making them much less likely to be affected by 52 

evolutionary processes other than random genetic drift1,11,17,24. ERVs thus represent a relatively 53 

unbiased sample of recent mutations and are far more numerous than de novo mutations collected in 54 

family-based WGS studies. 55 

Our results show that mutation rate heterogeneity is primarily dependent on the sequence context of 56 

adjacent nucleotides, confirming the findings of previous studies7,9,25. However, we demonstrate that 57 

our ERV-derived mutation rate estimates can differ substantially from estimates based on ancestrally 58 

older variants. Evaluating these differences in an independent dataset of ~46,000 de novo mutations, 59 

collected from two published family-based WGS studies9,12, we find that ERV-derived estimates yield a 60 

significantly more accurate portrait of present-day germline mutation rate heterogeneity. We further 61 

refine these estimates of context-dependent mutability by systematically estimating how mutation rates 62 

of different sequence motifs may be influenced by genomic features in wider surrounding regions, 63 
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including replication timing, recombination rate, and histone modifications. Remarkably, we find that the 64 

direction of effect for certain genomic features often depends on the actual sequence motif surrounding 65 

the mutated site, underscoring the importance of jointly analyzing sequence context and genomic 66 

features. Accounting for these granular effects of the genomic landscape provides even greater 67 

accuracy in describing patterns of variation among true de novo mutations. Our results suggest that 68 

trends of variation throughout the genome are shaped by a diverse array of context-dependent 69 

mutation pathways, many of which have yet to be fully characterized. This high-resolution map of 70 

mutation rate estimates, along with estimates of the mutagenic effects of genomic features, is available 71 

to the community as a resource to facilitate further study of germline mutation rate heterogeneity and its 72 

implications for genetic evolution and disease.  73 
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Results 74 

ERV data source and quality control 75 

In the Bipolar Research in Deep Genome and Epigenome Sequencing (BRIDGES) study, we 76 

sequenced the genomes of 3,716 unrelated individuals of European ancestry to an average diploid-77 

genome coverage of 9.6x (Methods). We identified and removed 156 samples which appeared to be 78 

technical outliers, resulting in a final call set of 35,574,417 autosomal ERVs from 3560 individuals 79 

(Methods). Due to the relatively low coverage of our sample, we likely failed to detect millions more 80 

ERVs—a recent study26 estimated the discovery rate for singletons in a sample of 4,000 whole 81 

genomes at 10x coverage to be ~65-85%. Quality control measures indicate that the ERVs we detected 82 

are high quality, with a Transition/Transversion (Ts/Tv) ratio of 2.00, within the commonly observed 83 

range for single nucleotide variants (SNVs) from WGS data27 (Supplementary Table 1). Application of 84 

the 1000G strict accessibility mask28 (which delineates the most uniquely mappable regions of the 85 

genome) or a more stringent mapping quality score filter (MQ>56) did not appreciably change the Ts/Tv 86 

ratio (1.97-2.01) (Supplementary Table 1). We estimate fewer than 3% of the 35,574,417 ERVs are 87 

false positives (Supplementary Note), similar to the validated singleton error rates of other sequencing 88 

studies using a similar technology28–30. In addition, we present evidence that erroneous calls among the 89 

ERVs are unlikely to be biased by motif-specific genotyping error, mapping error, or mispolarization 90 

(Supplementary Note). 91 

Context-dependent variability in mutation rates 92 

Prior studies have found that the nucleotides surrounding a mutated site are an important predictor of 93 

variability in mutation rates across the genome7,11,25. The most detailed such analysis to date, by 94 

Aggarwala and Voight7, considered the nucleotides up to 3 positions upstream and downstream from a 95 

variant site (i.e., a 7-mer sequence context), and estimated substitution probabilities per heptameric 96 

motif using 7,051,667 intergenic SNVs observed in 379 Europeans from phase 1 of the 1000 Genomes 97 

Project (hereafter referred to as the “1000G mutation rate estimates”). These estimates, though 98 
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demonstrably more refined than mutation rates estimated in a 3-mer or 5-mer sequence context, have 99 

the potential problem of being derived from variants across the entire frequency spectrum. Among the 100 

1000G SNVs used to estimate these rates, singletons and doubletons account for only ~25%7, while 101 

the majority of variants occur at a higher frequency and thus likely arose hundreds or thousands of 102 

generations in the past. Over such a long time span, variants affected by cryptic selection, gBGC, or 103 

other evolutionary processes are more likely to have been fixed or disappeared, altering the distribution 104 

of observable variation. 105 

Because ERVs are assumed to have occurred very recently in human history, we asked if ERV-based 106 

mutation rate estimates differed from the 1000G estimates, and if so, whether our revised estimation 107 

strategy would lead to more accurate representation of the basal mutation processes. To answer these 108 

questions, we first used the BRIDGES ERVs to estimate mutation rates according to mutation type 109 

(e.g., A>C, A>G, and so on) and local sequence context, considering the bases up to 3 positions 110 

upstream and downstream from each variant site (Methods). We refer to a mutation of a given type 111 

centered at a given sequence motif as a “mutation subtype” (e.g., C[A>C]G is a 3-mer subtype). Note 112 

that we are not estimating an absolute per-site, per generation mutation rate, but rather the relative 113 

fraction of each subtype containing an ERV within the BRIDGES data. We refer to rates calculated in 114 

this manner as “relative mutation rates,” and estimated these rates for all possible 1-, 3-, 5-, or 7-mer 115 

subtypes (Supplementary Tables 2a-2d).  116 
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a. 
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Figure 1 (a) Heatmap of estimated relative mutation rates for all possible for A>G and C>T transition 
subtypes, up to a 7-mer resolution (High-resolution heatmaps for all possible subtypes are included in 
Supplementary Fig. 1). The leftmost panels show the relative mutation rates for the 1-mer types, and 
the subsequent panels to the right show these rates stratified by increasingly broader sequence 
context. Each 4x4 grid delineates a set of 16 subtypes, defined by the upstream sequence (y-axis) and 
downstream sequence (x-axis) from the central (mutated) nucleotide. Boxed regions indicate motifs 
previously identified by Aggarwala and Voight as hypermutable (pink) or hypomutable (green), relative 
to their similar subtypes. (b) Zoomed-in view showing hypermutable NTT[A>T]AAA subtypes relative to 
other 7-mer A>T subtypes.  
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ERV-derived relative mutation rate estimates for the six basic 1-mer mutation types (Supplementary 117 

Table 2a) reflect the expected higher mutability for transitions (A>G and C>T) relative to transversions 118 

(A>C, A>T, C>A, and C>G types)1. Splitting each mutation type into more granular subtypes reveals 119 

how additional patterns of mutation rate heterogeneity emerge as broader sequence contexts are 120 

incorporated (Fig. 1; Supplementary Fig. 1). Our ERV-based relative mutation rate estimates confirm 121 

nearly all of the hypo- or hypermutable motifs previously reported by Aggarwala and Voight7 and 122 

Panchin et al.13. A subset of these are highlighted in Fig. 1a, including lower relative mutation rates for 123 

NNN[C>T]GCG subtypes and A>G subtypes in motifs containing runs of 4 or more A bases (shown in 124 

green boxes), and higher relative mutation rates for N[A>G]T, N[C>T]G, and CA[A>G]TN subtypes 125 

(pink boxes). A particularly notable example of context-dependent hypermutability is the set of 126 

NTT[A>T]AAA subtypes (Fig. 1b), also described previously7. Despite A>T mutations having the lowest 127 

relative mutation rate among 1-mer types, its NTT[A>T]AAA subtypes have a >6-fold higher rate than 128 

the 1-mer A>T relative mutation rate. 129 

Overall, the 7-mer relative mutation rates estimated from the full set of BRIDGES ERVs span a >400-130 

fold range from 0.0003 (CGT[A>T]CCG) to 0.1416 (ATA[C>T]GCA). For each of the 96 3-mer 131 

subtypes, we found overwhelming evidence for heterogeneity in the relative mutation rates among their 132 

16 respective 5-mer constituents (chi-squared tests; all 𝑃 < 10−231). Further, 1522 (99%) of the 1536 5-133 

mer subtypes had significantly heterogeneous rates among their respective 7-mer constituents (chi-134 

squared tests; 𝑃 < 0.05) (Methods).  135 

Mutation signatures differ between ERVs and common polymorphisms 136 

We next compared the 7-mer relative mutation rates, estimated either from the BRIDGES ERVs or 137 

1000G intergenic SNVs, to determine if the previously reported patterns of context-dependent mutation 138 

rate heterogeneity were consistent with trends observed using ERVs. Across all 24,576 7-mer mutation 139 

types, relative mutation rates were highly correlated between the two sets of estimates (Spearman’s 140 

r=0.95; Fig. 2a). However, when stratified by mutation type, these correlations were often much weaker 141 
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(r=0.42 to 0.92; Fig. 2b). At the individual 7-mer subtype level, discrepancies between the estimated 142 

rates were even more pronounced, with 13% of 7-mer subtypes showing differences of 50% or more 143 

between the two estimates after normalization. This discordance did not appear to occur randomly 144 

across subtypes, as we would expect if these differences were purely stochastic. Instead, we found that 145 

subtypes that shared similar flanking sequences often exhibited common patterns of dissimilarity in the 146 

estimated rates (Fig. 2c). For example, relative mutation rates for C>A and C>G transversions at CpG 147 

dinucleotides were respectively 26% and 39% higher in the 1000G estimates compared to the ERV-148 

derived estimates (Fig. 2c; Supplementary Fig. 2). Differences in relative mutation rate estimates for 149 

A>C and A>G subtypes were also affected by sequence context: we found that the 1000G-derived 150 

estimates tended to be significantly higher than ERV-derived estimates among high-GC motifs (4-6 G/C 151 

bases in the +/-3bp flanking sequence) compared to low-GC motifs (3 or fewer flanking G/C bases) (t-152 

tests; 𝑃 < 8.0 ×  10−30) (Supplementary Fig. 2; Supplementary Table 3). This observation is 153 

consistent with the known correlation between GC content and biased gene conversion18,31, though 154 

other evolutionary processes may also have contributed. 155 

We considered the possibility that these patterns of dissimilarity were simply due to technical 156 

differences between the BRIDGES and 1000G samples (e.g., sequencing platform, variant calling and 157 

QC methods, sample demography). To address this concern, we estimated relative mutation rates 158 

using 12,088,037 variants with a minor allele count ≥10 (MAC10+) in the BRIDGES sample and 159 

compared these estimates to the ERV-derived and 1000G-derived estimates (Supplementary Note). 160 

Importantly, the MAC10+ and 1000G-derived relative mutation rate estimates were more similar to 161 

each other both across all types combined (r=0.98; Supplementary Fig. 3a) and within each mutation 162 

type (r=0.87-0.98; Supplementary Fig. 3b), whereas differences between the MAC10+ and ERV-163 

derived estimates agreed with what we observed between the 1000G and ERV-derived estimates 164 

(overall: r=0.95; Supplementary Fig. 4a; type-specific: r=0.45-0.95; Supplementary Fig. 4b). We also 165 

found the same sequence-specific patterns of discordance between the ERV and MAC10+ estimates 166 

as we did when comparing the ERV and 1000G estimates, with MAC10+ data showing higher rates of 167 
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CpG transversions and A>G/A>C mutations in GC-rich motifs (Supplementary Fig. 4c), but between 168 

the MAC10+ and 1000G estimates, these differences were absent or much weaker (Supplementary 169 

Fig. 3c). 170 

Collectively, these results suggest that the dissimilarities between ERV-based and common SNV-based 171 

relative mutation rate estimates are driven not by differences in the data source or analysis pipeline, but 172 

by differences in the allele frequencies of the variants used to estimate the rates. There are two 173 

plausible explanations for these differences: either 1) the ancestrally older variants included in the 174 

1000G data are under the influence of evolutionary processes that have altered the relative frequencies 175 

among subtypes, or 2) even after our careful data cleaning and filtering, certain sequence motifs are 176 

enriched for false positive or false negative sequencing errors in the BRIDGES ERVs.  177 

These two scenarios can be tested by comparing how well each set of relative mutation rate estimates 178 

describes the observed distribution of true de novo mutations. We reasoned that if biased sequencing 179 

errors have occurred, such spurious effects would occur more frequently among BRIDGES ERVs, as 180 

errors would need to be present in multiple individuals to manifest among the common variants 181 

included in the 1000G data. In such a scenario, we would expect the 1000G estimates to explain the 182 

distribution of true de novo mutations more accurately. In contrast, if the relative mutation rate 183 

estimates have been influenced by evolutionary processes, such biases should have a stronger effect 184 

on the 1000G estimates and the ERV-derived estimates would provide a better fit.  185 
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a.                                                                 b. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. 
 

Figure 2 (a) Relationship between 7-mer relative mutation rates estimated among BRIDGES ERVs (x-
axis) and the 1000G intergenic SNVs (y-axis) on a log-log scale. We note that the strength of this 
correlation is driven by hypermutable CpG>TpG transitions. (b) Type-specific 2D-density plots, as 
situated in the scatterplot of (a). The dashed line indicates the expected relationship if no bias is 
present. (c) Heatmap showing ratio between the relative mutation rates for each 7-mer mutation 
subtype. Subtypes with higher rates among the 1000G SNVs (relative to ERV-derived rates) are 
shaded gold, and subtypes with lower rates in the 1000G SNVs are shaded green. Relative differences 
are truncated at 2 and 0.5, as only 2.5% of subtypes showed differences beyond this range.  
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Distribution of de novo mutations is predicted more accurately by ERVs than common variants 186 

We implemented this validation strategy by comparing how accurately different sets of relative mutation 187 

rate estimates predicted the incidence of 46,813 bona fide de novo mutations collected from two family-188 

based WGS datasets: The Genomes of the Netherlands (GoNL) project9 and the Inova Translational 189 

Medicine Institute Preterm Birth Study12 (ITMI) (Methods; Supplementary Fig. 5). We set these de 190 

novo mutations against a randomly-selected background of 1 million non-mutated sites, then applied 191 

logistic regression models where we used each set of relative mutation rate estimates (either ERV-192 

based estimates at varying K-mer lengths, or 1000G-based 7-mer estimates) to predict the log-odds of 193 

observing a de novo mutation at each of the 1,046,813 sites. We evaluated the performance of each 194 

model by calculating two likelihood-based goodness-of-fit statistics: the Akaike information criterion 195 

(AIC), and Nagelkerke’s pseudo- R2 (Methods). 196 

We first compared the AIC of prediction models based on either the 1-mer, 3-mer, 5-mer, or 7-mer 197 

ERV-based relative mutation rate estimates to confirm whether broader motifs truly improve the ability 198 

to predict de novo mutations. As shown in Table 1, goodness-of-fit improved consistently with 199 

consideration for longer motifs, with the ERV-based 7-mer model producing the best fit overall. To 200 

assess if our results are affected by mapping artifacts, we also re-estimated the ERV-based 7-mer 201 

relative mutation rates after applying the 1000 Genomes strict accessibility mask (Supplementary 202 

Note). We note that the masked and unmasked 7-mer rates are highly concordant, and most 203 

discrepancies appear to be an artifact of sampling variation due to fewer ERVs in the masked data 204 

(Supplementary Fig. 6). When applied to predict the de novo mutations, these masked rates 205 

decreased model performance slightly compared to the unmasked 7-mer model (Table 1), suggesting 206 

that reducing the number of observed ERVs has a larger effect on the precision of our estimates than 207 

any motif-specific calling error in hard-to-map regions of the genome. These trends did not change 208 

when using fewer or more non-mutated sites (Supplementary Table 4) nor when applied exclusively to 209 

either the GoNL or ITMI mutations (Supplementary Table 5), indicating the regression was not merely 210 

fitting to cryptic errors in the validation data. We next analyzed each mutation type separately to 211 
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determine if the same trend of improved goodness-of-fit using longer K-mers was true for different 212 

mutation types. In each of these type-specific validation models, the ERV-based 7-mer relative 213 

mutation rate estimates provided a significantly better fit than estimates in smaller K-mers 214 

(Supplementary Table 6). 215 

We then compared the goodness-of-fit of logistic regression models using either BRIDGES ERV-based 216 

or 1000G intergenic SNV-based 7-mer relative mutation rate estimates. Across all types combined, the 217 

1000G 7-mer model predicted the de novo mutations less accurately than all ERV-based models 218 

except the baseline 1-mer model (Table 1). Considering different mutation types (Supplementary 219 

Table 6), we observe that for A>C and A>G mutations, the 1000G 7-mer rates provide a worse fit than 220 

ERV-derived 5-mer rates; for A>T mutations the 1000G fit is even worse than ERV-derived 3-mer rates. 221 

For all C>N mutations except CpG>GpG transversions, the 1000G rates provides a better fit than ERV-222 

derived 5-mer rates; for CpG>GpG mutations the 1000G rates again fit slightly worse than ERV-derived 223 

3-mer rates. These results thus support a scenario in which ancestrally older variants have been 224 

influenced by evolutionary biases, and do not reflect patterns of mutation rate heterogeneity observed 225 

among true de novo mutations as accurately as ERVs.  226 

Table 1 Goodness-of-fit statistics for mutation rate estimates applied to de novo testing data 

Mutation rate estimation strategy 
AIC ΔAIC†  

AIC 
rank* 

Nagelkerke’s 
R2 Subtype 

length 
Study Variant type 

1-mers BRIDGES ERVs 353,896 0 7 0.088 
3-mers BRIDGES ERVs 343,716 -10,180 5 0.118 
5-mers BRIDGES ERVs 341,778 -12,118 3 0.124 
7-mers BRIDGES ERVs 341,295 -12,601 1 0.126 

7-mers BRIDGES 
ERVs 

(passing 1000G strict mask) 
341,484 -12,412 2 0.125 

7-mers BRIDGES MAC10+ 342,886 -11,010 4 0.121 
7-mers 1000G Intergenic SNVs7 344,003 -9,893 6 0.118 

†difference in AIC from the baseline BRIDGES 1-mer model 
*lower AIC rank indicates better model performance 

227 
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Effects of genomic features vary by mutation type and sequence context 228 

Family-based sequencing studies have been instrumental in identifying genomic features that are 229 

associated with variation in the germline mutation rate9,11,25. However, these studies have only 230 

described the marginal effects of features on the entire spectrum of mutation, and have not assessed if 231 

the effect of a genomic feature might vary according to the local sequence context. To determine how 232 

the distribution of recent mutations varies with respect to the genomic landscape, we selected 14 233 

genomic features (Supplementary Table 7) and estimated the joint effects of these features on the 234 

mutation rate of each 7-mer subtype using multiple logistic regression, where the dependent variable is 235 

the presence or absence of an ERV centered at a given sequence motif (Methods). Subtypes with few 236 

observed ERVs have little power to detect significant associations, so we estimated the effects of 237 

features only for the 24,396 of 24,576 (99.3%) 7-mer subtypes with at least 20 observed ERVs, 238 

resulting in 392,128 parameter estimates (Supplementary Table 8; Supplementary Fig. 7). We note 239 

that >84% of the 7-mer subtypes we evaluated contained >10 times as many ERVs as parameters 240 

estimated, so these estimates are unlikely to be an artifact of overfitting. To identify significant effects 241 

among the many associations tested, we applied a false discovery rate (FDR) cutoff of 0.05 to the p-242 

values for each feature across all subtype-specific estimates. Of the 24,396 7-mer subtypes analyzed, 243 

3,481 had at least one genomic feature significantly associated with mutability, with 6,152 significant 244 

associations among the 392,128 tests. 245 

Three features (H3K9me3 peaks, recombination rate, later replication timing) were associated with 246 

higher relative mutation rates across nearly all significantly associated 7-mer subtypes (Fig. 3a), 247 

consistent with previously reported mutagenic effects of these features: cancer studies have shown that 248 

H3K9me3 marks are one of the strongest predictors of somatic SNV density32,33, and recombination 249 

and late replication timing are both known to correlate with increased germline mutation rates8,9. In 250 

addition, four features (H3K36me3 peaks, DNase hypersensitive sites [DHS], GC content, CpG islands) 251 

were each associated with both higher and lower relative mutation rates, depending on the mutation 252 

type and, in some cases, the sequence motif. These features have been previously implicated in 253 
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variation in germline or somatic mutation rates, but only as marginal effects, not type- or subtype-254 

specific. H3K36me3 has been shown to regulate DNA mismatch repair machinery in vivo34. DNase 255 

hypersensitivity was previously reported to be associated with increased germline mutation rates25, 256 

though cancer genome studies have claimed DHS are susceptible to both increased and decreased 257 

somatic mutation rates35,36. CpG islands were associated with ~3-fold lower mutation rates in 99% 258 

(1015/1024) of CpG>TpG 7-mer subtypes, consistent with known patterns of DNA hypomethylation in 259 

CpG islands37, but are associated with higher relative mutation rates in subtypes of other types. 260 

Finally, for CpG>TpG transition subtypes, lamin-associated domains were associated with higher 261 

relative mutation rate and three histone marks (H3K4me1, H3K4me3, and H3K27ac) were associated 262 

with lower relative mutation rates (Fig. 3b). These results are consistent with published findings of 263 

correlations between these features and DNA methylation: lamin-associated domains were previously 264 

found to associate with focal DNA hypermethylation in colorectal cancer38, and H3K4me1, H3K4me3, 265 

and H3K27ac are known markers of DNA hypomethylation39–41. We also found that exons were 266 

associated with lower relative mutation rates for several CpG>TpG subtypes (Fig. 3b), which is in line 267 

with findings of lower somatic SNV density in gene-rich regions32, though it is unclear if this is also 268 

driven by DNA hypomethylation.  269 
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Figure 3 (a) Distributions of statistically significant mutagenic 
effects for 7 genomic features where associations with multiple 
mutation types were detected. For features with bidirectional 
effects, we separately plotted distributions of positive associations 
(OR > 1; above dashed line) and negative associations (OR < 1; 
below dashed line). The number of 7-mer subtypes within each 
type for which that feature is statistically significant in a positive or 
negative direction is shown above or below each distribution. 
Distributions are only shown for types with 10 or more 7-mer 
subtypes associated in the same direction. *Odds ratios for the 3 
continuously-valued features (recombination rate, replication 
timing, and GC content) indicate the change in odds of mutability 
per 10% increase in the value of that feature. †Effects in CpG 
islands are tend to be stronger than other features, so are shown 
on a wider scale. (b) Distributions of significant mutagenic effects 
for the 5 features only associated with CpG>TpG transitions. 
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Estimated effects of local genomic features predict de novo mutations 270 

We applied these 7-mer+features mutation rate estimates to predict the set of GoNL/ITMI de novo 271 

mutations, using the same evaluation framework by which we compared the performance of the 272 

estimation strategies we described earlier. Model fit statistics indicated that the estimates based on 273 

both 7-mer sequence context and genomic features describe the distribution of de novo mutations 274 

significantly better than the 7-mer-only estimates (Fig. 4). When partitioned by mutation type, we find 275 

that inclusion of genomic features improves model fit for 8 of the 9 basic mutation types. These 276 

differences tend to be weaker among transversion types, likely because there were fewer de novo 277 

mutations of these types available (Fig. 4; Supplementary Table 6). Including genomic features had 278 

the largest effect on the prediction of CpG>TpG transitions, consistent with the expected associations 279 

between certain features and DNA methylation. 280 

We also looked to verify that the subtype-specific effects of genomic features, as estimated using the 281 

BRIDGES ERVs, were also observed in actual de novo mutations. For each of the features, we 282 

identified all GoNL/ITMI de novo mutations occurring in the set of 7-mer subtypes found to be 283 

significantly associated with that feature. We then tested if the subtypes associated with a given feature 284 

contained an enrichment or depletion of de novo mutations inside versus outside of regions covered by 285 

that feature (Methods). If a feature was found to have positive effects for certain subtypes and negative 286 

effects for others, we separated subtypes by the direction of effect. As shown in Supplementary Table 287 

9, 10 of the 20 tests were statistically significant in the expected direction (chi-squared tests; 𝑃 < 0.05), 288 

confirming that many of the subtype-specific effects estimated using ERVs are operative among true de 289 

novo mutations.  290 
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Figure 4. Comparison of goodness-of-fit for different mutation rate estimation strategies, applied to 
predict the GoNL/ITMI de novo mutation data. For each mutation type and each model 𝑖, we calculated 

∆𝐴𝐼𝐶𝑖 = 𝐴𝐼𝐶𝑖 − 𝐴𝐼𝐶𝑚𝑖𝑛 as a measure of relative model performance, with lower values of ∆𝐴𝐼𝐶 
indicating better fit. ∆𝐴𝐼𝐶 is shown on the horizontal axis on an arcsinh scale. For each mutation type, 

the best-fitting model thus has a ∆𝐴𝐼𝐶 = 0. Models with ∆𝐴𝐼𝐶 < 10 (grey-shaded area) are considered 
comparable to the optimal model, whereas models with ∆𝐴𝐼𝐶 > 10 are considered to explain 
substantially less variation than the optimal model42.   
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Subtype-specific effects reveal potential mechanisms of hypermutability 291 

The fine scale variability of mutation rate captured by our approach can potentially indicate granular 292 

context-dependent mutation mechanisms in the germline. Here we describe two examples. Recent 293 

studies of various cancers revealed an elevated somatic mutation rate in transcription factor binding 294 

sites within DNase hypersensitive sites (DHS), likely caused by inhibition of nucleotide excision repair 295 

machinery36,43,44. One of the most common transcription factor binding sites in the genome is the 5’-296 

CCAAT-3’ motif, which is targeted by a family of transcription factors known as CCAAT/Enhancer 297 

Binding Proteins (CEBPs)45. Because CEBP binding sites were found to be significantly enriched for 298 

somatic mutations in multiple cancer types43, we speculated that a similar mechanism may be operative 299 

in the germline. Adjusting for other genomic features, our analysis indeed shows DHS are significantly 300 

enriched for A>G (but not A>C or A>T) ERVs at four of the 16 possible CCAATNN motifs (1.1 to 1.3-301 

fold enrichment; Wald test; 𝑃 < 2 × 10−4). Consistent with the significant effect detected using ERVs, 302 

we found that the rate of CCA[A>G]TNN de novo mutations in the GoNL/ITMI dataset was 1.7-fold 303 

higher when occurring within DHS versus non-DHS regions (1-df chi-squared test; 𝑃 < 0.0055). 304 

A second example are the previously mentioned 5’-NTTAAAA-3’ motifs, which harbor A>T mutations at 305 

a rate ~6.1-fold higher than the background (1-mer) A>T rate (Supplementary Table 2d). However, in 306 

ATTAAAA or TTTAAAA motifs occurring in DNase hypersensitive sites, the mutation rate is reduced by 307 

over 3-fold (Wald test; 𝑃 < 2.8 × 10−22). The TTAAAA hexamer is the primary insertion target for 308 

LINE-1 retrotransposons and Alu elements46, and is known to be nicked by L1 endonuclease (L1 EN) at 309 

the TpA dinucleotide, even when no retrotransposition takes place47. Moreover, the rate of L1 EN-310 

induced damage has been shown to vary according to the nucleosomal context of target motifs48, 311 

consistent with our finding that the NTT[A>T]AAA mutation rate differs in DHS. Overall, this pattern of 312 

sequence- and feature-dependent mutability suggests that L1 EN nicks are mutagenic, resulting in A>T 313 

transversions. A more detailed analysis of the potential sources behind this mutation signature is 314 

presented in the Supplementary Note.  315 
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Discussion 316 

The main motivation of our study is to understand the genome-wide variation of germline mutation rates 317 

in humans. We bring to this task two innovations: first, we take advantage of large-scale WGS data, 318 

focusing on extremely rare variants as a potentially more powerful data source than currently available 319 

collections of de novo mutations9,10,12,25 or common variants7,13. Second, building upon previous 320 

attempts to holistically model the relationship between sequence context, genomic features, and 321 

mutation rate, we estimate fine-scale mutagenic effects of multiple genomic features. Unlike previous 322 

studies, which estimated the impact of genomic features by treating all single-nucleotide mutation 323 

subtypes in aggregate25, we allow for the possibility that mutation rates of sequence motifs are 324 

differentially affected by these features.  325 

Our results not only confirm the previously reported hypermutable effects of specific sequence contexts 326 

(e.g., higher A>T mutation rates at NTTAAAA motifs) and genomic features (e.g., higher mutation rates 327 

in late-replicating regions9), but also demonstrate that feature-associated effects previously only 328 

described in somatic cells are also present in the germline (e.g., a positive association with H3K9me3 329 

peaks32). Unexpectedly, our approach identifies certain genomic features, such as H3K36me3 peaks, 330 

DNase hypersensitive sites, and CpG islands, that may act to both suppress and promote mutability 331 

depending on the type of mutation and local sequence context (Fig. 3), providing more detailed insight 332 

into how the mutation rate is modulated across the genomic landscape.  333 

We note that power to detect a given level of mutagenic effects of genomic features depends on the 334 

number of ERVs of a given 7-mer subtype: of the 6,514 significant associations, 93% were detected in 335 

7-mer subtypes with more than 731 ERVs, which is the median number of ERVs among all 7-mer 336 

subtypes. Thus, a larger dataset of ERVs will likely reveal even more cases of association, and will 337 

enable the study of mutagenic effects within longer sequence motifs, additional genomic features, and 338 

interactions or nonlinear effects of these features. Although there is strong theoretical and empirical 339 

evidence that the distribution of ERVs is largely unaffected by natural selection23,24, we acknowledge 340 
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that very strong purifying selection may have reduced the number of ERVs in highly conserved 341 

functional regions, so we may have underestimated mutation rates for these loci. We also note several 342 

of the genomic features used in our study were assayed in somatic cell lines or aggregated over 343 

multiple cell types (Supplementary Table 7). The currently available data for these features thus 344 

provides only a crude approximation of the true genomic variation in germ cells, so the effects we 345 

estimated have likely regressed towards the mean. Generating precise maps of genomic features 346 

within germ cells (and throughout the stages of gametogenesis) will be necessary to fully describe how 347 

germline mutation rates are influenced by the genomic landscape. Despite these limitations, the 348 

context-specific mutation rates and context-feature interactions reported here provide the most 349 

accurate map to date of germline mutation variation, as demonstrated by their improved ability to 350 

predict genuine de novo mutation patterns. 351 

Even without accounting for the effects of genomic features, our ERV-derived mutation rate estimates 352 

for 7-mer subtypes are consistently more accurate than those based on mostly common SNVs from 353 

1000 Genomes Project data7. Remarkably, even coarser estimates—the ERV-derived 5-mer and 3-mer 354 

rates—predict the spectrum of de novo mutations more accurately than the 1000G 7-mer estimates, 355 

demonstrating the merit of ERVs as a refined data resource for studying innate mutation patterns. This 356 

result has two important implications. First, it suggests that many high-frequency variants in presumably 357 

neutral regions of the genome likely have experienced biased evolutionary processes, such as 358 

selection and gBGC, or these variants may have arisen by past mutational processes that have shifted 359 

over time or are no longer active22. In either case, we demonstrated that the distribution of ERVs 360 

provides a more accurate appraisal of recent or ongoing mutagenic processes than common SNVs. 361 

Second, this reaffirms the high quality of ERVs in our data: the potential errors due to calling or 362 

mapping biases among these ERVs are likely weaker than the evolution-driven biases affecting the 363 

older variants.  364 
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Because the germline mutation rate is one of the most critical parameters in the study of genetic 365 

variation, we envision a wide range of applications that stand to benefit from incorporating our genome-366 

wide map of mutation rate estimates. Currently, many methods that rely on simulating “baseline” 367 

mutations, such as the pathogenicity scoring algorithm CADD49 and coalescent simulator ms50, do not 368 

account for context-dependent mutation rate differences. Likewise, clinical applications for 369 

differentiating disease-causing mutations from background variation require a precise estimate of the 370 

expected de novo mutation rate, but even the most advanced of these only consider differences in 3-371 

mer or 7-mer sequence contexts, and are based on intergenic SNVs from 1000 Genomes data7,51. 372 

Incorporating more accurate sequence- and feature-dependent estimates of mutation rates will likely 373 

lead to more realistic simulations and greater confidence in the inferences made by these methods. 374 

Another particularly relevant area of research where our results might be applicable is the study of how 375 

germline mutation mechanisms have evolved over time22,52,53. If mutator phenotypes have frequently 376 

come and gone throughout the evolutionary history of humans (as hypothesized by Harris and 377 

Pritchard22), it seems likely that the effects of mutational modifiers have been extremely subtle, 378 

manifesting as granular context-specific mutation signatures. Our results, which describe the present-379 

day pattern of mutation rate heterogeneity in Europeans, thus provide a wealth of potential hypotheses 380 

for investigating how these mutation processes have been shaped via past evolution. 381 

To facilitate the use of our genome-wide mutation rate estimates in other analysis and simulation 382 

pipelines, we have used our full model to predict the mutation rate at every location in the genome, and 383 

created a genome browser track to visualize the predicted mutation rates alongside other genomic 384 

data. Ultimately, the refined mutation patterns from ERVs and the detailed dissection of context-feature 385 

effects serves as a quantitative foundation for better understanding the molecular origins of mutation 386 

rate heterogeneity and its consequences in heritable diseases and human evolution.  387 
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Methods 400 

Sample description. The BRIDGES sample contains 3,927 unrelated European American bipolar 401 

disorder cases and controls. The cases and controls from the Centre for Addiction and Mental Health 402 

(CAMH) in Toronto (n=830), the Institute of Psychiatry, Psychology and Neuroscience (IoPPN) and 403 

King’s College London in London, U.K. (n=845)54, the Genomic Psychiatry Cohort (GPC) (n=1,151)55, 404 

and the Prechter Repository (n=363)56 were collected as previously described, as were the STEP-BD 405 

cases (n=304), obtained from the NIMH repository57, and the Minnesota Center for Twin and Family 406 

Research (MCTFR) study controls (n=434)58. In all studies, DNA was extracted from blood-based 407 

samples. All human research was approved by the relevant institutional review boards and conducted 408 

according to the Declaration of Helsinki. All participants provided written informed consent. 409 

Sample library preparation. The concentration of each DNA sample was measured by fluorometric 410 

means (PicoGreen, Thermo Fisher, Woburn, MA, USA) followed by agarose gel electrophoresis to 411 

verify the integrity of DNA. Six-hundred nanograms of DNA was sheared with acoustic shearing 412 

(Covaris, Woburn, MA, USA) to an average size of 400nt. Following shearing, the samples are 413 

transformed to a sequencing library using standard protocols to create a paired-end library. Briefly, 414 

sheared DNA was end-repaired, A-tailed and ligated with Illumina adaptors (New England Biolabs, 415 

Ipswitch, MA, USA). Following ligation, indexed primers were used to amplify the final libraries for each 416 

sample. Each sample received two indexes: 96 i7 indexes were used to identify each sample in each 417 

96-well reaction plate while a single i5 index was used for each plate. This combination of indexes 418 

uniquely coded all samples in the project when both the i7 and i5 indexes were read during 419 

sequencing. Following six cycles of PCR (Kapa Biosystems, Wilmington, MA, USA), libraries were 420 

purified and quality controlled by assaying the final library size using the Agilent Bioanalyzer (Agilent 421 

Technologies, Santa Clara, CA, USA) and quantitating the final library via real-time PCR (Kappa 422 

Biosciences). A single peak between 300-400bp indicates a properly constructed and amplified library 423 
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ready for sequencing. PCR cycles for amplification are kept to a minimum to minimize PCR duplication 424 

rate and maximize library complexity.  425 

 426 

Sequencing. Sequencing was performed per Illumina protocol, essentially as described by Bentley et 427 

al.40. Libraries were pooled in sets of 12 samples and each pool sequenced on a single lane of a HiSeq 428 

2500 flowcell using version 3 Illumina chemistry at paired-end 100nt read lengths. Each library pool 429 

was loaded at 13pM to generate 160-180M paired reads per lane. Multiple flowcells of the library pools 430 

were performed to generate a final data set with an average coverage of 9.6x per sample. 431 

 432 

Sample filtering and data quality control. Among the 3,927 samples attempted, three failed library 433 

preparation and were not sequenced. We removed an additional 162 samples due to quality issues: 434 

five with imbalanced read counts between read 1 and read 2, four with improperly generated BAM files, 435 

16 that had an average coverage <3x, and 137 due to high contamination (FREEMIX or CHIPMIX 436 

score >3% using VerifyBAMID59). For samples that failed for multiple reasons, we report a single 437 

category for simplicity. 438 

 439 

Among these 3,762 samples, reads were mapped to Build 37 of the human reference genome 440 

(including decoy sequence28), with alignment and variant calling performed using the GotCloud 441 

pipeline60. After variant calling, we applied additional sample-level filtering as described below to obtain 442 

the 3,716 included in our analysis. We first excluded 10 case samples that were not phenotyped as 443 

type 1 bipolar disorder (removed solely for consistency with ongoing analyses of the BRIDGES data 444 

that do require phenotypes). We identified and removed an additional 23 samples that showed 445 

evidence of sample swaps in VerifyBAMID59, but had not been excluded from variant calling. We next 446 

computed continental-ancestry PCA coordinates by projecting BRIDGES samples in the coordinate 447 

space of the 1000 Genomes phase 1 samples61. We dropped 11 samples identified as PC ancestry 448 

outliers, defined by PC1<0.01 or PC2<0.025. We then checked for relatedness using the 𝜋̂ statistic 449 
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(i.e., estimation of pairwise identity-by-descent based on LD-pruned SNPs), computed in plink62. Nearly 450 

all pairwise sample comparisons were consistent with being unrelated, with 𝜋̂ < 0.05 for 99.9% of 451 

sample pairs. Two samples were dropped due to relatedness, as the 𝜋̂ between these was 0.5, 452 

indicating the two were full siblings. 453 

 454 

These filters reduced the sample to 3,716 individuals, in which we called 37,470,516 autosomal 455 

singleton SNVs in the mappable genome (i.e., non-N reference bases in the GRCh37 reference 456 

genome) that passed the variant-level filtering criteria implemented in the GotCloud pipeline60. Prior to 457 

performing our analyses, we examined how these 37.5 million ERVs were distributed across individual 458 

samples to identify and remove individuals that showed abnormal patterns of variation due to 459 

systematic sequencing errors or batch effects. In brief, we adapted the non-negative matrix 460 

factorization (NMF) technique described by Lawrence et al.63 to summarize the distribution of ERVs 461 

unique to each individual as a composite of 3 distinct “signatures.” For each of the 3,716 individuals in 462 

our sample, we calculated a vector of 96 3-mer relative mutation rates (described below) using only the 463 

ERVs observed in that individual, generating a 3,716 x 96 rate matrix. Decomposition of this matrix via 464 

NMF produces a 3,716 x 3 matrix describing the relative contribution of each signature to the observed 465 

mutation spectrum per individual. Because we assume the relative mutation rate of any given subtype 466 

should be similar across individuals, it follows that the contribution of a given NMF signature should 467 

also be similar. We removed 156 individuals where one or more signatures had a contribution >2 468 

standard deviations away from the mean contribution of that signature calculated across all individuals, 469 

reasoning that ERVs observed in these individuals are more likely to be errors. The final sample used 470 

in our analyses thus consists of 3,560 individuals, in which we identified 35,574,417 singletons. 471 

Additional details of this filtering strategy are described in the Supplementary Note.  472 

Mutation subtypes and calculation of relative mutation rates. Each of the 35,574,417 singletons 473 

can be classified into one of 6 basic mutation types, defined by the reference and alternative allele: 474 

A>C, A>G, A>T, C>T, C>G, and C>A. The notation of A>C includes both A-to-C mutations and 475 
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complementary T-to-G mutations. For each mutation type, we further define a set of mutation subtypes 476 

by the bases flanking the variant site. Since there are 4 possible bases at both the +1 position and the -477 

1 position, there are 4x4=16 possible 3-mers containing each basic mutation type at the central 478 

position, producing 6x16=96 3-mer subtypes. Likewise, there are 6x44=1,536 5-mer subtypes, and 479 

6x46=24,576 7-mer subtypes. To simplify notation, we denote a subtype by the sequence motif 480 

containing either an A or a C as the reference base at the central position (e.g., either CGT[A>X]TCG 481 

or CGT[C>X]TCG). 482 

For each K-mer subtype, we divided the number of ERVs observed at the central position of the K-mer 483 

by the number of times the K-mer is seen in the mappable autosomal regions of the reference genome; 484 

we term this proportion the estimated relative mutation rate. K-mers in the reference genome were 485 

counted by a 1-bp sliding window, so that every possible occurrence of that K-mer was accounted for 486 

(e.g., a run of 4 As is counted as two AAA 3-mers shifted by one base). For example, we observed 487 

7,548 C>T or G>A autosomal singletons occurring in an ATACGCA or TGCGTAT 7-mer motif (the 488 

underlined base indicates the variant site) and there are 53,314 such motifs in the autosomal reference 489 

genome where this subtype of mutation could be observed, yielding a relative mutation rate estimate of 490 

7,548/53,314=0.1416 for the ATA[C>T]GCA subtype. 491 

Testing for heterogeneity of relative rates among nested subtypes. As each K-mer can be split into 492 

16 possible (K+2)-mers that share the same internal motif but differ in their terminal bases, the relative 493 

mutation rate for each K-mer subtype is the weighted mean of the rates found among its 16 possible 494 

(K+2)-mer constituent subtypes. To assess the heterogeneity of relative mutation rates among each set 495 

of 16 (K+2)-bp constituent subtypes that share the same K-bp motif, we performed a chi-squared test 496 

for uniformity of these rates, with each test having 15 degrees of freedom. 497 

Mutation prediction model and validation. To evaluate the accuracy of different mutation rate 498 

estimation strategies, we applied the estimated rates to predict the incidence of 46,813 de novo 499 

mutations using logistic regression. These de novo mutations were published by two independent 500 
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studies: 11,020 de novo mutations detected in 258 Dutch families by the Genomes of the Netherlands 501 

(GoNL) project9, and 35,793 de novo mutations from 816 families sequenced by the Inova Translational 502 

Medicine Institute (ITMI) Premature Birth Study12. We combined the observed mutations with 1 million 503 

randomly selected sites from the mappable autosomal regions of the reference genome to serve as a 504 

non-mutated background, reasoning that ~20 non-mutated sites for each actual de novo mutation 505 

would be sufficient to minimize sampling noise in the set of non-mutated sites; we also repeated this 506 

procedure with 500,000, 2 million, and 3 million randomly selected sites to tell if the trends we observed 507 

were affected by the size of the non-mutated background. Because each non-mutated site can be 508 

ambiguously considered as the background for 3 different mutation types, we divided the 1 million non-509 

mutated sites into 3 non-overlapping sets. We designated A/T and C/G reference bases in the first set 510 

(consisting of 333,334 unique sites) as non-mutated A>G and C>T types, respectively, and so on for 511 

the second set (A>C or C>G types), and the third set (A>T or C>A types), each of which contained 512 

333,333 unique sites. Hence, we considered a total of 1,046,813 testing sites (1,000,000 unmutated 513 

sites and 46,813 de novo mutations), each with one possible mutation event, in our prediction models. 514 

Now let 𝒊 = {𝟏, … , 𝟏𝟎𝟒𝟔𝟖𝟏𝟑} be an index for the 1,046,813 testing sites. We coded 𝒅𝒊 = 𝟏 if site 𝒊 is a 515 

de novo mutation and 𝒅𝒊 = 𝟎 otherwise. If a set of estimated relative mutation rates reflects the 516 

underlying mutation process, we expect that the odds of a given site for carrying a de novo mutation 517 

increases with the estimated relative mutation rate of that site. To asses this expectation for all sets of 518 

mutation rate estimation strategies (e.g., ERV-based or 1000G-based 7-mer estimates), we annotated 519 

each testing site 𝒊 with the relative mutation rate estimated under strategy 𝑴 (𝒓𝒊,𝑴), and used logistic 520 

regression to model the probability of a de novo mutation at each site as a function of these rate 521 

estimates, where 𝜶𝟎 is the intercept term and 𝜶𝟏 is the regression coefficient: 522 

𝐥𝐧 (
𝑷𝒓(𝒅𝒊 = 𝟏)

𝑷𝒓(𝒅𝒊 = 𝟎)
) = 𝜶𝟎 + 𝜶𝟏𝒓𝒊,𝑴                        (𝟏) 523 

The probability of a mutation at each testing site can then be calculated as: 524 
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𝑷𝒓(𝒅𝒊 = 𝟏) =
𝟏

𝟏 + 𝒆𝜶𝟎+𝜶𝟏𝒓𝒊,𝑴
                        (𝟐) 525 

The overall likelihood of model 𝑴, given the observed data, is the product of the probability values over 526 

all 1,046,813 sites:  527 

𝑳𝑴 = ∏
𝟏

𝟏 + 𝒆𝜶𝟎+𝜶𝟏𝒓𝒊,𝑴
∏

𝒆𝜶𝟎+𝜶𝟏𝒓𝒊,𝑴

𝟏 + 𝒆𝜶𝟎+𝜶𝟏𝒓𝒊,𝑴

𝒅𝒊=𝟎𝒅𝒊=𝟏

      (𝟑) 528 

Using this likelihood, we evaluated model fit by the Akaike Information Content (AIC), where 𝒑 is the 529 

number of parameters in equation (1) (because all models are based on a single covariate of mutation 530 

rates, 𝒑 = 𝟏 in all cases): 531 

𝑨𝑰𝑪𝑴 = 𝟐𝒑 − 𝟐 𝐥𝐧(𝑳𝑴)                           (𝟒) 532 

For each model, we also calculate Nagelkerke's R2: 533 

𝑹𝑴
𝟐 =

𝟏 − {
𝑳𝟎
𝑳𝑴

}
𝟐/𝑵

𝟏 − {𝑳𝟎}𝟐/𝑵
                             (𝟓) 534 

Here, 𝑳𝟎 is the likelihood of a null intercept-only model with no covariates.  535 

Because these likelihood-based goodness-of-fit statistics are calculated across all the basic mutation 536 

types combined, they do not provide information about which types benefit most strongly from using 537 

expanded sequence motifs. For example, it is possible that any improvement to the overall goodness-538 

of-fit is elicited by context-dependent heterogeneity of a single mutation type, whereas other types 539 

might not be significantly affected by using longer sequence motifs, and do not contribute to the 540 

improved model fit. To identify these type-specific trends, we stratified our testing data by each of the 541 

basic mutation types. To account for the known hypermutability of cytosine at CpG dinculeotides, we 542 

separated C>T, C>G, and C>A mutations into CpG and non-CpG types, for a total of 9 basic mutation 543 

types. For each type, we repeated the 3-mer, 5-mer, and 7-mer models on only the sites of that type. 544 
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Within each set of type-specific models, we again compared the goodness-of-fit using AIC and 545 

Nagelkerke's R2. Note that because the absolute values of AIC and Nagelkerke's R2 are a function of 546 

the number of data points included in the model, these statistics cannot be directly compared between 547 

type-specific models, where the number of data points vary.  548 

Estimating the effect of local genomic features. We estimated the effect of 14 genomic features 549 

(data sources for these features are described in Supplementary Table 7) on the relative mutation rate 550 

of each 7-mer subtype using the following logistic regression framework. Let 𝑲 be the index across all 551 

7-mer subtypes with 20 or more observed singletons (𝑲 ∈ {𝟏, … , 𝟐𝟒𝟑𝟗𝟔}). Let 𝒋𝑲 be the index across all 552 

sites that are centered at the 7-mer motif that could produce a mutation of subtype 𝑲, and let 𝒁𝒋𝑲
= 𝟏 if 553 

the site carries a singleton of subtype 𝑲 and 𝒁𝒋𝑲
= 𝟎 otherwise. We annotated each site of the 554 

considered subtype for 14 genomic features, generating predictors 𝑭𝒋𝑲,𝟏, … , 𝑭𝒋𝑲,𝟏𝟒. We treated 11 of 555 

these features as binary variables (seven histone marks, lamin-associated domains, CpG islands, 556 

DNase hypersensitive sites, exons), setting the predictor 𝑭𝒋𝑲,𝒈  = 𝟏, 𝒈 ∈ {𝟏, … , 𝟏𝟏} if the central site of 557 

the motif was inside the specified regions and 𝑭𝒋𝑲,𝒈  = 𝟎 otherwise. For the 3 continuous features 558 

(recombination rate, replication timing, surrounding GC content), we set the predictor 𝑭𝒋𝑲,𝒈, 𝒈 ∈559 

{𝟏𝟐, 𝟏𝟑, 𝟏𝟒} to the mean value of that feature in a 10kb window centered at the site. Because the 560 

inferred effect of some features may be confounded by correlation with read depth and calling rates 561 

(e.g., GC content64), we included read depth at the central site of the 7-mer as covariate 𝑭𝒋𝑲,𝑫𝑷. For 562 

each 7-mer subtype 𝑲, we then evaluated the effect of the genomic predictors on the log odds of 563 

mutability for each site 𝒁𝒋𝑲
 using the following logistic regression equation:  564 

𝒍𝒏 (
𝑷𝒓(𝒁𝒋𝑲

= 𝟏)

𝑷𝒓(𝒁𝒋𝑲
= 𝟎)

) = 𝜷𝟎
𝑲 + 𝜷𝟏

𝑲𝑭𝒋𝑲,𝟏 + ⋯ + 𝜷𝟏𝟒
𝑲 𝑭𝒋𝑲,𝟏𝟒 + 𝜷𝑫𝑷

𝑲 𝑭𝒋𝑲,𝑫𝑷           (𝟔) 565 

where (𝜷𝟏
𝑲, … , 𝜷𝟏𝟒

𝑲 ) are effects of the 14 considered genomic features on the mutation rate of subtype 566 

K, and 𝜷𝑫𝑷
𝑲  is the effect of the local sequencing depth. The intercept of this model, 𝜷𝟎

𝑲, represents the 567 
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feature-adjusted relative mutation rate for the considered 7-mer subtype. We performed this logistic 568 

regression and obtained parameter estimates in R v3.2.3 using the speedglm() function from the 569 

speedglm package. We performed this procedure for each of the 𝑲 ∈ {𝟏, … , 𝟐𝟒𝟑𝟗𝟔} 7-mer subtypes; 570 

the resulting beta values and standard errors for 16 x 24,396 estimated parameters are provided in 571 

Supplementary Table 8. Note that we did not consider estimating interaction effects between the 14 572 

genomic features, as estimating all 2-way interactions would require an additional 14*(13-1)/2=91 573 

parameters per subtype-specific regression, which would lead to overfitting concerns. 574 

To generate a map of mutation rates across the genome, we used the estimated regression coefficients 575 

to predict the relative mutation rate (i.e., probability of observing a singleton) at each site j where a 576 

mutation of a given 7-mer subtype could occur: 577 

𝑷𝒓(𝒁𝒋𝑲
= 𝟏) =

𝒆𝒙𝒑(𝜷𝟎
𝑲 + 𝜷𝟏

𝑲𝑭𝒋𝑲,𝟏 + ⋯ + 𝜷𝟏𝟒
𝑲 𝑭𝒋𝑲,𝟏𝟒 + 𝜷𝑫𝑷

𝑲 𝑭𝒋𝑲,𝑫𝑷)

𝟏 + 𝒆𝒙𝒑(𝜷𝟎
𝑲 + 𝜷𝟏

𝑲𝑭𝒋𝑲,𝟏 + ⋯ + 𝜷𝟏𝟒
𝑲 𝑭𝒋𝑲,𝟏𝟒 + 𝜷𝑫𝑷

𝑲 𝑭𝒋𝑲,𝑫𝑷)
           (𝟕) 578 

Because there are three possible mutations at every site, we predict 3 independent mutation 579 

probabilities (one for each possible alternative allele). For example, for a site centered at a ACGATTG 580 

motif, we predict probabilities for A>C, A>G, and A>T alleles, using the parameters estimated from 581 

those models. This prediction uses all estimated effects, not just the effects determined to be 582 

statistically significant. We note that we did not generate predictions for sites within 5Mb of the start/end 583 

of a chromosome, because recombination rate data were not available for these regions65.  584 

To assess if inclusion of these genomic features improved upon the 7-mer mutation rate estimates in 585 

describing the true distribution of germline mutability, we again tested this model’s ability to predict the 586 

known de novo mutations from the GoNL9 and ITMI12 studies. We annotated each of the 𝒊 =587 

{𝟏, … , 𝟏𝟎𝟒𝟔𝟖𝟏𝟑} testing sites with the predicted mutation rate, 𝑷𝒓(𝒁𝒊𝑲
= 𝟏), and calculated the 588 

goodness-of-fit using equations 1-5 with this parameter as the predictor. Note that the GoNL/ITMI data 589 

included de novo mutations within the 5Mb telomeric regions where we could not estimate effects of 590 
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genomic features. Rather than excluding sites in these regions from our goodness-of-fit comparison, we 591 

simply assigned the marginal 7-mer relative mutation rate as the predicted value for these sites, to 592 

ensure models were compared using identical data.  593 

Data availability. We are in the process of submitting the BRIDGES sequence-based genotypes to 594 

dbGaP. K-mer-based relative mutation rate estimates are provided in Supplementary Table 2. 595 

Predicted mutation rates based on sequence context and genomic features at each site have been 596 

formatted as a UCSC Genome Browser track, which can be accessed at http://mutation.sph.umich.edu.  597 

Code availability. All custom scripts used in downstream data processing and analyses are available 598 

at https://github.com/carjed/smaug-genetics. A web-based utility and command-line code for annotating 599 

a variant call format (VCF) file of genetic variants with estimated 7-mer mutation rates can be accessed 600 

at http://www.jedidiahcarlson.com/mr-eel/.  601 

602 
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