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ABSTRACT	
  42	
  
 43	
  

Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop 44	
  

in the tropics. Genomic selection (GS) reduces selection cycle times by the prediction 45	
  

of breeding value for selection of unevaluated lines based on genome-wide marker 46	
  

data. GS has been implemented at three breeding programs in sub-Saharan Africa. 47	
  

Initial studies provided promising estimates of predictive abilities in single 48	
  

populations using standard prediction models and scenarios. In the present study we 49	
  

expand on previous analyses by assessing the accuracy of seven prediction models for 50	
  

seven traits in three prediction scenarios: (1) cross-validation within each population, 51	
  

(2) cross-population prediction and (3) cross-generation prediction. We also evaluated 52	
  

the impact of increasing training population size by phenotyping progenies selected 53	
  

either at random or using a genetic algorithm. Cross-validation results were mostly 54	
  

consistent across breeding programs, with non-additive models like RKHS predicting 55	
  

an average of 10% more accurately. Accuracy was generally associated with 56	
  

heritability. Cross-population prediction accuracy was generally low (mean 0.18 57	
  

across traits and models) but prediction of cassava mosaic disease severity increased 58	
  

up to 57% in one Nigerian population, when combining data from another related 59	
  

population. Accuracy across-generation was poorer than within (cross-validation) as 60	
  

expected, but indicated that accuracy should be sufficient for rapid-cycling GS on 61	
  

several traits. Selection of prediction model made some difference across generations, 62	
  

but increasing training population (TP) size was more important. In some cases, using 63	
  

a genetic algorithm, selecting one third of progeny could achieve accuracy equivalent 64	
  

to phenotyping all progeny. Based on the datasets analyzed in this study, it was 65	
  

apparent that the size of a training population (TP) has a significant impact on 66	
  

prediction accuracy for most traits. We are still in the early stages of GS in this crop, 67	
  

but results are promising, at least for some traits. The TPs need to continue to grow 68	
  

and quality phenotyping is more critical than ever. General guidelines for successful 69	
  

GS are emerging. Phenotyping can be done on fewer individuals, cleverly selected, 70	
  

making for trials that are more focused on the quality of the data collected.	
   	
  71	
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INTRODUCTION 72	
  
	
  73	
  
Cassava (Manihot esculenta Crantz), a root crop with origins in the Amazon basin 74	
  

(Olsen and Schaal, 1999), provides staple food for more than 500 million people 75	
  

worldwide (Howeler et al., 2013). It is widely cultivated in Sub-Saharan Africa where 76	
  

the storage roots serve as primary source of carbohydrates and can be processed into a 77	
  

wide variety of products such as Fufu, Lafun, Gari, Abacha, Tapioca and starch 78	
  

(Chukwuemeka, 2007; Bamidele et al., 2015). 79	
  

Cassava is a diploid (2n=36) and highly heterozygous non-inbred crop that is 80	
  

propagated vegetatively by farmers using stem cuttings, though most genotypes do 81	
  

flower and can be used to produce botanical seeds from either self or cross-82	
  

pollination. Among the most important traits targeted for improvement are storage 83	
  

root yield, dry matter content, starch content, tolerance to postharvest physiological 84	
  

deterioration, carotenoids content and resistance to pests/diseases (Esuma et al., 85	
  

2016). 86	
  

Development and implementation of breeding strategies in cassava represent a 87	
  

challenge due to the crop’s heterozygous nature and long breeding cycle. A traditional 88	
  

cassava-breeding program relies on phenotypic characterization of mature plants that 89	
  

have been clonally propagated.  Typically, cycles of selection take three to six years 90	
  

from seedling germination to multi-location yield trials and additional years are 91	
  

required for evaluation of promising genotypes before variety release (Figure 1).  92	
  

 Marker-assisted selection (MAS) has been effective in cassava for the 93	
  

selection of promising genotypes for resistance to cassava mosaic disease (Okogbenin 94	
  

et al., 2007; Ceballos et al., 2015; Parkes et al., 2015). However, the use of MAS is 95	
  

limited primarily to monogenic traits, which makes this method infeasible for 96	
  

complex traits (Dekkers and Hospital, 2002; Heffner et al., 2009a). 97	
  

With the advent of next generation sequencing technologies, it is now 98	
  

affordable to profile single nucleotide polymorphic (SNP) markers genome-wide 99	
  

(Barabaschi et al., 2015), which can support the use of genomic selection (GS), a 100	
  

breeding method that uses such markers to predict breeding values of unevaluated 101	
  

individuals (Meuwissen et al., 2001). GS can optimize and accelerate pipelines for 102	
  

population improvement, variety development and release (Heffner et al., 2009b) with 103	
  

reduction in breeding time due to selection of parental genotypes with superior 104	
  

breeding values at seedling stage based on genotypes alone.  105	
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In general, GS models differ with respect to the assumptions they make about 106	
  

genetic architecture. While random-regression (RRBLUP) and genomic-BLUP 107	
  

(GBLUP) models assume an infinitesimal genetic architecture (nearly equal and small 108	
  

contribution of all genomic regions to the phenotype), Bayesian methods are available 109	
  

that alter that assumption (Gianola et al., 2009; Legarra et al., 2011; Habier et al., 110	
  

2011). Evaluation of different GS models using non-simulated data indicates that 111	
  

prediction accuracy varies across species and traits (Heslot et al., 2012; Resende et al., 112	
  

2012; Gouy et al., 2013; Charmet et al., 2014; Rutkoski et al., 2014; Cros et al., 113	
  

2015).  114	
  

Previous studies in cassava have estimated genetic parameters and evaluated 115	
  

prediction accuracy applying the GBLUP model with small training sets and low-116	
  

density markers (Oliveira et al., 2012, 2014). Historical phenotypic data from the 117	
  

International Institute of Tropical Agriculture (IITA) combined with markers obtained 118	
  

from genotyping-by-sequencing (GBS) showed promising results for cassava 119	
  

breeding using genomic selection (Ly et al., 2013). In that study, the predictive ability 120	
  

(accuracy) measured as the correlation between predictive values and the phenotypic 121	
  

value ranged from 0.15 to 0.47 across traits (Ly et al., 2013).  122	
  

There are ongoing efforts under the Next Generation Cassava Breeding 123	
  

(NextGen Cassava) project (www.nextgencassava.org) to increase the rate of genetic 124	
  

improvement in cassava and unlock the full potential of cassava production. The 125	
  

project is currently in the early stages of implementing genomic selection at three 126	
  

African research institutes: the National Crops Resources Research Institute 127	
  

(NaCRRI) in Uganda, the National Root Crops Research Institute (NRCRI) and the 128	
  

IITA, both in Nigeria. 129	
  

In the present study, we evaluated the potential of genomic selection as a 130	
  

breeding tool to increase rates of genetic gain in datasets associated with all three 131	
  

NextGen Cassava breeding programs. We assessed predictive ability by cross-132	
  

validation within training population datasets for seven traits: dry matter (DM) 133	
  

content, fresh root weight (RTWT), root number (RTNO), shoot weight (SHTWT), 134	
  

harvest index (HI), severity of cassava mosaic disease (MCMDS) and plant vigor 135	
  

(VIGOR). We compared the performance of seven GS models for these traits in each 136	
  

of the breeding programs.  137	
  

One important topic in genomic selection concerns the feasibility of prediction 138	
  

across generations and across training populations from different breeding 139	
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populations or programs. To maximize the rate of gain achievable by GS, prediction 140	
  

models will need to accurately rank unevaluated progenies rather than genotypes 141	
  

contemporary to the training population. It is well known that recombination and 142	
  

divergence associated with recurrent selection reduces the accuracy of across-143	
  

generation prediction, making this kind of prediction a major challenge for genomic 144	
  

selection. Accuracies in these scenarios have not been previously estimated in 145	
  

cassava. Therefore, we tested accuracy of across-generation prediction using the IITA 146	
  

training population and two successive cycles of progenies that have been 147	
  

phenotyped. Similarly, given that previous results indicated only a small genetic 148	
  

differentiation among clones from different populations (Wolfe et al., 2016a), we 149	
  

tested whether combining information from different populations could increase 150	
  

prediction accuracy in the smaller populations.  151	
  

Finally, in a typical scenario a GS program will phenotype all selected 152	
  

materials and a subset of the unselected material in order to update the training model. 153	
  

We further investigated the impact of phenotyping different size subsets of materials 154	
  

for TP update. We compared random subset selections to selections based on a 155	
  

training population optimization algorithm (Akdemir et al. 2015). 156	
  

This study is a starting point for successful application of genomic selection in 157	
  

African cassava. Similar to other studies, factors such as trait heritability, prediction 158	
  

model and training population composition play an important role. For example, traits 159	
  

with higher heritability like DM are considered to be more likely to respond to 160	
  

selection and lead to larger genetic gain over cycles of selection  (Kawano et al 1998, 161	
  

Ceballos et al 2015). Our results will serve to guide implementation strategies for GS 162	
  

in cassava breeding programs. 163	
  

 164	
  

  165	
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MATERIALS & METHODS 166	
  

Germplasm 167	
  

In this study, we analyzed data from the genomic selection programs at three African 168	
  

cassava breeding institutions: NaCRRI, NRCRI and IITA. Germplasm from NaCRRI 169	
  

included 411 clones descended from crosses among accessions from East Africa, 170	
  

West Africa and South America. The collection from NRCRI was made up of 899 171	
  

clones, 211 of them being in common with the IITA breeding germplasm. The 172	
  

remaining 688 clones were materials derived either in part or directly from the 173	
  

International Center for Tropical Agriculture (CIAT) in Cali, Columbia. Wolfe et al. 174	
  

(2016a) shows details of origins and pedigrees of the NaCRRI and NRCRI clones 175	
  

used in this study. 176	
  

The primary IITA germplasm we have analyzed is also known as the Genetic 177	
  

Gain (GG) collection, which comprises 709 elite and historically important breeding 178	
  

clones and a few landraces that have been collected starting in the 1970’s. These 179	
  

materials have also been previously described in Okechukwu and Dixon (2008), Ly et 180	
  

al. (2013) and Wolfe et al. (2016a).  181	
  

In addition, two generations of GS progenies were analyzed (Figure 2). The 182	
  

first, GS cycle 1 (C1) comprised 2,890 clones, from 166 full-sib (FS) families with 85 183	
  

parents from the GG collection. Because successful crossing is a challenge in cassava, 184	
  

and in order to obtain the full set of desired matings among parents of C1, crossing 185	
  

blocks were planted in two successive years (2013 and 2014). In 2013, 79 parents 186	
  

produced 2,322 seedlings (135 FS families). In 2014, 17 parents, of which, 11 were 187	
  

re-used from the previous year and six were new parents from the GG collection, gave 188	
  

rise to an additional 568 seedlings (31 new FS families). C1 families have a mean size 189	
  

of 17.4 siblings (median 15, range 2 to 78). 190	
  

Finally, in 2014, a crossing block was planted with 89 selected C1 parents and 191	
  

generated 1648 GS cycle 2 (C2) seedlings in 242 FS families. Cycle 2 families had a 192	
  

mean size of 6.8 individuals (median 6, range 1 to 20). 193	
  

 194	
  

  195	
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Phenotyped traits 196	
  

In total, seven traits were analyzed in this study. Plant vigor (VIGOR) was recorded 197	
  

as 3 (low), 5 (medium) and 7 (high), one month after planting (1 MAP) at IITA and 198	
  

NRCRI and three MAP at NaCRRI. We used the across-season average cassava 199	
  

mosaic disease severity score (MCMDS) for our analyses. MCMDS is the mean of 200	
  

measurements taken at 1, 3 and 6 MAP, on a scale of 1 (no symptoms) to 5 (severe 201	
  

symptoms). DM was expressed as a percentage of dry root weight relative to fresh 202	
  

root weight (RTWT). At IITA, DM was measured by drying 100 g of fresh roots in an 203	
  

oven whereas at NRCRI and NaCRRI, the specific gravity method (Kawano et al., 204	
  

1987) was used. RTWT and SHTWT were expressed in kilograms per plot, whereas 205	
  

HI was the proportion of total biomass per plot that is RTWT. Meanwhile, RTNO was 206	
  

the number of fresh roots harvested per plot. 207	
  

The phenotyping trials analyzed in this study have been described in part in 208	
  

previous publications (Wolfe et al. 2016a; Wolfe et al. 2016b). However, complete 209	
  

details on the phenotyping trial design particular to this study are provided in 210	
  

Supplementary Methods. All phenotyping trials were conducted between 2013 and 211	
  

2015. NaCRRI clones were evaluated in three locations with different agro-ecological 212	
  

conditions in Uganda: Namulonge, Kasese and Ngetta. NRCRI clones were tested in 213	
  

three locations in Nigeria: Kano, Otobi and Umudike. Meanwhile, IITA clones were 214	
  

evaluated in four locations within Nigeria: Ibadan, Ikenne, Ubiaja and Mokwa.  215	
  

  216	
  

Two-stage genomic analyses 217	
  

Except where noted, a two-step approach was used to evaluate genomic prediction in 218	
  

this study. This approach was used to correct for the heterogeneity in experimental 219	
  

designs and increase computational efficiency. The first stage involved accounting for 220	
  

trial-design related variables using a linear mixed model.  221	
  

For NaCRRI we fitted the model: 𝒚 =   𝑿𝛽 +   𝒁𝒄𝒍𝒐𝒏𝒆𝑐 + 𝒁𝒓𝒂𝒏𝒈𝒆(𝒍𝒐𝒄.𝒚𝒆𝒂𝒓)𝑟 +222	
  

𝒁𝒃𝒍𝒐𝒄𝒌(𝒓𝒂𝒏𝒈𝒆)𝑏 + 𝜀, where β included a fixed effect for the population mean, the 223	
  

location-year combination and for plot-basis traits (RTWT, RTNO and SHTWT), the 224	
  

number of plants harvested per plot was included as a covariate; vector c and 225	
  

corresponding incidence matrix Zclone represented a random effect for clone where 226	
  

𝑐~N 0, 𝐈𝜎!! ; I represented the identity matrix, while the range variable was nested in 227	
  

location-year-replication and was represented by the incidence matrix Zrange(loc.year) 228	
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and random effects vector 𝑟~N 0, 𝐈𝜎!! . Ranges were equivalent to a row or column 229	
  

along which plots were arrayed. Blocks were also modeled, with a block being a 230	
  

subset of a range. Block effects were nested in ranges and were incorporated as 231	
  

random with incidence matrix Zblock(range) effects vector 𝑏~N 0, 𝐈𝜎!! . Finally, the 232	
  

residuals 𝜀 were random, with 𝜀~N 0, 𝐈𝜎!! . 233	
  

The model for NRCRI was: 234	
  

𝒚 =   𝐗𝛽 +   𝐙𝐜𝐥𝐨𝐧𝐞𝑐 + 𝐙𝐬𝐞𝐭(𝐥𝐨𝐜.𝐲𝐞𝐚𝐫)𝑠 + 𝐙𝐫𝐞𝐩(𝐬𝐞𝐭)𝑟 + 𝐙𝐛𝐥𝐨𝐜𝐤(𝐫𝐞𝐩)𝑏 + 𝜀. Here, Zset was the 235	
  

incidence matrix corresponding to the random effect for the planting group (see 236	
  

above), which was nested in location-year, with 𝑠~N 0, 𝐈𝜎!! . Replication effects 237	
  

were nested in sets and treated as random with incidence matrix Zrep(set) and effects 238	
  

vector 𝑟~N 0, 𝐈𝜎!! . Blocks were nested in replications, treated as random and 239	
  

represented by design matrix Zblock(rep) and effects vector 𝑏~N 0, 𝐈𝜎!! . The fixed 240	
  

effects for NRCRI included were the same as for NaCRRI, with the addition of a term 241	
  

for trial (i.e. TP1 and TP2; see above). 242	
  

For IITA, data from all trials described above were fitted  together using the 243	
  

following model: 𝒚 =   𝐗𝛽 +   𝐙𝐜𝐥𝐨𝐧𝐞𝑐 + 𝐙𝐫𝐚𝐧𝐠𝐞(𝐥𝐨𝐜.𝐲𝐞𝐚𝐫)𝑟 + 𝜀. The range effect was fit 244	
  

as random.  The fixed effects were the same as those described for NaCRRI except 245	
  

the proportion of harvested plants (out of the total originally planted) was used instead 246	
  

of the number harvested as a cofactor. This was done to correct for differences in plot 247	
  

sizes.  248	
  

BLUP (ĉ) for the clone effect, which represents an estimate of the total genetic 249	
  

value (EGV) for each individual, was extracted. EGVs were de-regressed by dividing 250	
  

by their reliability (1−   𝐏𝐄𝐕
!!!
), where PEV is the prediction error variances of the 251	
  

BLUP. The mixed models above were solved using the lmer function of lme4 package 252	
  

(Bates et al., 2014) in R.  253	
  

For downstream genomic evaluations, we used the de-regressed EGVs and 254	
  

weighted error variances according to Garrick et al. (2009), using one divided by the 255	
  

square root of !!!!

!.!!  !!!
!

!! !!
, where H2 is the proportion of the total variance explained by 256	
  

the clonal variance component, 𝜎!!. 257	
  

 258	
  

  259	
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Genotyping data 260	
  

Cassava collections described above were genotyped using GBS (Elshire et al. 2011) 261	
  

with the ApeKI restriction enzyme recommended by Hamblin and Rabbi (2014). 262	
  

SNPs were called using the TASSEL 5.0 GBS pipeline v2 (Glaubitz et al., 2014) and 263	
  

aligned to cassava reference genome, v6.1 (http://phytozome.jgi.doe.gov; ICGMC, 264	
  

2015). Genotype calls were only allowed when a minimum of two reads were present, 265	
  

otherwise the genotype was imputed (see below). Furthermore, the GBS data was 266	
  

filtered such that clones with >80% missing and markers with >60% missing 267	
  

genotype calls were removed. Markers with extreme deviation from Hardy-Weinberg 268	
  

equilibrium (Χ2 > 20) were also removed. Only biallelic SNP markers were 269	
  

considered for further analyses. We used a combination of custom scripts and 270	
  

common variant call file (VCF) (Danecek et al., 2011) manipulation tools to 271	
  

accomplish the above pipeline. Finally, imputation was conducted with Beagle v4.0 272	
  

(Browning & Browning, 2009). A total of 155,871 markers were obtained following 273	
  

the procedures described above. For genomic prediction in a given population/dataset, 274	
  

we further filtered out SNPs with a minor allele frequency (MAF) less than 0.01. 275	
  

 276	
  

Assessment of prediction accuracy by cross-validation 277	
  

In order to obtain unbiased estimates of prediction accuracy, we used a k-fold cross 278	
  

validation scheme (Kohavi, 1995). In brief, each breeding program dataset (NR, UG 279	
  

and GG) was split randomly into k = 5 fold mutually exclusive training and validation 280	
  

sets. The training set composed by four out of five of the folds was used to estimate 281	
  

marker effects for predictions. The estimated marker effects were used to predict the 282	
  

breeding value of validation set individuals. The process of fold assignment and 283	
  

genomic prediction was repeated 25 times for each model. For each repeat, 284	
  

predictions were accumulated from each individual when it was in the validation fold. 285	
  

Prediction accuracy was then calculated as the Pearson correlation (cor function in R) 286	
  

between the EGV and the accumulated predicted values for that repeat. 287	
  

 288	
  

Genomic prediction methods 289	
  

In this study, we compared the accuracy of genomic prediction using seven methods 290	
  

that are briefly described below. These methods differ in their assumptions about 291	
  

genetic architecture and whether the prediction being made represents a genome 292	
  

estimated breeding value (GEBV, which includes additive effects) or a genome 293	
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estimated total genetic value (GETGV, which includes additive plus non-additive 294	
  

effects). Prediction models were compared using several prediction scenarios 295	
  

(described in detail below), including 25 replications of 5-fold cross-validation, cross-296	
  

generation and cross-population prediction. 297	
  

 298	
  

GBLUP. Prediction with genomic BLUP (GBLUP) involves fitting a linear mixed 299	
  

model of the following form: 𝒚 =   𝐗𝜷+   𝐙𝒈+ 𝜺 . Here, y is a vector of the 300	
  

phenotype, β is a vector of fixed, non-genetic effects with design matrix X. The 301	
  

vector g is a random effect, the best linear unbiased prediction (BLUP), which 302	
  

represents the GEBV for each individual. Z is a design matrix pointing observations 303	
  

to genotype identities and ε is a vector of residuals. The GEBV is obtained by 304	
  

assuming 𝒈~N(0,𝐊𝜎!!), where 𝜎!!  is the additive genetic variance and K is the 305	
  

square, symmetric genomic realized relation matrix based on SNP marker dosages. 306	
  

The genomic relationship matrix used was constructed using the function A.mat in the 307	
  

R package rrBLUP (Endelman, 2011) and follows the formula of VanRaden (2008), 308	
  

method two. GBLUP predictions were made with the function emmreml in the R 309	
  

package EMMREML (Akdemir and Okeke, 2015). 310	
  

 311	
  

RKHS. We made predictions using reproducing kernel Hilbert spaces (RKHS). The 312	
  

genomic relationship matrix used in the GBLUP model described above can be 313	
  

considered as a parametric (additive genetic) kernel function and exists as a special 314	
  

case of RKHS (Gianola and van Kaam, 2008; Morota and Gianola, 2014). For RKHS 315	
  

predictions, we used a mixed model of the same form as for GBLUP above. Unlike 316	
  

for GBLUP, we used a Gaussian kernel function: 𝐾!"   = exp  (− d!"θ ). Here, Kij was 317	
  

the measured relationship between two individuals, dij was their euclidean genetic 318	
  

distance based on marker dosages and θ was a tuning (sometimes called a 319	
  

“bandwidth”) parameter that determines the rate of decay of correlation among 320	
  

individuals. Because this is a nonlinear function, the kernels we used for RKHS could 321	
  

capture non-additive as well as additive genetic variation. Thus, the BLUPs from 322	
  

RKHS models represent GETGVs rather than GEBVs. 323	
  

Because the optimal θ must be determined, a range of values was tested in two 324	
  

ways. First, we did cross-validation with the following θ values and selected the one 325	
  

with the best accuracy: 0.0000005, 0.000005, 0.00005, 0.0001, 0.0005, 0.001, 0.004, 326	
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0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1 (Single kernel RKHS). Second, we used 327	
  

the emmremlMultiKernel function in the EMMREML package to fit a multiple-kernel 328	
  

model with six covariance matrices, with the following bandwidth parameters and 329	
  

allowed REML to find optimal weights for each: 0.0000005, 0.00005, 0.0005, 0.005, 330	
  

0.01, 0.05 (Multi-kernel RKHS).  331	
  

 332	
  

Bayesian Marker Regressions. We tested four well-established Bayesian prediction 333	
  

models: BayesCpi (Habier et al., 2011), the Bayesian LASSO (BL; Park and Casella, 334	
  

2008), BayesA, and BayesB (Meuwissen et al., 2001). In ridge-regression (equivalent 335	
  

to GBLUP), marker effects are all shrunken by the same amount, because we assume 336	
  

they are all drawn from a normal distribution with the same variance. Further, all 337	
  

markers have nonzero effect and most have small effects, essentially assuming that 338	
  

the genetic architecture of the trait is infinitesimal. In contrast, the Bayesian models 339	
  

we tested allow for alternative genetic architectures by inducing differential shrinkage 340	
  

of marker effects. For BayesA and BL, all markers have nonzero effect but marker 341	
  

variances are drawn from scaled-t and double-exponential distributions respectively, 342	
  

which are both distributions with thicker tails and greater density at zero. BayesB and 343	
  

BayesCpi are variable selection models, because the marker variances come from a 344	
  

two-component mixture of a point mass at zero and either a scaled-t distribution 345	
  

(BayesB) or a normal distribution (BayesCpi). Fitting BayesB and BayesCpi begins 346	
  

by estimating a parameter pi, the proportion of markers with nonzero effect. We 347	
  

performed Bayesian predictions with the R package BGLR (Pérez and De Los 348	
  

Campos, 2014). Following Heslot et al. (2012) and others, we ran BGLR for 10,000 349	
  

iterations, discarded the first 1000 iterations as burn-in and thinned to every 5th 350	
  

sample. Marker dosages were mean-centered for each training population before 351	
  

analysis. Convergence was confirmed visually in initial test runs using the coda 352	
  

package in R (Plummer et al., 2006).   353	
  

 354	
  

Random Forest. Random forest (RF) is a machine learning method used widely in 355	
  

regression and classification (Breiman, 2001; Strobl et al., 2009). The use of RF 356	
  

regression with marker data has been shown to capture epistatic effects and has been 357	
  

successfully used for prediction of GETGV (Breiman, 2001; Motsinger-Reif et al., 358	
  

2008; Michaelson et al., 2010; Heslot et al., 2012; Charmet et al., 2014; Sarkar et al., 359	
  

2015; Spindel et al., 2015). In prediction, a random forest is a collection of r 360	
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regression trees grown on a subset of the original dataset that is bootstrapped over 361	
  

observations and randomly sampled over predictors. Averaging the prediction over 362	
  

trees for validation observations then aggregates information. We used RF with the 363	
  

parameter, ntree set to 500 and the number of variables sampled at each split (mtry) 364	
  

equal to 300. We implemented RF using the randomForest package in R (Liaw and 365	
  

Wiener, 2002). As in the Bayesian regressions, marker dosages were mean-centered 366	
  

before RF analysis. 367	
  

 368	
  

Comparison of models based on similarity of rankings 369	
  

In order to test for GS model similarities among breeding programs we clustered the 370	
  

GEBV output on a breeding program basis. GEBVs from each model were scaled and 371	
  

centered on a column basis, using the scale function in R, and were then used to 372	
  

construct a matrix of Euclidean distances between models. Distance matrices were 373	
  

used as an input for hierarchical clustering using the Ward criterion implemented in 374	
  

the hclust R function (Heslot et al., 2012). 375	
  

 376	
  

Across-generation genomic predictions 377	
  

Because nearly all of the IITA germplasm from C1 and C2 had been clonally 378	
  

evaluated, we were able to test the prospects for prediction of unevaluated progeny. 379	
  

We predicted all traits using all methods in four scenarios: GG predicts C1, GG 380	
  

predicts C2, C1 predicts C2, GG+C1 predicts C2. Unlike in the other predictions 381	
  

presented in this study, cross-generation predictions were done in a single step (raw 382	
  

phenotype and genomic data fit simultaneously). The exception was for RF, where 383	
  

correction for location and blocking factors is not supported. For RF prediction, we 384	
  

used the same de-regressed EGVs as for cross-validation. The software and 385	
  

parameters used were the same as already described. The design model is the same as 386	
  

described for IITA above.  387	
  

 388	
  

Training population update 389	
  

We evaluated the impact on cross-generation prediction accuracy of phenotyping 390	
  

different size subsets of the un-selected C1 (materials selected for crossing in each 391	
  

cycle were phenotyped, but unselected materials were not phenotyped in all cases). 392	
  

We selected subsets of C1 using two methods: randomly and with a genetic algorithm 393	
  

implemented in the R package STPGA (Akdemir et al., 2015).  394	
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STPGA uses an approximation of the mean prediction error variance (PEV) 395	
  

expected for a given set of training individuals in combination with a given set of test 396	
  

genotypes as a criterion (which does not require phenotype data) for selecting the 397	
  

“optimal” training set. The genetic algorithm implemented by STPGA is used to 398	
  

rapidly find the training set that minimized the selection criterion (mean PEV of the 399	
  

test set; Akdemir et al., 2015). In order to speed up computation, STPGA uses 400	
  

principal components rather than raw SNP markers as genetic predictors. 401	
  

Parents selected for further recombination were cloned into a crossing block. 402	
  

This is the point at which additional, un-selected seedlings must be chosen for 403	
  

phenotyping in order to incorporate their data in the prediction of the eventual 404	
  

progeny that are produced. Since the next generation of progenies had not yet been 405	
  

produced, we targeted STPGA on the parents of C2 (PofC2). Figure 3 provides a 406	
  

schematic of genomic selection with training population update and optimization 407	
  

using STPGA. We constructed a genomic relationship matrix with only C1 (including 408	
  

the PofC2). We did PCA on the kinship matrix and took the first 100 principal 409	
  

components as genomic predictors. We ran 1000 iterations of the genetic algorithm 10 410	
  

times at each sample size.  Sample sizes ranged from 200 to 2400 at increments of 411	
  

400 (Supplementary Table 1). Predictions at each sample size were then made with 412	
  

each of 10 random and 10 optimized training sets using GBLUP in two scenarios: 413	
  

either just the sample of C1 was used to train the model or the sample of C1 plus all 414	
  

of the GG were used.  415	
  

 416	
  

Across-population genomic predictions 417	
  

We predicted all traits using all methods in three scenarios: GG (IITA Genetic Gain) 418	
  

+NR (NRCRI) predicts UG (NaCRRI), GG+UG predicts NR, NR+UG predicts GG 419	
  

(Supplementary Table 2A). Across-population predictions were made using the 420	
  

prediction models described above and were done following the two-step approach as 421	
  

also described above.  422	
  

We selected optimized subsets of the combined datasets with a genetic 423	
  

algorithm implemented in the R package STPGA (Akdemir et al., 2015). Random 424	
  

subsets of the same size as the optimized subsets (300, 600, 900 and 1200) were 425	
  

selected for comparison between predictive accuracies. Predictions at each sample 426	
  

size were then made with each of 10 random and 10 optimized training sets using 427	
  

GBLUP.  428	
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RESULTS 429	
  

After quality control and keeping only markers with >1% MAF, the datasets had 430	
  

between 70,010 and 78,212 SNP markers (Table 1). Principal component analysis 431	
  

(PCA) of the genomic relationship matrix indicated some genetic differentiation 432	
  

between Nigerian populations (GG and NR) and the Ugandan training population 433	
  

(UG; Figure S1a). In contrast, there was little differentiation between the NRCRI and 434	
  

IITA GG datasets, even when comparing only the non-overlapping clones. We also 435	
  

calculated FST between populations as implemented in vcftools (Danecek et al., 2011). 436	
  

In agreement with results from PCA, FST between GG and NR was only 0.008, but 437	
  

was 0.019 and 0.021 between the Ugandan and the Nigerian populations, GG and NR, 438	
  

respectively. There was a similar amount of genetic differentiation between the IITA 439	
  

C2 progeny and its grandparental GG population (FST = 0.02) as there was between 440	
  

GG and UG (Table 1, Figure S1b).   441	
  

 The mean inbreeding coefficient (F), as measured by the mean of the diagonal 442	
  

of the genomic relationship matrix, was similar for all populations, ranging from 443	
  

0.933 in GG to 0.965 in C1. The mean rate of heterozygous loci was also similar 444	
  

between populations, ranging from 0.15 to 0.17. There was no notable decrease in 445	
  

heterozygosity or increase in inbreeding coefficient from GG to C1 or from C1 to C2 446	
  

(Table 1; Figure S2).   447	
  

 In general, broad-sense heritability (H2) was highest in the C1 (mean 0.46 448	
  

across traits), lowest for NRCRI (mean 0.13) and similar for the IITA GG and 449	
  

NaCRRI TPs. Averaging across populations, H2 was highest for MCMDS (0.57) 450	
  

followed by HI (0.43) and DM (0.39). However, H2 was generally low for yield 451	
  

components (Table 1).  452	
  

 453	
  

Prediction within breeding populations 454	
  

We tested seven genomic prediction models that differ by the extent and the kind of 455	
  

shrinkage, which is relevant to model different genetic architectures, and by their 456	
  

ability to capture non-additive effects (Figures S3-5).  457	
  

Overall, breeding populations exhibited differences in the cross-validated 458	
  

prediction accuracies between methods and across traits. For NRCRI (n = 899), the 459	
  

mean predictive accuracy values across methods ranged between -0.02 for plant vigor 460	
  

and 0.27 for HI. For NaCRRI (n = 411), the mean predictive accuracy values ranged 461	
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between 0.23 for shoot weight and 0.46 for HI. Meanwhile, the predictive accuracy 462	
  

values for GG (n = 709) ranged between 0.22 for plant vigor and 0.66 for DM. 463	
  

In the NRCRI population, methods that capture non-additive effects like 464	
  

RKHS and random forest had the highest predictive accuracy values for all traits, 465	
  

except plant vigor. The trait with the highest predictive accuracy was root weight 466	
  

(Random forest (0.34)) and the lowest predictive accuracy was found for vigor 467	
  

(MultiKernel RKHS (-0.03)).  468	
  

In the NaCRRI population, RKHS Multikernel showed highest predictive 469	
  

accuracies for all traits except for CMD, for which BayesB showed the highest value r 470	
  

= 0.50. In this population CMD had the overall highest predictive accuracy across 471	
  

traits while shoot weight exhibited the lowest predictive accuracy (Bayesian LASSO, 472	
  

r =0.18). 473	
  

In the IITA GG population, Bayesian approaches performed better for vigor, 474	
  

CMD, shoot weight and DM, while RKHS method showed higher predictive 475	
  

accuracies for HI and for yield related traits such as root number and root weight. 476	
  

Meanwhile, RF gave a better predictive accuracy when used to estimate GEBVs.  477	
  

Some trait-dataset combinations exhibited better predictive accuracies than 478	
  

others. For example, NaCRRI population had better predictive accuracies for yield 479	
  

components like HI, root weight and root number while the highest predictive values 480	
  

for CMD and DM were obtained in the GG population. 481	
  

Similar to Heslot et al. (2012), we compared the cross-validated GEBV 482	
  

following a clustering approach. Results in Figure S6 show the hierarchical cluster 483	
  

trees from the combined results of the three breeding populations. Differences in 484	
  

clustering of methods are observed across datasets (Figure 4). In the NRCRI data, we 485	
  

found two groups of clustering GS methods. With BayesB, BayesC and GBLUP in 486	
  

one group and the rest on the other group. In the NaCRRI and IITA populations, non-487	
  

parametric methods such as RKHS and Random Forest clustered together as well as 488	
  

the BayesA with Bayesian LASSO and GBLUP cluster with BayesC or BayesB. 489	
  

 490	
  

Across-population prediction 491	
  

Previous studies have reported close relatedness between the clones in the NextGen 492	
  

training populations (Wolfe et al., 2016). One important question within this project is 493	
  

whether or not datasets from different breeding programs can be combined in a 494	
  

training set to increase predictive accuracy. The application of any prediction model 495	
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with the combined dataset would then benefit from an increase in the training 496	
  

population size with an outlook of using such models by other cassava breeding 497	
  

programs in Africa. With that in mind, we used combined datasets of GG+NR, 498	
  

GG+UG and UG+NR to predict the population that was not included in the training 499	
  

set UG, NR and GG respectively.  500	
  

When predicting the traits in the UG dataset, with the combined GG+NR full 501	
  

set, Bayesian models gave better predictive accuracies for MCMDS, RTNO and DM.  502	
  

Random Forest gave better predictive accuracies for HI and RKHS for root weight 503	
  

and shoot weight (Table S2a). 504	
  

The average predictive accuracy with the combined GG+NR full set as 505	
  

training set using the GBLUP model was consistently lower for all the traits when 506	
  

compared to the average GBLUP cross validation results (Table S2a). Furthermore, 507	
  

the subsets selected by STPGA to predict the NaCRRI (UG) validation set gave, for 508	
  

all traits and all subset sizes, lower predictive accuracies than the GBLUP cross-509	
  

validation model (Table 3; Figure S7; Table S2b).  510	
  

For plant vigor, MCMDS and HI, the optimized STPGA subsets gave higher 511	
  

predictive accuracies than the combined GG+NR full training dataset. With few 512	
  

exceptions (MCMDS, SHTWT and DM) the optimized STPGA datasets gave better 513	
  

prediction accuracies than the same size random sets. As the optimized STPGA 514	
  

dataset increased in size, the predictive accuracy did not increase, except for root 515	
  

number where the highest predictive accuracy was found when the training population 516	
  

size was 1200. 517	
  

When combined GG+UG full training dataset was used to predict the NRCRI 518	
  

training population, Random Forest and RKHS prediction models performed better 519	
  

for root weight, shoot weight, root number and plant vigor. Bayesian models gave 520	
  

better predictive accuracies for MCMDS and DM. For plant vigor, MCMDS and DM, 521	
  

the combined UG+GG full dataset gave better predictive accuracies than the GBLUP 522	
  

cross validation model (Figure S8; Table S2b). For prediction of the NRCRI training 523	
  

population, the optimized STPGA selected datasets gave better predictive accuracies 524	
  

for plant vigor, root weight, root number and shoot weight than the combined UG+ 525	
  

GG full training dataset.  526	
  

To predict the NRCRI training population for all traits except root number (at 527	
  

n=900 and n=1200) and CMD (n=900), the optimized datasets gave higher predictive 528	
  

accuracies than the random datasets. For plant vigor, CMD resistance and DM the 529	
  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2017. ; https://doi.org/10.1101/108662doi: bioRxiv preprint 

https://doi.org/10.1101/108662
http://creativecommons.org/licenses/by-nd/4.0/


selection of optimized datasets with STPGA gave better predictive accuracies than the 530	
  

GBLUP cross validation model.  531	
  

 Among the STPGA datasets, the highest predictive accuracy was not always 532	
  

the result of an increase in training population size. For CMD resistance, the highest 533	
  

predictive accuracy was found, with the same value than the highest optimized size, 534	
  

for the smallest optimized dataset. 535	
  

Predictive accuracy results of traits in the GG dataset using the full training set 536	
  

(UG+NR) varied across methods. Whereas Bayesian methods gave better predictive 537	
  

accuracy values for MCMD and plant vigor, RKHS performed better for DM, HI, root 538	
  

number and shoot weight. The combined (UG+NR) full training dataset for prediction 539	
  

of the GG population gave lower predictive accuracies than the GBLUP cross-540	
  

validation model for all the traits. GBLUP cross-validation model also gave better 541	
  

predictive accuracies for all the traits than the random and optimized STPGA datasets. 542	
  

The optimized STPGA datasets gave better predictive accuracies compared to the 543	
  

random sets for all the traits except for plant vigor and for DM (optimized dataset n = 544	
  

900) (Figure S9; Table S2b). For all traits except MCMDS and DM, the optimized 545	
  

STPGA subsets gave higher predictive accuracies than the combined UG+NR full 546	
  

training dataset. 547	
  

For all the cross population results, we tested if the optimized STPGA sets 548	
  

would do better than random with a binomial test, assuming independence of the 549	
  

comparisons. We compared how many times the prediction accuracy of STPGA was 550	
  

greater than random for all traits. We found that for the prediction of the NR and UG 551	
  

sets, the STPGA optimized sets perform better than the random sets. On the contrary, 552	
  

when applying the same comparison of the STPGA sets with the prediction with full 553	
  

sets, the latter had significantly higher number of full set greater than STPGA 554	
  

predictive accuracy results.  555	
  

Additionally, we tested if there was differential enrichment in the optimized 556	
  

STPGA training set of any of the populations relative to the source sets. We found a 557	
  

significant enrichment of the GG population (p<0.001) in the STPGA of different 558	
  

sizes, for the prediction of NR set using GG+UG. Similarly, we found a significant 559	
  

enrichment of the NR population (p<0.001), in the STPGA of different sizes, for the 560	
  

prediction of the GG set using the UG-NR. On the contrary, we found no significant 561	
  

enrichment of any population in the STPGA optimized sets for the prediction of the 562	
  

UG population.   563	
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 564	
  

Across-generation prediction 565	
  

One major area where analysis was needed concerned prediction across generations. 566	
  

Selections can be done at the seedling stage if GEBV can be predicted based on the 567	
  

previous generations and training data. Because nearly all of the IITA germplasm 568	
  

from C1 and C2 were clonally evaluated, we were able to use these data to assess the 569	
  

accuracy of genomic prediction on unevaluated genotypes of the next generation. In 570	
  

general, the accuracy of prediction across generation was greatest when predicting C2 571	
  

as evidenced by averaging across prediction models and traits for predictions trained 572	
  

either with C1 (mean 0.19 ± standard error 0.02) or GG+C1 (0.19 ± 0.02). The 573	
  

accuracy was lower on average when predicting C2 with GG (0.11 ± 0.01) compared 574	
  

to predicting C1 with GG (0.17 ± 0.02). Accuracy was lowest for both VIGOR and 575	
  

RTWT (0.06 ± 0.005) and highest for MCMDS (0.32 ± 0.03) and DM (0.38 ± 0.01). 576	
  

Most prediction models performed similarly as evidenced by the averaged accuracy 577	
  

across traits and training-test combinations with RF performing worst (0.08 ± 0.01) 578	
  

and BayesA and BayesB performing best (both 0.20 ± 0.03). For MCMDS, we found 579	
  

that prediction accuracy was greatest using BayesA and BayesB (Figure 5, Figure 580	
  

S10, Table S3).  581	
  

 582	
  

Training population update 583	
  

The first 100 PCs of the C1 kinship matrix were used as predictors for STPGA and 584	
  

explained 97.7% of the genetic variance. In all cases the genetic algorithm converged 585	
  

within the 1000 iterations run (Figure S11).  586	
  

Given the constraints of breeding programs described above, it was necessary 587	
  

to select samples of C1 that were optimized for predicting the parents of C2 (PofC2), 588	
  

rather than the C2 themselves. Despite targeting the PofC2, we used selected training 589	
  

sets to predict C2, thus simulating the addition of phenotypes to the training set. 590	
  

Because of this, we compared the accuracy of subsets of C1 predicting C2 to accuracy 591	
  

predicting the PofC2. As the number sampled increased from 200 to 2,400, averaging 592	
  

across traits and methods for subset selection (STPGA and Random), accuracy 593	
  

increased by 120 and 105% when predicting C2 and PofC2, respectively. Accuracy 594	
  

increase was smaller when including the 709 GG clones in the prediction, increasing 595	
  

only by 43 and 36% respectively when predicting C2 and PofC2 (Supplementary 596	
  

Table 4). 597	
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STPGA consistently selected training datasets with lower expected mean PEV 598	
  

on the test set compared to random and across training set sizes (Figure S12). Further, 599	
  

using STPGA to select clones for phenotyping gave an average 13% better accuracy 600	
  

(average accuracy of 0.242 vs. 0.214, two-tailed t=6.29, df=4458, p<0.0001) 601	
  

compared to random sampling. Broken down by validation set, STPGA was 602	
  

significantly better than random predicting PofC2 (t=9.8, df=2147, p<0.0001), but not 603	
  

significantly better for predicting C2 (t=1.41, df=2227, p=0.16). 604	
  

We compared these accuracies with that of the full set of C1 (or GG+C1) and 605	
  

to the cross-validation accuracy within the test set (C1 for prediction of PofC2, C2 for 606	
  

predictions of C2). When predicting C2, which was our primary goal, subsets were 607	
  

almost always inferior to the full set, with the exceptions of the middle sizes for 608	
  

RTWT, but the advantage was very small (Figure 6, Figure S13). However, STPGA-609	
  

selected subsets tended to have better accuracy than the full set, especially for yield 610	
  

components when predicting the PofC2, which were the genotypes targeted by the 611	
  

optimization algorithm (Figure 7, Figure S14). 612	
  

The correlation between the selection criterion, PEVmean, used by STPGA 613	
  

and the training set size is strong for all traits (range -0.57 to -0.61). Aside from 614	
  

simply increasing the TP size, we wanted to assess the extent to which the PEVmean 615	
  

could be used as a predictor of the achievable accuracy. Regression of prediction 616	
  

accuracies for each sample (regardless of whether it was selected randomly or by 617	
  

STPGA) on PEVmean explains between 8% (RTNO) and 46% (DM) of the variance 618	
  

in accuracy. Multiple regression including PEVmean and training set size (Ntrain) as 619	
  

predictors showed PEV to be the more significant predictor (across all traits). In fact, 620	
  

Ntrain was not a significant explanatory variable for RTWT or RTNO (Table S5). 621	
  

 622	
  

 623	
  

  624	
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DISCUSSION 625	
  

The Next Generation Cassava Breeding Project (www.nextgencassava.org) 626	
  

aims to assess the potential of genomic selection in cassava to reduce the length of the 627	
  

breeding cycle and increase the number of crosses and selection per unit time. The 628	
  

project is implementing genomic selection in three breeding programs from Nigeria 629	
  

and Uganda, with genotypic and phenotypic data from training populations and two 630	
  

cycles of selection available on a database dedicated to cassava 631	
  

(www.cassavabase.org). 632	
  

Using a cross-validation scheme, we contrasted the performance of GBLUP, 633	
  

RKHS (Single-kernel and Multi-kernel), BayesA, BayesB, BayesCpi, Bayesian 634	
  

LASSO and Random Forest for yield components (RTWT, RTNO, SHTWT, HI, DM) 635	
  

and CMD resistance data from the breeding programs.  636	
  

In general, the performance of predictive models is known to be conditional 637	
  

on the genetic architecture of the trait under consideration (Daetwyler et al., 2010; Su 638	
  

et al., 2014). While non-additive models including RF and RKHS capture dominance 639	
  

and epistasis effects, GBLUP is more suitable for prediction when traits are 640	
  

determined by an infinite number of unlinked and non-epistatic loci, with small effect. 641	
  

Not surprisingly, heritability varied between populations, conceivably as a 642	
  

consequence of the differences in the number and design of field trials between 643	
  

breeding programs. For most traits, it is not possible to determine exactly the reason 644	
  

for differences in heritability. However, for DM, we can hypothesize that differences 645	
  

in phenotyping protocols between programs (specific gravity method at NRCRI and 646	
  

NaCRRI versus oven drying at IITA) could account for differences We note the 647	
  

estimate of zero heritability for RTWT, RTNO and SHTWT in the IITA C2 and 648	
  

acknowledge this is likely to account for the quality of cross-generation prediction of 649	
  

that dataset.  650	
  

Cross-validation results were mostly consistent across breeding programs and 651	
  

the superiority of one prediction method over the others was trait-dependent. RF and 652	
  

RKHS usually predicted phenotypes more accurately for yield-related traits, which 653	
  

are known to have a significant amount of non-additive genetic variation (Wolfe et al 654	
  

2016b). Similar findings have been made in wheat, for grain yield, an additive and 655	
  

epistatic trait, in which RKHS, radial basis function neural networks (RBFNN), and 656	
  

Bayesian regularized neural networks (BRNN) models clearly had a better predictive 657	
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ability than additive models like BL, Bayesian ridge-regression, BayesA, and BayesB 658	
  

(Perez-Rodriguez et al., 2013).  659	
  

While cross validation results within breeding programs are encouraging for 660	
  

the use of genomic selection, across breeding program prediction values were fairly 661	
  

low.  Mean FST values lower than 0.05 indicated that the three breeding populations 662	
  

share genetic material. Despite this, our results indicate that the prospect for sharing 663	
  

data across Africa to assist in genomic selection is limited to certain traits (most 664	
  

notably MCMDS) and populations. Indeed, obtaining a larger training set by 665	
  

combining training population did not always lead to higher prediction accuracies 666	
  

compared to what could already be achieved within that population as evidenced by 667	
  

cross-validation. 668	
  

In animal models, prediction with multi-breed populations has also been 669	
  

shown to be poor with most of the observed accuracy due to population structure 670	
  

(Daetwyler et al., 2012). An alternative kernel function has been proposed to estimate 671	
  

the covariance between individuals based on markers, which can improve fit to the 672	
  

data to account for genetic heterogeneity of breeding populations (Heslot and Jannink, 673	
  

2015). 674	
  

Conceivably, in our study the addition of individuals from different breeding 675	
  

programs was detrimental due to the inconsistent heritability for most traits. Another 676	
  

possibility is genotype-by-environment (GxE) interaction. The impact of GxE 677	
  

interaction on predictive accuracy has been reported in wheat when the same 678	
  

population was evaluated in different environments (Crossa et al., 2010; Endelman, 679	
  

2011). Similarly, in cassava using historical data from the IITA’s GG population, 680	
  

prediction across locations led to a decrease in accuracy (Ly et al., 2013). 681	
  

Using the training sets selected based on optimized algorithm gave better 682	
  

predictive ability than randomly assigned samples with a decrease in accuracy when 683	
  

compared with GBLUP cross-validation results. Although in previous studies 684	
  

predictive accuracies with full sets were lower than optimized subsets (Rutkoski et al., 685	
  

2015), in our study we found the contrary, indicating that a larger training set was 686	
  

more advantageous. Combining data from different experiments and populations for 687	
  

across population prediction remains promising for traits like CMD where GWAS 688	
  

results indicate a stable large-effect QTL throughout the tested breeding populations 689	
  

(Wolfe et al., 2016). 690	
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 When predicting unevaluated progenies from the next generation (cross 691	
  

generation), our results indicated, in our judgment, that accuracy should is sufficient 692	
  

for DM, MCMDS and to a lesser extent HI. Although accuracy is stable across the 693	
  

generations tested for DM using most models, for MCMDS to be successful, we 694	
  

recommend using a Bayesian shrinkage model such as BayesA or BayesB. The 695	
  

advantage of these models for CMD resistance over GBLUP likely comes because of 696	
  

the major known QTL segregating in the population (Rabbi et al., 2014; Wolfe et al., 697	
  

2016a) and the ability of these two models to allow differential contribution of 698	
  

markers near the QTL to the prediction. One disadvantage of BayesB, in particular, is 699	
  

that the known polygenic background resistance for CMD may become de-700	
  

emphasized, in favor of heavy selection on the major effect gene(s) (Hahn et al., 701	
  

1980; Legg and Thresh, 2000; Akano et al., 2002; Rabbi et al., 2014; Wolfe et al., 702	
  

2016). 	
  703	
  

We noted that RF and RKHS performed poorly across generations; this is a 704	
  

result that makes sense given that the predictability of epistatic and dominant 705	
  

interactions declines with recombination (Lynch and Walsh, 1998). 	
  706	
  

 Based on the datasets analyzed in this study, it was apparent that the size of a 707	
  

training population had a significant impact on prediction accuracy for most traits. 708	
  

Thus, breeding programs will benefit from phenotyping the maximum possible 709	
  

amount. In agreement with the results in other crops (Rincent et al., 2012; Akdemir et 710	
  

al., 2015; Isidro et al., 2015), our results do indicate that optimization algorithms like 711	
  

STPGA can provide at least a small advantage over random selections of materials for 712	
  

phenotyping.  713	
  

Each breeding program will need to determine the amount of phenotyping vs. 714	
  

genotyping to do in order to maximize prediction accuracy and selection gain based 715	
  

on the cost and availability of land, labor and genotyping. An analysis in barley by 716	
  

Endelman et al. (2014) provides a good example of the potential complexity of these 717	
  

decisions. The authors show, as we do, that larger number of phenotyped individuals 718	
  

is always beneficial, and that it is usually beneficial to focus on evaluating new lines 719	
  

at the expense of additional phenotyping of old lines. However, if genotyping costs 720	
  

are high, the cost-benefit balance shifts towards more evaluation of existing lines 721	
  

(Endelman et al., 2014). Endelman et al.’s (2014) study focused on prediction in 722	
  

biparental populations. Although this is likely to apply to cassava breeding 723	
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populations, we stress the necessity of doing such an analysis for each breeding 724	
  

application separately. 725	
  

An important result is that STPGA was able to find subsets that were better than 726	
  

the full set for predicting the parents of C2 (PofC2). PofC2 are members of C1 and 727	
  

were the individuals targeted with STPGA. One possible interpretation is that the 728	
  

benefit comes from phenotyping contemporaries. If that were true, we could make a 729	
  

significant difference in accuracy by phenotyping a subset of clones from the current 730	
  

generation before predicting GEBV for the entire set of selection candidates. To do 731	
  

this without lengthening the selection and recombination cycle, harvested stems 732	
  

would need to be stored long enough for phenotypic data to be curated, predictions 733	
  

and selections to be conducted and STPGA to be run. Methods to store cassava stakes 734	
  

for up to 30 days are available, indicating such a scheme could be possible 735	
  

(Sungthongw et al., 2016). Even without improved stem cutting storage, this could be 736	
  

done while only lengthening the selection and recombination cycle to perhaps 1.5-2 737	
  

years, which would still be significantly faster than conventional cassava breeding.  738	
  

A related possibility is to place annual selection pressure on traits that are 739	
  

predictable across generation (e.g. MCMDS, HI and DM). Predictions of total genetic 740	
  

value for yield traits for selection of clones that will be tested as potential varieties 741	
  

could then be done after clonal evaluation data become available on at least a subset 742	
  

of contemporary genotypes. Further trials will be necessary to determine whether 743	
  

there is an advantage to this type of strategy. 744	
  

The primary promise genomic selection offers to cassava breeding is the 745	
  

ability to select and recombine germplasm more frequently and thus hopefully speed 746	
  

the rate of population improvement while combining a myriad of quality, disease and 747	
  

yield related traits into a single genotype that can be released as a variety. The 748	
  

applicability of results from the different prediction models in cassava is then 749	
  

dependent on whether the goal is the prediction of breeding value of progeny or the 750	
  

selection of advanced lines for testing as varieties.  751	
  

We are still in the early stages of GS in this crop, but results are promising, at 752	
  

least for some traits. The TPs need to continue to grow and quality phenotyping is 753	
  

more critical than ever. However, general guidelines for successful GS are emerging. 754	
  

Phenotyping can be done on fewer individuals, cleverly selected, making for trials 755	
  

that are more focused on the quality of the data collected.  756	
  

 	
  757	
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FIGURE LEGENDS 1031	
  
 1032	
  
Figure 1. Schematic of a conventional cassava breeding cycle. Arrows between 1033	
  
trials indicate the selection of materials for further phenotyping trials. Red arrows 1034	
  
indicate the selection of materials as parents for crossing. 1035	
  
 1036	
  
Figure 2. Schematic of IITA Genomic Selection 2012-2015. Three generations of 1037	
  
IITA genomic selection program are illustrated here. From the genetic gain (GG) 1038	
  
population, 85 parents were selected and crosses over two years (“TMS13F” in 2012-1039	
  
2013 and “TMS14F” in 2013-2014) gave rise to 2890 Cycle 1 (C1) progeny. 1040	
  
Predictions based on data from the GG were used to select 89 parents from among C1 1041	
  
in 2013, giving rise to 1648 Cycle 2 (C2) progeny in 2014. The GG have been 1042	
  
clonally evaluated in 2013-2014 and 2014-2015. The “TMS13” C1 were evaluated in 1043	
  
2013-2014 and 2014-2015. The “TMS14” C1 were evaluated with the C2 in 2014-1044	
  
2015.  1045	
  
 1046	
  
Figure 3. Schematic of genomic selection with training population optimization 1047	
  
by STPGA. Selection is initially made among available, genotyped candidates based 1048	
  
upon genomic prediction with available phenotype data. Selected parents are grown 1049	
  
and mated in a crossing block. Resulting Cycle 1 (C1) seeds are subsequently 1050	
  
collected and grown in a nursery. C1 seedlings are genotyped by GBS and selections 1051	
  
are made based on genomic prediction alone. Selected parents of C2 are cloned into a 1052	
  
crossing nursery. STPGA is used to select the optimal additional C1 seedlings to plant 1053	
  
in a clonal evaluation trial. Because C2 seedlings do not yet exist, STPGA is instead 1054	
  
used to select the optimal C1 seedlings to predict the selected parents of C2. 1055	
  
Phenotypes from C1 clonal evaluation are added to the existing genomic prediction 1056	
  
training dataset. The updated training model is used to predict breeding values of C2 1057	
  
seedlings when GBS data become available and the selections of parents of C3 is 1058	
  
made. Subsequent cycles proceed based on this procedure. 1059	
  
 1060	
  
Figure 4.Hierarchical clustering of genomic prediction models based on cross-1061	
  
validated genomic estimated breeding values (GEBVs). Height on the y-axis refers 1062	
  
to the value of the dissimilarity criterion. (A) Clustering of prediction models in the 1063	
  
NRCRI population. (B) Clustering of prediction models in the NaCRRI population. 1064	
  
(C) Clustering of prediction models in Genetic Gain (GG) population. 1065	
  
GBLUP, genomic best linear unbiased predictor; BL, Bayesian Lasso; RF, random 1066	
  
forest; RKHS, reproducing kernel Hilbert spaces multi-kernel model.  1067	
  
 1068	
  
Figure 5. Boxplot of cross-generation prediction accuracies. Seven genomic 1069	
  
prediction methods were tested for seven traits (panels). For each model – trait 1070	
  
combination, four predictions were made: GG predicts C1, GG predicts C2, C1 1071	
  
predicts C2, GG+C1 predicts C2. Boxes show range of accuracies across these four 1072	
  
prediction scenarios. All data are from the IITA Genomic Selection program. 1073	
  
GG=Genetic Gain. C1 = Cycle 1. C2 = Cycle 2.   1074	
  
 1075	
  
Figure 6. The relationship between training set size and accuracy predicting 1076	
  
IITA Cycle 2 (across-generation). The accuracy of prediction for seven traits 1077	
  
(panels) with the IITA Genetic Gain (GG) population training data plus data from 1078	
  
different size subsets (x-axis) of their progeny, Cycle 1 (C1) is shown. Subsets of a 1079	
  
given size were selected either at random or using the genetic algorithm implemented 1080	
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in the R package STPGA. Ten random and ten STPGA-selected subsets were made at 1081	
  
each training set size. Error bars are the standard error around the mean for the ten 1082	
  
samples. Horizontal black lines show the mean cross-validation accuracy for the C2 1083	
  
(validation set; solid line) and the accuracy of the full set of GG+C1 predicting C2 1084	
  
(dashed line). 1085	
  
 1086	
  
Figure 7. The relationship between training set size and accuracy predicting the 1087	
  
parents of Cycle 2 (from Cycle 1, within-generation). The accuracy of prediction 1088	
  
for seven traits (panels) with the IITA Genetic Gain (GG) population training data 1089	
  
plus data from different size subsets (x-axis) of their progeny, Cycle 1 (C1) is shown. 1090	
  
Subsets of a given size were selected either at random or using the genetic algorithm 1091	
  
implemented in the R package STPGA. Ten random and ten STPGA-selected subsets 1092	
  
were made at each training set size. Error bars are the standard error around the mean 1093	
  
for the ten samples. Horizontal black lines show the mean cross-validation accuracy 1094	
  
for the C1 (validation set; solid line) and the accuracy of the full set of GG+C1 1095	
  
predicting the parents of C2 (dashed line). 1096	
  
 1097	
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TABLES 1098	
  

Table 1. Summary and comparison of phenotype and genotype datasets analyzed in 
this study. 

Broad-sense Heritabilities 

 
IITA 

  Trait All IITA GG C1 C2 NRCRI NaCRRI 
VIGOR 0.25 0.25 0.31 0.19 0.06 0.15 

MCMDS 0.69 0.60 0.86 0.25 0.44 0.62 
DM 0.49 0.59 0.62 0.51 0.01 0.14 

HI 0.57 0.36 0.62 0.55 0.12 0.36 
RTWT 0.31 0.10 0.36 0.00 0.10 0.27 
RTNO 0.24 0.09 0.26 0.00 0.06 0.22 

SHTWT 0.22 0.14 0.21 0.00 0.13 0.25 
N Clones 5247 709 2890 1648 899 411 
Raw data 

points 8501 2924 3875 1702 2391 7662 

       Genetic Diversity Statistics 
Mean Inbreeding Coeff* 0.933 0.965 0.949 0.946 0.954 

Std Dev. Kinship Coeff**  0.080 0.089 0.092 0.080 0.118 
MAF>1% 76137 73096 70010 78212 75923 

Median(MAF) 0.009 0.0067 0.0047 0.01 0.01 

 
Mean(Heterozygosity)*** 0.16 0.15 0.17 0.15 0.15 

 
Max(Heterozygosity) 0.29 0.27 0.28 0.26 0.24 

 
Min(Heterozygosity) 0.07 0.07 0.10 0.07 0.08 

Mean(MAF) 0.056 0.054 0.056 0.055 0.054 

       Mean-Fst between Datasets 

Populations Compared FST 
 

Populations 
Compared FST 

GG vs. NR 0.008 
 

GG vs. C1 0.010 
GG vs. UG 0.019 

 
GG vs. C2 0.020 

NR vs. UG 0.021   C1 vs. C2 0.014 
*Mean of the diagonal of the genomic relationshp matrix 

  **Off-diagonal of the genomic relationshp matrix 
   ***Heterozygosity per individual per dataset 
   

IITA = International Institute of Tropical Agriculture; GG = IITA Genetic Gain; C1 = IITA Cycle 1; 
C2 = IITA Cycle 2; NR = National Root Crops Research Institute; UG = National Crops Resources 
Research Institute 
	
  1099	
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Table 2. Summary of cross-validated predictive accuracies by prediction model,trait 1100	
  
and breeding program.  Highest predictive accuracy across methods within a trait and 1101	
  
within breeding program is indicated in bold. 1102	
  
The asterisk (*) indicates highest predictive accuracy within a trait across breeding 1103	
  
programs 1104	
  
	
  1105	
  
	
  1106	
  

Trait Program BayesA BayesB BayesC BL GBLUP MultiKernel-RKHS RandomForest mean 

  NRCRI 0.12 0.12 0.11 0.12 0.10 0.18 0.15 0.13 

DM NaCRRI 0.29 0.29 0.30 0.29 0.30 0.33 0.34 0.31 

  GG 0.67 0.67 0.67 0.68* 0.67 0.67 0.63 0.66 

  NRCRI 0.27 0.26 0.27 0.24 0.27 0.30 0.31 0.27 

Harvest NaCRRI 0.46 0.45 0.45 0.45 0.45 0.48* 0.47 0.46 

index GG 0.37 0.39 0.39 0.40 0.39 0.41 0.39 0.39 
  NRCRI 0.23 0.22 0.23 0.24 0.22 0.32 0.34 0.26 

Root NaCRRI 0.31 0.30 0.30 0.29 0.31 0.37* 0.35 0.31 
weight GG 0.31 0.31 0.33 0.33 0.32 0.33 0.34 0.33 

  NRCRI 0.19 0.18 0.18 0.19 0.18 0.21 0.20 0.19 

Root NaCRRI 0.35 0.34 0.34 0.30 0.35 0.39* 0.36 0.34 

number GG 0.33 0.33 0.34 0.35 0.35 0.34 0.35 0.34 

  NRCRI 0.18 0.19 0.19 0.19 0.17 0.25 0.24 0.20 

Shoot NaCRRI 0.21 0.22 0.22 0.18 0.24 0.26 0.25 0.23 

weight GG 0.31 0.32 0.32 0.33* 0.32 0.33* 0.29 0.31 

Cassava NRCRI 0.23 0.22 0.20 0.21 0.19 0.24 0.29 0.23 

mosaic NaCRRI 0.50 0.50 0.42 0.41 0.40 0.45 0.48 0.45 

disease GG 0.58 0.60* 0.57 0.56 0.56 0.57 0.60* 0.57 

  NRCRI -0.03 -0.02 -0.02 -0.03 -0.02 -0.03 -0.03 -0.02 

Plant NaCRRI 0.35 0.34 0.34 0.34 0.35 0.38* 0.38* 0.34 

vigor GG 0.23 0.23 0.24 0.24 0.23 0.22 0.18 0.22 

mean   0.31 0.31 0.30 0.30 0.30 0.33 0.33   

	
  1107	
  
IITA = International Institute of Tropical Agriculture; GG = IITA Genetic Gain; 1108	
  
NRCRI = National Root Crops Research Institute; NaCRRI = National Crops 1109	
  
Resources Research Institute 1110	
  
 1111	
  
 1112	
  
 1113	
  
 1114	
  
 1115	
  
 1116	
  
 1117	
  
 1118	
  
 1119	
  
 1120	
  
 1121	
  
 1122	
  
 1123	
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Table 3. Summary of mean GBLUP cross-validated predictive accuracies cross 1124	
  
populations. Four subset selection methods (random vs. STPGA) and the full set were 1125	
  
considered. Highest predictive accuracy across subsets and the full set is indicated in 1126	
  
bold, CVGBLUP:crossvalidation GBLUP within the test population. 1127	
  
NR:NRCRI,UG:NaCRRI,GG: Genetic gain IITA. 1128	
  
 1129	
  
 1130	
  

	
   	
   	
  
300	
   600	
   900	
   1200	
  

	
   	
  Train	
   Test	
   Trait	
   STPGA	
  Random	
  STPGA	
  Random	
  STPGA	
  Random	
  STPGA	
  Random	
   FULL	
  CVGBLUP	
  

NR+GG	
   UG	
   VIGOR	
   0.199	
   0.083	
   0.182	
   0.102	
   0.221	
   0.152	
   0.200	
   0.174	
   0.193	
   0.353	
  

NR+GG	
   UG	
  MCMDS	
   0.293	
   0.224	
   0.284	
   0.264	
   0.262	
   0.279	
   0.284	
   0.291	
   0.285	
   0.404	
  

NR+GG	
   UG	
   DM	
   0.272	
   0.209	
   0.282	
   0.227	
   0.258	
   0.254	
   0.252	
   0.272	
   0.284	
   0.296	
  

NR+GG	
   UG	
   HI	
   0.294	
   0.176	
   0.278	
   0.230	
   0.266	
   0.215	
   0.228	
   0.214	
   0.206	
   0.454	
  

NR+GG	
   UG	
   RTWT	
   0.155	
   0.072	
   0.165	
   0.124	
   0.181	
   0.156	
   0.179	
   0.174	
   0.193	
   0.314	
  

NR+GG	
   UG	
   RTNO	
   0.149	
   0.068	
   0.171	
   0.151	
   0.175	
   0.167	
   0.195	
   0.190	
   0.206	
   0.348	
  

NR+GG	
   UG	
   SHTWT	
   -­‐0.014	
   0.059	
   0.042	
   0.075	
   0.027	
   0.066	
   0.037	
   0.071	
   0.075	
   0.244	
  

UG+NR	
   GG	
   VIGOR	
   -­‐0.011	
   0.054	
   0.032	
   0.049	
   0.050	
   0.061	
   -­‐-­‐	
   -­‐-­‐	
   0.060	
   0.231	
  

UG+NR	
   GG	
  MCMDS	
   0.374	
   0.325	
   0.377	
   0.341	
   0.372	
   0.374	
   -­‐-­‐	
   -­‐-­‐	
   0.382	
   0.558	
  

UG+NR	
   GG	
   DM	
   0.216	
   0.173	
   0.221	
   0.212	
   0.235	
   0.238	
   -­‐-­‐	
   -­‐-­‐	
   0.244	
   0.666	
  

UG+NR	
   GG	
   HI	
   0.261	
   0.210	
   0.252	
   0.204	
   0.222	
   0.213	
   -­‐-­‐	
   -­‐-­‐	
   0.215	
   0.386	
  

UG+NR	
   GG	
   RTWT	
   0.079	
   0.077	
   0.095	
   0.073	
   0.084	
   0.061	
   -­‐-­‐	
   -­‐-­‐	
   0.063	
   0.320	
  

UG+NR	
   GG	
   RTNO	
   0.132	
   0.096	
   0.130	
   0.110	
   0.113	
   0.097	
   -­‐-­‐	
   -­‐-­‐	
   0.099	
   0.345	
  

UG+NR	
   GG	
   SHTWT	
   0.154	
   0.110	
   0.163	
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   0.321	
  

GG+UG	
   NR	
   VIGOR	
   0.054	
   -­‐0.003	
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   0.039	
   0.014	
   0.017	
   0.011	
   0.016	
   -­‐0.024	
  

GG+UG	
   NR	
   MCMDS	
   0.193	
   0.138	
   0.186	
   0.154	
   0.189	
   0.190	
   0.193	
   0.188	
   0.213	
   0.188	
  

GG+UG	
   NR	
   DM	
   0.116	
   0.110	
   0.151	
   0.142	
   0.166	
   0.155	
   0.168	
   0.167	
   0.184	
   0.104	
  

GG+UG	
   NR	
   HI	
   0.149	
   0.122	
   0.157	
   0.145	
   0.151	
   0.151	
   0.164	
   0.155	
   0.181	
   0.271	
  

GG+UG	
   NR	
   RTWT	
   0.080	
   0.070	
   0.120	
   0.048	
   0.099	
   0.058	
   0.096	
   0.071	
   0.082	
   0.220	
  

GG+UG	
   NR	
   RTNO	
   0.074	
   0.064	
   0.066	
   0.051	
   0.041	
   0.054	
   0.040	
   0.053	
   0.053	
   0.180	
  

GG+UG	
   NR	
   SHTWT	
   0.094	
   0.089	
   0.107	
   0.088	
   0.107	
   0.099	
   0.112	
   0.106	
   0.119	
   0.169	
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