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 10 

Summary Statement. 11 

We present an algorithmic framework, based on the Bayesian inference, for generating morphological 12 

tree clones using a combination of stochastic growth models and experimentally derived tree 13 

structures. 14 

 15 

Abstract. 16 

Detailed and realistic tree form generators have numerous applications in ecology and forestry. Here, 17 

we present an algorithm for generating morphological tree “clones” based on the detailed 18 

reconstruction of the laser scanning data, statistical measure of similarity, and a plant growth algorithm 19 

with simple stochastic rules. The algorithm is designed to produce tree forms, i.e. morphological 20 

clones, similar as a whole (coarse-grain scale), but varying in minute details of organization (fine-grain 21 

scale). We present a general procedure for obtaining these morphological clones. Although we opted 22 

for certain choices in our algorithm, its various parts may vary depending on the application. Namely, 23 

we have shown that specific multi-purpose procedural stochastic growth model can be algorithmically 24 

adjusted to produce the morphological clones replicated from the target experimentally measured tree. 25 

For this, we have developed a statistical measure of similarity (structural distance) between any given 26 

pair of trees, which allows for the comprehensive comparing of the tree morphologies in question by 27 

means of empirical distributions describing geometrical and topological features of a tree. Our 28 

algorithm can be used in variety of applications and contexts for exploration of the morphological 29 

potential of the growth models, arising in all sectors of plant science research. 30 

 31 

 32 

 33 
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I. Introduction 34 

 35 

Models for plant architecture attract significant attention due to their ability to assist the empirical 36 

studies in ecology, plant biology, forestry, and agronomy (Prusinkiewicz, 2004). The modeling activity 37 

is especially useful in research since it arises as fruitful collaboration between specialists in different 38 

fields of studies: computer scientists, mathematicians, and biologists (Fourcaud et al., 2008). 39 

 40 

Modeling plant architecture is approached from many directions. Some progress has been achieved in 41 

synthesis of realistic plant forms in the field of computer graphics (Palubicki et al., 2009; Pirk et al., 42 

2012; Stava et al., 2014). These models, although based on heuristic rules of growth, produce realistic 43 

shape outcomes in a fast and efficient manner, which is usually dictated by the application of this 44 

approach, that is natural sceneries in computer visualization. Heuristic growth rules of the procedural 45 

models for graphics applications are not firmly based on biological principles, but nevertheless 46 

elucidate some algorithmic properties of the growth process (for example, recursive (Hallé et al., 1978) 47 

vs. self-organizing (Sachs and Novoplansky, 1995; Palubicki et al., 2009) character of architecture 48 

development). 49 

 50 

However, the most promising plant architectural models are so called functional-structural plant 51 

models (FSPM), also known as “virtual plants” (Room et al., 1996; Sievänen et al., 2000; Godin et al., 52 

2004), because this type of models allows for a balanced description between morphological and 53 

functional/physiological properties of a plant. Thus, it is capable of connecting the external abiotic 54 

factors (e.g. radiation, temperature and soil) and the most vital functions of a plant organism (such as 55 

photosynthesis, respiration, and water and salts uptake) with its structural characteristics 56 

(Prusinkiewicz, 2004; Fourcaud et al., 2008). 57 

 58 

Nevertheless, biologically relevant architectural plant models rely on data in a form of empirically 59 

fitted functions and parameters that correspond to a particular species and/or certain site conditions 60 

(Mäkelä and Hari, 1986; Rauscher et al, 1990; Perttunen et al., 1996; Lacointe, 2000). Thus, the 61 

change in these conditions requires re-calibration of the models, which is done in a manual fashion 62 

every time the model is simulated for the new conditions. Strong dependence on data, where each 63 

simulation would be calibrated automatically by data, is limited by both computation time and lack of 64 

the fast measurement and processing systems allowing for a detailed 3D morphological reconstruction 65 

of the real plant/tree. 66 
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 67 

The most recent advances in laser scanning techniques allow for fast and non-destructive measurement 68 

of trees with subsequent reconstruction of various characteristics depending on application (e.g. 69 

(Rosell et al., 2009; Van Leeuwen and Nieuwenhuis, 2010)). Most of such studies dedicated to 70 

reconstruction of 3D point clouds obtained from laser scanning measurements deal with overall 71 

characteristics, such as height, width, and volume of stems/crowns, leaf index, biomass etc., 72 

resembling traditional destructive methods of measurement (Rosell et al., 2009; Rutzinger et al., 2010). 73 

However, the detailed precise geometrical and topological reconstruction with the preserved tree 74 

architecture as is, is rarely sought after.  75 

 76 

In this work, we use a fast, precise, automatic, and comprehensive reconstruction algorithm initially 77 

presented in (Raumonen et al., 2013) and further developed and tested in (Calders et al., 2015). The 78 

algorithm reliably reconstructs a quantitative structure model (QSM), which contains all geometrical 79 

and topological characteristics of the object tree. Input for the method is the 3D point cloud, 80 

sufficiently covering the tree, obtained from the terrestrial laser scanning measurements (TLS) and no 81 

additional allometric relations used for estimation of the branch proportions (as in (Xu et al., 2007; 82 

Livny et al., 2010)) are needed. Compared to other similar techniques (e.g. (Xu et al., 2007; Livny et 83 

al., 2010; Preuksakarn et al., 2010)) this method requires few parameters and no user interaction and 84 

reconstructs the tree surface with subsequent cylinder (or any other geometrical primitive) 85 

approximation, which is usually consistent with theoretical plant growth models. The reconstruction 86 

algorithm has been validated in several studies with several different tree species and different scanner 87 

instruments (Calders et al., 2015; Hackenberg et al., 2015; Kaasalainen et al., 2014; Raumonen et al., 88 

2015; Smith et al., 2014). There are other published QSM reconstruction methods from TLS data that 89 

can produce similar quality QSMs, at least (Hackenberg et al., 2015). 90 

 91 

In this work, we utilize an inverse iterative procedure to optimize model’s parameters as to match the 92 

(empirical) distribution of structural features of the simulated stochastic tree models (FSPM, graphical 93 

or other) to that of the tree reconstructed from the laser scanning data. Meanwhile, we formulate a 94 

measure of similarity of the tree structures grounded in tomographic analysis of the structural 95 

distributions (e.g. Radon transform) (Kaasalainen, 2008; Bracewell, 1990). Finally, the optimal 96 

parameter set produces morphological “clone” trees with similar overall structure, but varying minute 97 

details of organization. 98 

 99 
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Recently, we have reported a proof-of-concept study where we used reconstruction of a pine tree and 100 

the corresponding FSPM (named LIGNUM (Perttunen et al., 1996; Sievanen et al., 2008)) to 101 

demonstrate the practical feasibility of the approach (Potapov et al., 2016). In this work, however, we 102 

develop a unifying interface for our procedure and use general-purpose fast procedural tree growth 103 

model from (Palubicki et al., 2009), since such a simple procedural model is easier to adapt  (it is 104 

simple, fast, and efficient) for technical experimentation with the whole algorithm. Additionally, 105 

similar algorithmic pipeline was reported in (Stava et al, 2014) for procedural tree growth models in 106 

the context of graphics synthesis. However, in our approach we see the tree growth as a random 107 

process and, consequently, apply corresponding statistical methods for measuring the similarity 108 

between trees. Moreover, in our algorithm the special concern is on biologically relevant description, 109 

hence, the careful choice of the reconstruction algorithm; possibility to use FSPM to relate 110 

physiological parameters to the morphogenetic processes in trees; and no extra structures improving 111 

visual properties of trees but not supported by empirical observation (e.g. leaves). 112 

 113 

II. Results 114 

 115 

Algorithm overview 116 

 117 

Our approach is based upon five distinct parts: 118 

1. Quantitative Structure Model (QSM) is a reconstruction of a tree model from 3D point clouds 119 

obtained from terrestrial laser scanning measurements (TLS). Here we use specific algorithm for 120 

such reconstruction reported in (Raumonen et al., 2013) and (Calders et al., 2015) but others could 121 

be used as well. 122 

2. Stochastic Structure Model (SSM) is a tree growth model that is chosen depending on the 123 

application. There are no limitations on the class of the model, except it must produce measurable 124 

3D branching structure. 125 

3. Structural data set (U) is a collection of structural features (empirical distributions) to be 126 

compared between QSM and SSM. Importantly, U data sets must be determined in the same way 127 

both for QSM and SSM. 128 

4. Measure of structural dissimilarity, or structural distance DS, is a measure of discrepancy between 129 

any two data sets, in other words, DS(U1, U2) results in a value quantifying how much different the 130 

two data sets U1 and U2 are. 131 
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5. Optimization algorithm is a numerical routine capable of finding a minimum of any given function 132 

by varying its arguments (Newton algorithm, genetic algorithm, simulated annealing etc.) 133 

 134 

The connection between these components is outlined in Fig. 1 with explanation in the text below. 135 

 136 

Figure 1: The algorithm outline (see explanation in the text). 137 

 138 

The algorithm outline (Fig. 1): 139 

 140 

Preparation stage A: 141 

A1: build QSM from TLS. 142 

A2: extract Ud from QSM. 143 

 144 

Main cycle B: 145 

B1: simulate SSM for the fixed parameters and extract Um. 146 

B2: compare Um and Ud getting an estimation of the distance D between them. 147 

B3: change SSM parameters trying to decrease D, go to B1 or stop and go to B4 (changing of the 148 

parameters and stopping criteria depend on any particular realization of the optimization routine). 149 

B4: simulate SSM with the “best-fit” parameter values corresponding to the smallest found D. 150 
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B5: loose the randomness of the best-fit SSM and generate morphological clones. 151 

 152 

At the preparation stage, the QSM is formed from the TLS point cloud (A1). The detailed description 153 

of this process is reported in (Raumonen et al., 2013; Calders et al., 2015). The resultant QSM contains 154 

all geometrical and topological features needed to form the empirical distributions Ud. The 155 

distributions can be formed for several tree individuals if they are close by shape to ensure the sample 156 

size. 157 

 158 

At the main cycle of the algorithm, the empirical distribution Um is formed from the simulated SSM 159 

tree (B1). Next, Um is compared against Ud using the measure of distance (B2). The optimization 160 

routine iteratively minimizes the distance value every time changing the parameter values of SSM 161 

(B3), simulating SSM, and repeating the cycle from B1. After the stopping criteria of the optimization 162 

routine (number of iterations, minimal allowed distance etc.) are met, the algorithm stops and produces 163 

the best-fit SSM tree (B4). The best-fit SSM with different random sequences produces different 164 

outcomes – morphological clones. 165 

 166 

In Materials and methods, we describe each of the main components of the algorithm in further detail. 167 

 168 

Preliminary observations 169 

 170 

In the beginning of our analysis, we make several important notes about the target QSM structure. The 171 

shrub-like shape of this reconstruction model produces several major branches emanating from the 172 

initial part of the trunk connected to the ground. All these branches can be equally assigned with the 173 

order w = 0 (continuation of the trunk; see the definition of the topological order w in Materials and 174 

methods), however, the heuristic algorithm of the tree reconstruction from the TLS data (Raumonen et 175 

al., 2013) at every branching point chooses the thickest pathway to determine the actual trunk (it is 176 

roughly the thickest pathway, although the actual algorithm specifies much more complicated rules, 177 

see (Raumonen et al., 2013) for details). This has the following implications. 178 

 179 

First, tree with the zero and first order branches has a skewed shape (Fig. 2A), since only one of the 180 

trunk candidate branches becomes the actual trunk (w = 0) whereas the rest of them become the first 181 

order branches (w = 1). The asymmetry of the form appears due to the branches attached to the actual 182 

trunk and assigned with w = 1, because other similarly scaled and attached to other trunk candidates 183 

branches become effectively the branches of order w = 2. Second, due to the aforementioned 184 
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asymmetry the data sets for the first order branches have a modular structure: large scaled trunk-like 185 

branches along with the smaller ones. Third, we observe that the overall shape of the subject QSM can 186 

be approximated by the branches of the topological orders w ≤ 2 as it can be seen from Fig. 1B. 187 

Namely, with orders w = 0 and 1 the shape of the tree seems to be underrepresented (mainly due to the 188 

shape asymmetry), while with orders w = 0, 1, 2, and 3 the smaller twigs just fill in the spatial gaps 189 

between the major branches. This makes the analysis and form fitting a more complex task as 190 

compared with the tree shapes resulting from the growth with strong apical dominance (e.g. pine trees; 191 

see (Potapov et al., 2016)). 192 

 193 

 194 

Figure 2: The target QSM structure. (A) w = 0, 1; (B) w = 0, 1, 2; (C) w = 0, 1, 2, 3; (D) distribution 195 
of the topological orders w of the QSM. Full QSM tree: XZ-projection (E), YZ-projection (F), and 196 
XY-projection (G). 197 

 198 

Another point to consider is the underlying statistical properties. For example, it is impossible to draw 199 

any branch statistics from the single instance of the trunk (w = 0), while there are plenty of samples for 200 

the higher order branches. Given that the overall shape is mainly governed by the lower order 201 

branches, one must compromise between the main, shape determining branches with lower abundance 202 

and less important, but numerous, higher order branches (Fig. 2D). 203 
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 204 

Finally, the branch-related (B, see Materials and methods for the notation) data sets do not provide 205 

sufficient information for the width of the branches and their curvature in space. Moreover, although 206 

the B set has some information on the width (Rf, Lt), it is less abundant than the similar and more 207 

detailed information contained in the segment-related (S, see Materials and methods) data sets. 208 

However, the B data set has information on the structure of the emanating pattern of a branch, that is, 209 

the spatial location of its lateral buds/branching points (La), and its angular properties, which, in turn, 210 

can be substituted with the biologically plausible growth algorithm. 211 

 212 

Therefore, we begin our analysis with S0,1 data sets as w = 0, 1 branches represent the main structural 213 

frame of the tree: without its valid approximation the whole tree cannot be considered fitted. 214 

 215 

Basic values of the parameters 216 

 217 

First, we run the optimization within each of the parameter groups I – V (see Materials and methods) to 218 

determine the basic values of the parameters. These basic values represent choices that generate a 219 

viable tree structure with proportions and scale approximately equal to those of the target QSM. Each 220 

optimization run takes the best parameters for the group optimized at the previous step. The target 221 

distributions U for these runs are S0,1. Note that this exercise serves a basic exploration of the model’s 222 

behavior, which can be (partially) replaced, for example, by the expert guesses for the parameter 223 

values or some calibration process (if the model is designed for specific purposes and/or species). 224 

 225 

Second, based on these preliminary results we determine the most influential parameters for each of 226 

the group and combine them in a single optimization set up. Several independent optimization runs 227 

were taken in order to determine the most influential parameters. For example, we found that the 228 

angular properties vary the least among these runs, whereas the apical dominance requires subtler 229 

adjustments (as can be understood from the complex structure of the target QSM). 230 

 231 

Low order topological adjustment of the shape 232 

 233 

After these initial manipulations, we obtained a model with 11 parameters and good fit of the trunk and 234 

first order branches (Fig. 3C; dh = 0.05, dg = 0.42, dc = 0.57). However, the overall form of the 235 

resulting minimal score tree does not resemble the target QSM due to its rosette-shape (Fig. 3A, B). A 236 

closer look at the tree reveals that the higher order branches (w > 1) are mainly responsible for the 237 
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formation of the rosette-shape of the tree, i.e. the orders which were not subject to the optimization 238 

(Fig. 3). This example demonstrates the contribution of the higher order branches to the overall tree 239 

shape, which suggests using the scatters of these orders in further optimization steps. Moreover, the 240 

branch-related features, such as the angular properties of branches of order w > 1, were not captured 241 

well (Fig. 3E), although similar order segment-related features show right stochastic tendencies (Fig. 242 

3D) generated automatically by the growth algorithm of the SSM. This further stipulates usage of B 243 

scatters of orders w > 1. 244 

 245 

 246 
Figure 3: The rosette-shape SSM resulting from the adjustment of the low order (S0,1) scatters. 247 

(A) The SSM tree; (B) the target QSM; (C) some S0,1 scatters used in the optimization; (D) higher 248 

order (w = 2) S-scatters; (E) higher order (w = 2, 3) B-scatters. Note that the scatters in (D) and (E) 249 

were not used in the optimization. SSM/QSM scatters are shown in red/blue. 250 

 251 

Higher order topological adjustment 252 

 253 
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The increase in number of the structural feature tables is coupled with the increase in number of 254 

distinct distance values. Although the optimization of the mean distance value hinders the 255 

improvement for each target table, the low order as well as high order branches need to be fitted to the 256 

corresponding branches of the target QSM as we have shown above (Fig. 3). To reduce the number of 257 

distinct feature tables for the optimization we further utilize the merged data sets resulting in two joint 258 

S and B tables for all topological orders (see Materials and methods). 259 

 260 

Thus, we opted for S0,1 and B2,3,4 merged data sets in the next run of optimization to account for the 261 

higher order branch variability (Fig. 4, dh = 0.08, dg = 0.20, dc = 0.68). No longer we can see the 262 

rosette-shape due to the correct account of the angular properties of the higher order (w > 1) branches 263 

(Fig. 4E). The poor convergence of the branch linear dimensions (radii, lengths etc.) present in the 264 

branch-related tables might be due to the parameter choice of the model. Namely, the small proportion 265 

of branches demonstrating right Rf values (Fig. 4E) appears to be the result of the fixed segment 266 

length, we opted for as a compromise between reality and computational complexity (the QSM 267 

minimal segment length is close to zero, median is 0.06 m). Noteworthy is the similar span of the 268 

curvature data points of SSM and QSM for w = 1, 2 (Fig. C and D), although w = 2 branch curvature 269 

was not subject to the optimization. Additionally, due to the lack of the orientation landmark in the 270 

feature data sets our best-fit SSM is fitted to the target QSM with accuracy of the rotation around Z-271 

axis (this could be adjusted, for example, by associating South direction with a coordinate axis). 272 

 273 
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 274 
Figure 4: Low and high order adjustment of the stochastic feature tables. The best-fit SSM is 275 

obtained through optimization against S0,1 and B2,3,4 merged feature data sets. (A) The best-fit SSM 276 

tree, (B) the target QSM tree, (C) some projection scatters from S1, (D) S2 projection scatters, (E) B2 277 

and B3 projection scatters. 278 

 279 

Clonal nature of the best-fit SSM 280 

 281 

Due to the highly discrete and stochastic nature of the tree growth, the structural distance hyper-282 

surface in the space of the parameters is extremely abrupt (Fig. 5A). Hence, finding the global minima 283 

of such surface is not a trivial task (the classical smooth function optimizers are not suitable in this 284 

case, while stochastic discrete optimizers, like the genetic algorithm, seem to be more appropriate). 285 

Moreover, the hyper-surface itself is a stochastic entity changing every time the new sample of random 286 

numbers is used for a particular SSM growth realization. Therefore, any best-fit SSM is the best for a 287 

particular realization of this stochastic process: one needs to study variability of the tree shape and the 288 

chances are that other SSM growth realization can produce a lower distance value (Fig. 5B). We call 289 

these many realizations of the SSM growth morphological tree clones. 290 
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 291 

 292 
Figure 5: Stochastic structure distance profiles in the parameter space. (A) Three realizations of 293 

the distance hyper-surface projection along a dimensionless parameter λ of the SSM, controlling the 294 

apical dominance of a tree (the shown fragment of the projection with the step of 0.001 approximates 295 

30% of the allowed variability of the parameter during optimization, which was [0.35, 0.65]). (B) 296 

Structural distance (U = {S0,1, B2,3,4}) values for 100 randomly generated SSM trees for each value of a 297 

discrete SSM parameter, i.e. number of growth iterations (red line connects the median points of the 298 

distance distributions for each parameter value; blue line shows the same median distance profile but 299 

for the disturbed system from (C)). (C) Same as in (B), but U = S0,1 (blue line is the median profile; red 300 

line is from (B)). The SSM is the best-fit SSM from Fig. 4; the black arrow indicates the parameter 301 

value of the best-fit SSM. 302 

 303 

The structural distance profile depends not only on the parameters of the SSM, but the choice of the 304 

structural data sets. For example, in Fig. 5B and C the median distance profile is depicted given U = 305 

{S0,1, B2,3,4} (red line) and U = S0,1 (blue line). In the given parameter span the latter seems to be more 306 

flattened and lifted compared to the former. The addition of the B2,3,4 data set might be seen as a 307 

perturbation to the distance profile changing the landscape properties (like minima). In our simulations 308 

we maintain the global parameter boundaries, which allows for the search within the full available 309 

space. However, we sequentially improve the model characteristics by perturbing the system, i.e. 310 

changing the parameters, their intervals, and the U data sets to address problematic parts of the SSM 311 

such that at every next optimization run the genetic algorithm is instructed to search around the 312 

previous best point using the initial ranges (see Materials and methods).  313 

 314 

Given the considerations above about the nature of the structural distance hyper-surface, the further 315 

study of the morphological clones is needed. Specifically, the variability and plausibility of the clonal 316 

shapes need to be addressed. For example, the clones must be further selected as to produce realistic 317 

tree shapes (especially, when the general purpose SSM is used, like in this study), although we could 318 
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not find any unrealistic trees out of the best-fit SSM in our analysis. Additionally, the variability of the 319 

clones is to be calibrated, for instance, by the analysis of the natural/QSM clonal individuals. 320 

 321 

Morphological tree clones 322 

 323 

The quintessence of our work is the generation of the morphological clones. In our pipeline, this 324 

occupies the last stage (see Fig. 1, B5). After the optimization is finished and the best-fit SSM is 325 

found, one can further randomize the outcome of SSM by letting the random number generator 326 

produce different sequences every time SSM is run. As a result, the different realizations of SSM 327 

should constitute the morphological clone generator yielding structural copies close to QSM and to 328 

each other and varying in fine detail of organization of their branches. In other words, the coarse-grain 329 

structure is repeated in each clone (and possibly grasps that of the target QSM), whereas the fine-grain 330 

structure varies. 331 

 332 

 333 
Figure 6: Morphological clones generated from the best-fit SSM. The best-fit SSM was found 334 

using the higher topological order adjustments (Fig. 4) with number of growth iterations 30 (A), 26 335 

(B), and 18 (C). The height, girth, crown spread, and classical metrics distributions are shown in (D) 336 

for the clones in (A), (B), and (C) (the total number of generated clones for each case is n = 100). The 337 

black horizontal line indicates the corresponding measure of the target QSM. 338 
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 339 

We demonstrate visualization of six clones for three distinct cases in Fig. 6. One can see the fine-grain 340 

variation in the structure in each panel of the figure, although the overall (coarse-grain) structure is 341 

preserved and presumably captures that of the target maple QSM (Fig. 2). The three models are: the 342 

one found during the optimization process (Fig. 6A), the one minimizing the sample median distance 343 

profile for DS(U = {S0,1, B2,3,4}) shown in Fig. 5B and one minimizing the sample median profile DS(U 344 

= S0,1) from Fig. 5C. 345 

 346 

Out of 100 simulated clones for each case, we can see that the best-fit SSM obtained directly as the 347 

optimization outcome (Fig. 6A) produces larger proportion of individual trees exhibiting the three 348 

standard allometric measures closer to those of QSM (Fig. 6D). However, we argue that such simple 349 

description of a tree as using the allometric measures cannot be exhaustive enough to capture both the 350 

overall structure and its fine details. 351 

 352 

The height statistics have the largest variability but by the visual inspection of the drawn clones in Fig. 353 

6 one can see that this variability does not exert significant alterations of the Z axis span and the trees 354 

seem to have even heights. Perhaps, the way we calculate the height of a tree produces such large 355 

deviations in each particular case, which makes it a non-robust estimator.  356 

 357 

Similarly, the girth estimation, although being captured decently, produces large errors dg, which 358 

seems to be a result of variation in its linear dimensions (Fig. 6D). The girth dimension spans a small 359 

proportion of the dimension of the whole tree: from several to tens of centimeters compared to meters 360 

of the whole tree. This makes the girth specific error look gigantic (exceeding in some cases 100%) 361 

and thus non-robust as well.  362 

 363 

The crown spread measure shows significant variation (Fig. 6D). We believe that this takes place due 364 

to the environment of the real tree the QSM was reconstructed from, which was not modeled 365 

appropriately in the SSM. Namely, the environmental effects (positions relative to the sun, as the tree 366 

grows in the Northern country, animals, winds, neighboring trees etc.) might cause systematic 367 

influences exerted on the shape of the QSM tree. These influences were not accounted for in the SSM, 368 

which was allowed to grow in any direction, limited by the light conditions, existing branches of the 369 

same tree, and global boundaries of the available space. In addition to the environment influences, 370 

there are TLS measurement and QSM reconstruction errors, arising from the physical limitations of the 371 

instrumental technique and stochasticity of the QSM formation, respectively.  372 
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 373 

Finally, the true understanding of the variability of any measures of the morphological clones comes 374 

with the measurements of the real clones. Carrying out control experiments with QSM reconstructed 375 

from the real clonal individuals can only assess the variability.  These real clone controlled 376 

experiments can further identify whether the obtained variability is large/small for the given 377 

species/clones and lead to the adjustment of the optimization parameters. 378 

 379 

Bayes-Forest toolbox 380 

 381 

We have further developed a unified interface using Matlab facilitating exploration, drawing, 382 

optimization, and simulation of SSM and QSM as well as study of the morphological tree clones. Our 383 

interface allows for faster and easier manipulation of the required data, models, and optimization 384 

routines from the Matlab Optimization Toolbox, using only the required elements of otherwise 385 

complex Matlab configuration for the analysis. 386 

 387 

The Bayes-Forest toolbox is freely available at http://math.tut.fi/inversegroup/app/bayesforest/v1/. We 388 

also encourage the plant and computer scientists’ community to expand their efforts using the toolbox 389 

with other species and models. Such a systematic approach can further be useful in tinkering the best 390 

options for creating QSM, SSM, and construction of the structural data sets. 391 

 392 

III. Discussion 393 

 394 

In this work, we described an algorithmic pipeline aimed at producing stochastic structural replicas, or 395 

morphological “clones”, of trees from a QSM tree (data from TLS reconstruction) and a 396 

complimentary SSM tree (analytical/procedural growth model). The pipeline is based on an iterative 397 

minimization of a distance between morphological structures. The distance is based on construction of 398 

the structural data sets of the tree morphologies and subsequent measure of their discrepancy using the 399 

ideas of distribution tomography analysis. The resulting best-fit morphological clones are statistically 400 

similar which is expressed in overall similarity of their form (coarse-grain), but, nevertheless, 401 

difference in fine details of structural organization (fine-grain). 402 

 403 

Here, we have shown the general logic behind the pipeline and principle possibility for generation of 404 

the morphological clones as defined above. For this purpose we used a highly variable procedural tree 405 
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model (Palubicki et al., 2009), which is more difficult to optimize. As the pipeline consists of several 406 

elementary steps, each of which can be changed according to the application and target analysis, we 407 

have proposed an initial set-up and basic configuration that are capable of the task we have set. We 408 

assume larger possibilities of exploration of the proposed configuration, let alone changing the steps 409 

and individual algorithms within the pipeline, which could be fulfilled by the community of plant 410 

science researchers (for this reason, we also created a little toolbox in Matlab for easier representation 411 

and simulation of the algorithm). 412 

 413 

Developing the principles of the pipeline, we were interested in biological plausibility of the results 414 

rather than visualization purposes. Thus, for example, we use real TLS measurements and general-415 

purpose measure of the distance, while omitting visual effects (e.g. shades, leaves etc.). We believe 416 

this pipeline can be useful in the rigorous analysis of the plant morphogenesis and corresponding 417 

applications (in contrast to some similar studies done in computer graphics field, e.g. (Stava et al., 418 

2014)). 419 

 420 

Moreover, in our algorithm we employ the distance measure taking into account significant portion of 421 

the data (in fact, all data points of a given topological order(s)), not merely scalar overall entities 422 

proposed by other authors (e.g. (Frank, 2010; Stava et al., 2014)). This allows for a more 423 

comprehensive analysis of forms and their description, stemming from the statistical inference theory 424 

and in the spirit of Systems Biology studies. Due to this reason, we do not rely on the traditional 425 

metrics comparison in this work as we found that similar values for the height, girth, and crown 426 

distances may correspond to different tree forms and, thus, be non-robust. 427 

 428 

The robustness of the statistical analysis presented here can be enhanced by using several QSM trees. 429 

In this case, similarly looking trees should be used and the degree of similarity might be established 430 

using our definition of the structural distance. For example, the trunk features are more reliably 431 

reproduced in statistical sense, when several QSM’s are used. In these lines, it might be stressed that 432 

other notions of “clone” can be used to establish relationship with morphology. Thus, the genetic 433 

clones might be utilized to establish to what degree the morphology of a tree is encoded into genes 434 

(nature vs. nurture problem). 435 

 436 

In this initial study, we aimed at showing the plausibility of using our algorithm for effective 437 

morphology exploration. Many detailed studies scrutinizing the particulars of every part of our 438 

procedure wait to be accomplished. Among such particular questions are: QSM reconstruction 439 
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configuration and its impact on the algorithm, structural distance dependence on sample size, different 440 

ways of extraction of the morphological features of a tree, multiple comparison problem, calibration of 441 

the morphological clones with QSM for the real clonal trees, use of other optimization algorithms (e.g. 442 

multi-objective ones), addressing of the “unique solution” problem etc. 443 

 444 

 445 

IV. Materials and methods 446 

 447 

Quantitative Structure Model (QSM) 448 

 449 

QSM is derived from the point cloud obtained by TLS. Essentially, QSM is a surface reconstruction of 450 

the branches of the real tree measured by TLS. The reconstruction itself is a stochastic process, giving 451 

different architecture results for different runs. Therefore, the reconstruction introduces internal errors 452 

in addition to the TLS measurement errors. Besides giving spatial locations of parts of the tree, QSM 453 

also reconstructs topological relations between the tree branches. The branches of QSM consist of 454 

elementary units, i.e. circular cylinders, but other geometrical primitives can also be applicable 455 

(Åkerblom et al., 2015). Thus, any potential structural information about the original tree can be 456 

approximated with high accuracy with QSM (details of the reconstruction algorithm are presented in 457 

(Raumonen et al., 2013) and (Calders et al., 2015), for the validation of the algorithm see (Kaasalainen 458 

et al., 2014; Calders et al., 2015; Hackenberg et al., 2015; Raumonen et al., 2015)). 459 

 460 

In this work, we use the reconstructed QSM of a maple tree (Fig. 2). The tree was measured in leaf-off 461 

conditions and our system consisted of a phase-based terrestrial laser scanner (Leica HDS6100 with a 462 

650–690 nm wavelength). The distance measurement accuracy and the point separation angle of the 463 

scanner were about 2–3 mm and 0.036 degrees, respectively. The horizontal distance of the scanner to 464 

the trunk was about 7–12 m, thus the average point density on the surface of the trunk (at the level of 465 

the scanner) for a single scan is about 2–5 points per square centimeter. 466 

 467 

The QSM of the subject maple tree consists of 19,000 cylinders approximating 3,078 branches. The 468 

tree shape was chosen due to its non-trivial form and obvious irregularities in the tree growth. This is 469 

needed to determine whether the stochastic rules of SSM growth can account for this variability 470 

(which, in fact, might come from some deterministic sources, like constant wind, shading from the 471 

neighbors, animal influences etc., and which we do not know as we do not know the history of 472 
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growth). Thus, our algorithm tries to compensate the unknowns of the growth with simple stochastic 473 

rules of SSM and optimization of the stochastic distance function. 474 

 475 

Stochastic Structure Model (SSM) 476 

 477 

SSM is a simulated model, preferably based on analytical and/or heuristic rules for the tree growth; 478 

however, any viable algorithm for generating tree forms may be used. Importantly, the ultimate output 479 

of the SSM simulation is a table containing data sets U (see IV.3 Structural data sets), describing the 480 

tree structure. 481 

 482 

Additionally, SSM may be supplied with stochastic variability in its parameter values. Through our 483 

studies we implement simple stochastic variations (in the form of normal and uniform distributions) 484 

added to the parameter values of SSM. 485 

 486 

Finally, the elementary units forming the SSM branches should be similar to that of QSM for the 487 

appropriate comparison or, otherwise, any differences in the form primitives must be taken into 488 

account. Usually cylinders are used in SSM studies and they were also shown, when used in QSM, to 489 

produce most reliable estimation of the real tree characteristics (Åkerblom et al., 2015). 490 

 491 

Examples of SSM are: LIGNUM (Perttunen et al., 1996) – a functional-structural plant model based on 492 

the physiological principles of growth of pine trees, but also applicable to other tree forms (Lu et al., 493 

2011); self-organizing tree model (Palubicki et al., 2009) is based on the heuristic principles of growth, 494 

the algorithm is capable of producing various tree shapes and is used in computer graphics; plastic 495 

trees  (Pirk et al., 2012) are procedural growth models used in computer graphics; AMAP/GreenLab 496 

(see e.g. (Reffye et al., 1997; Yan et al., 2004)) is a modeling approach to generate FSPM based upon 497 

empirical rules of growth with some physiological processes taken into account. 498 

 499 

In this work, we use self-organizing tree model (SOT) with shadow propagation algorithm (Palubicki 500 

et al., 2009) as SSM with the minimal changes as to calculate the morphological features and produce 501 

the resulting data sets for comparison with QSM (in this work we used SOT implemented in the LPFG 502 

simulator, part of the VLAB software suite, version 4.4.0-2424 for 64-bit Mac OS, see 503 

http://algorithmicbotany.org/virtual_laboratory/). This procedural tree model is fast and able to 504 

generate variety of forms, hence we can use it effectively to optimize the whole algorithm in respect to 505 

technical details as well as to cover various tree shapes. Note that more specialized tree growth models 506 
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designed for the species in question would be easier subjects for the morphology optimization, but, 507 

nevertheless, can be more valuable in biologically motivated studies (the usual choice is FSPM’s, e.g. 508 

(Potapov et al., 2016)). 509 

 510 

The total number of growth parameters of the model is 27: 23 are grouped, 4 are fixed for all times. 511 

The values of the latter are dictated both by suggestions of the authors in (Palubicki et al., 2009) and 512 

the compromise between computation time and details of the morphological description. For example, 513 

the segment length is 0.2 m (we found this optimal to grow a full size tree within a reasonable span of 514 

time, although this is not the minimum length of the target QSM segments), the voxel size is 0.2 m, 515 

and the model tree grows within 12x12x12 m cube from the center of XY plane of the cube (Z-axis is 516 

oriented upwards). 517 

 518 

The grouped parameters are divided between 5 distinct groups corresponding to different related 519 

processes: 520 

Group I: the initial growth parameters, including limiting values, and pipe model related parameters. 521 

Group II: environmental effects such as sensing of the neighborhood shading, vertical gradient of the 522 

light, tropism etc. 523 

Group III: apical dominance parameters. 524 

Group IV: shadow propagation related constants (see (Palubicki et al., 2009)). 525 

Group V: angular/branching properties. 526 

 527 

Structural data sets (U) 528 

 529 

Structural data sets for any given tree structure are empirical collections of the physical dimensions 530 

and spatial orientation measures of segments and branches that are composed of segments. These data 531 

sets must be similarly obtained for any pair of {Um,Ud} that is to be compared by means of the distance 532 

algorithm. 533 

 534 

Quantities in the data sets may represent scalar characteristics and/or relations between several 535 

covariates (e.g. radii, lengths, angles, tapering function of a branch etc.). On the one hand, one needs to 536 

exhaustively describe morphology of the tree using various geometrical and topological features. On 537 

the other hand, as the number of compared data sets {Um,Ud} grows the efficiency of the optimization 538 

routine decreases, since the number of distance measures to be minimized grows correspondingly (one 539 

distance value for each pair {Um,Ud}). Thus, one needs more compact representation of the data. One 540 
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solution is to use bigger data sets with all possibly needed (for a given application) features. (Another 541 

solution is to use multi-objective optimization routines finding, e.g. Pareto front, though we do not 542 

employ such an approach in this work.) Therefore, we use larger tables of all measured features; hence, 543 

one table represents a data set. However, we are unable to merge segment- and branch-related features 544 

into a single table as these differ in dimension (Table 1). Thus, we usually compare the array of pairs 545 

{Um,Ud}, having as a result the array of distance values, but with such larger table representation we 546 

have smaller size of these arrays. 547 

 548 

Branch- and segment-related data are described in Table 1 and Fig. 7. Throughout the manuscript we 549 

maintain the notations Bw and Sw for the branch and segment-related data sets of the (Gravelius) order 550 

w, respectively. The zero order w is assigned to the trunk (a branch connecting the tree with the 551 

ground). At the branching points, the lateral buds give rise to branches with order w+1, where w is the 552 

order of the parent branch, while the apical buds continue the branch of the same order. 553 

 554 

Table 1: Branch and segment features. 555 

 556 

Branch features, units Description 

β, degree Inclination angle of the branch, i.e. angle with its parent branch. 

 

α, degree Azimuthal angle of the branch, i.e. angle around its parent branch 

(calculated from the fixed direction). 

Lt, m Total length of the branch (calculated as the sum of the segment lengths 

constituting the branch). 

Rf, m Initial radius of the branch, i.e. radius of its first segment. 

La, m Length of over the parent branch from its beginning segment to the point 

where the current (child) branch emanates. 

Segment features, units Description 

R, m Radius of the segment. 

L, m Distance from the beginning of the branch to the segment. 

γ, degree Angle between horizontal projections of the segment and its parent. 

ζ, degree Angle between vertical projections of the segment and its parent. 
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Figure 7: Visual structure of a tree and its representation using the structural data sets U. (A) A 557 

sample tree; (B) geometrical features of the branch- and segment-related data sets; and (C) various 558 

projections of the U data sets. 559 

These features are not exhaustive and can be augmented at will, but we found this set sufficient for 560 

obtaining realistic tree shape outcomes. Representation of the data sets in the form of big branch and 561 

segment related tables reduces the complexity of optimization process by reducing the number of 562 

distance values to minimize. Additionally, such representation of the data allows for the fast extraction 563 

of all required relations between covariates or scalar entities without having them as separate data sets. 564 

 565 

In a simulated SSM structure the extraction of topological relations between branches is 566 

straightforward as the user observes the whole process of growth: the lateral buds start the next order 567 

and apical buds continue the current order. However, this is not the case with QSM since it is a time 568 

snapshot of a tree form that does not retain the history of the tree growth. Thus, the reconstruction 569 
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algorithm requires other principles for extraction of topology. Although the reconstruction algorithm 570 

defines a complicated procedure that outlines the topology of a tree, it could be roughly approximated 571 

by the following rule: at branching points the thickest branch is the continuation of the same order w, 572 

while thinner branches are lateral expansions of the order w + 1 (Raumonen et al., 2013). For the 573 

species with weak apical dominance (shrubby trees) we maintain similar procedure when simulating 574 

corresponding SSM (for the species with strong apical dominance, both techniques should converge to 575 

the same result). 576 

 577 

Finally, it is possible to merge the corresponding data sets of the same order, which results at 578 

maximum in two large data sets of branch- and segment-related features, respectively. While this 579 

simplifies the search of the distance minimum (max two values to minimize), this technique must be 580 

used with care as in this case one heavily relies upon the growth rules of SSM. If these rules are not 581 

based on biologically motivated rules, SSM can produce highly unrealistic tree forms as the “best-fit”, 582 

since there is a possibility to mix the features of different topological orders. For example, the 583 

branches of higher order could be much thicker than those of the lower order, which is unrealistic and 584 

naturally is taken care of in the biologically based growth algorithms (e.g. pipe model). 585 

 586 

Measure of structural distance (DS) 587 

 588 

The distance DS between any two data sets, or empirical distributions (dimension or number of 589 

variables of which is not limited), measures the difference between the local densities of the points in 590 

U-space for these data sets. Here, it is constructed by measuring SSM vs. QSM difference of the 591 

normalized cumulative distributions of the point densities projected onto a number of line directions in 592 

the coordinate space of the variables in U. The directions of lines are generated with quasi-Monte 593 

Carlo method using low-discrepancy (quasi-/sub-random) sequences, which cover the given space 594 

more evenly than uniformly generated sequences. The difference between the projected cumulative 595 

distributions is further measured by the Kolmogorov-Smirnov statistic (any other can be used) and the 596 

resulting distance between the two data sets U is an average of all statistics calculated from each of the 597 

lines (see Fig. 8A). 598 

 599 

In general, 𝑈 ∈ 𝑅!, in our case N = 4 (segment) or N = 5 (branch) as can be seen from Table 1. The 600 

empirical probability density function p(U) can be approximated by the series of 1D density functions 601 

p1D(U,L), where L is a line in 𝑅!, each of these 1D functions is constructed by projecting all the data 602 
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points of U (thus, it is not a marginal distribution) onto a line L (in total we use 1000 such line 603 

directions formed quasi-randomly). Cumulative distributions P1D(Um,Li) and P1D(Ud,Li) for each line 604 

direction Li are compared, thus, for any given data set pair {Um, Ud} the resultant distance value is: 605 

𝐷! 𝑈!,𝑈! =
1
𝑛 𝐾 𝑃!! 𝑈!, 𝐿! ,𝑃!! 𝑈! , 𝐿! ,

!

!!!

 

where n is the number of lines and operator 𝐾 ∙,∙  returns the Kolmogorov-Smirnov statistic for the 606 

given pair of 1D empirical cumulative distributions. 607 

 608 

 609 
Figure 8:  Distribution tomography of the structural data sets (A) and classical metric for the 610 

crown spread (B).  (A) Data points in U (projected here for simplicity onto (ui,uj) plane) are used to 611 

construct the projection onto a line L. Cumulative empirical distribution is calculated along L (red). 612 

Only one line is shown, although typically one should use sufficiently enough number of lines to 613 

describe the form of the distribution. (B) Top view of a tree: spokes (red) emanate from the ground 614 

segment (green) extending up to the most distant points (blue). 615 

 616 

Traditional metrics (dx). In order to provide a reference to traditional tree measurement systems, we 617 

also calculate three main tree characteristics that are used for describing a tree shape (Frank, 2010). 618 

Height is calculated as the highest point of a tree. Girth is calculated as the diameter of the ground 619 

segment (the breast-height diameter is not appropriate for the shrubby trees). Crown spread is 620 

calculated as follows. First, on XY-plane (top view, Fig. 8B) the set of spokes (red lines in Fig. 8B) 621 

emanating from the center of a tree (the ground segment, green circle) is formed (here, we opted for 622 

the spokes with azimuthal separation of 10 degrees). Then the length of each spoke is calculated as a 623 
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distance from the tree center to the most distant point of the crown in the direction of the spoke (blue 624 

circles). The crown spread is twice an average of all spokes of a tree. 625 

 626 

Finally, when comparing two tree shapes we calculate the distances as follows: 627 

𝑑! =
ℎ! − ℎ!
ℎ!

;𝑑! =
𝑔! − 𝑔!
𝑔!

;𝑑! =
𝑐! − 𝑐!
𝑐!

. 

In this, hd, gd, and cd are the height, girth, and crown spread of the QSM tree, respectively, whereas hm, 628 

gm, and cm are the corresponding entities of the best-fit SSM tree. Thus, the classical distance dx shows 629 

how large is the difference between entities x in proportion of the corresponding reference/QSM tree 630 

value. 631 

 632 

Optimization routine 633 

 634 

The measure of structural distance DS(Um, Ud) is minimized by adjusting the parameters v of SSM. 635 

In principle (with infinite sampling), DS = 0 for two trees (or, more precisely, infinitely large groups of 636 

stochastically varying trees) that have exactly the same parameters v. These trees are not copies of each 637 

other, but they are structurally (statistically) similar. The choice of the U defining DS is not unique, but 638 

ideally well-chosen U should satisfy the following uniqueness condition for DS to yield an acceptable 639 

measure of distance. Let three trees be given by vA, vB, and vC. Then, if DS(UA,UB) < DS(UA,UC), one 640 

can update C←B, find any new vB for which the inequality holds, and repeat until DS(UA,UB) → 0 and 641 

vB→vA. In practice, this should be true in a large enough neighborhood of vA (any steps down the right 642 

valley lead to its bottom); however, DS > 0 due to the finite sampling and insufficient model. 643 

 644 

Any algorithm from a standard optimization library (e.g. Matlab Optimization Toolbox) that finds a 645 

minimum of an objective function (DS = F(v)) can be used. However, to facilitate global minimum 646 

search and given the nature of the problem we use the genetic algorithm (implemented in Matlab, 647 

version R2015b). Additionally, some parameters of SSM may take only integer values, so the genetic 648 

algorithm handles the integer parameters correctly unlike, for example, the classical steepest decent 649 

algorithm. The genetic algorithm iteratively finds a minimum of DS, each iteration being called 650 

generation. Each generation is characterized with a number of individuals, i.e. population; one 651 

individual is equivalent to one set of the parameter values. The variation is controlled by the crossover 652 

rate (rate of recombination of the population parameters) and mutation rate (rate of introduction of the 653 

new variability into the population). The former is fixed to 80% in the Matlab Optimization Toolbox, 654 

whereas the latter is controlled by our configuration. Ranges of the parameters are given by the user. 655 
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There are two types of ranges: global lower and upper boundaries for each of the parameter values and 656 

initial range, from which the algorithm tries to construct the initial population (and, perhaps, where the 657 

best solution lies). The latter controls the convergence rate: if it is too broad poor convergence is 658 

attained. Finally, algorithm stops when there have passed a fixed number of generations without 659 

improving the distance. 660 

 661 

Thus, the objective function takes the input parameters v, simulates SSM with v, calculates and returns 662 

structural data sets Um. Subsequently, the objective function calculates DS(Um, Ud) and returns it to the 663 

optimization routing. The SSM, being a stochastic model, must have a fixed random generator seed 664 

during optimization, i.e. the same input parameter set must produce the same structural output. This is 665 

needed for convergence of the optimization. After obtaining the final best-fit form of SSM, one can 666 

further explore the variability coming from different random number sequences used in the SSM 667 

simulations (in addition to Matlab, we used GNU Octave version 4.2.0 for clone generation, see 668 

http://www.gnu.org/software/octave/doc/interpreter/). Thus, such random best-fit SSM is capable of 669 

producing the clonal morphologies (the same overall structure with varying details of organization), 670 

which is the main goal of our algorithm. 671 
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 792 

Figure legends 793 

 794 

Figure 1: The algorithm outline (see explanation in the text). 795 

 796 

Figure 2: The target QSM structure. (A) w = 0, 1; (B) w = 0, 1, 2; (C) w = 0, 1, 2, 3; (D) distribution 797 

of the topological orders w of the QSM. Full QSM tree: XZ-projection (E), YZ-projection (F), and 798 

XY-projection (G). 799 

 800 

Figure 3: The rosette-shape SSM resulting from the adjustment of the low order (S0,1) scatters. 801 

(A) The SSM tree; (B) the target QSM; (C) some S0,1 scatters used in the optimization; (D) higher 802 

order (w = 2) S-scatters; (E) higher order (w = 2, 3) B-scatters. Note that the scatters in (D) and (E) 803 

were not used in the optimization. SSM/QSM scatters are shown in red/blue. 804 

 805 

Figure 4: Low and high order adjustment of the stochastic feature tables. The best-fit SSM is 806 

obtained through optimization against S0,1 and B2,3,4 merged feature data sets. (A) The best-fit SSM 807 

tree, (B) the target QSM tree, (C) some projection scatters from S1, (D) S2 projection scatters, (E) B2 808 

and B3 projection scatters. 809 

 810 

Figure 5: Stochastic structure distance profiles in the parameter space. (A) Three realizations of 811 

the distance hyper-surface projection along a dimensionless parameter λ of the SSM, controlling the 812 

apical dominance of a tree (the shown fragment of the projection with the step of 0.001 approximates 813 

30% of the allowed variability of the parameter during optimization, which was [0.35, 0.65]). (B) 814 

Structural distance (U = {S0,1, B2,3,4}) values for 100 randomly generated SSM trees for each value of a 815 

discrete SSM parameter, i.e. number of growth iterations (red line connects the median points of the 816 

distance distributions for each parameter value; blue line shows the same median distance profile but 817 

for the disturbed system from (C)). (C) Same as in (B), but U = S0,1 (blue line is the median profile; red 818 
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line is from (B)). The SSM is the best-fit SSM from Fig. 4; the black arrow indicates the parameter 819 

value of the best-fit SSM. 820 

 821 

Figure 6: Morphological clones generated from the best-fit SSM. The best-fit SSM was found 822 

using the higher topological order adjustments (Fig. 4) with number of growth iterations 30 (A), 26 823 

(B), and 18 (C). The height, girth, crown spread, and classical metrics distributions are shown in (D) 824 

for the clones in (A), (B), and (C) (the total number of generated clones for each case is n = 100). The 825 

black horizontal line indicates the corresponding measure of the target QSM. 826 

 827 

Figure 7: Visual structure of a tree and its representation using the structural data sets U. (A) A 828 

sample tree; (B) geometrical features of the branch- and segment-related data sets; and (C) various 829 

projections of the U data sets. 830 

 831 

Figure 8:  Distribution tomography of the structural data sets (A) and classical metric for the 832 

crown spread (B).  (A) Data points in U (projected here for simplicity onto (ui,uj) plane) are used to 833 

construct the projection onto a line L. Cumulative empirical distribution is calculated along L (red). 834 

Only one line is shown, although typically one should use sufficiently enough number of lines to 835 

describe the form of the distribution. (B) Top view of a tree: spokes (red) emanate from the ground 836 

segment (green) extending up to the most distant points (blue). 837 

 838 
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