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Abstract 

Local variation in cortical connectivity profiles is typically modeled as having a coarse 

spatial scale that can be parcellated into cortical systems of large, interconnected brain 

areas. We created a common model of the human connectome using a new algorithm – 

“connectivity hyperalignment” – that discovers shared basis functions for connectivity 

topographies. Transforming individual connectivity data into the common model 

connectome dramatically increases intersubject correlation of connectivity profiles.  

More importantly, the common model connectome captures shared fine-scale spatial 

variation in connectivity profiles that is obscured by other methods of aggregating multi-

subject data into a common space. We found similar results using fMRI data obtained in 

the resting state and while subjects watched a movie. Fine-scale variations in 

connectivity profiles are closely related to fine-scale distinctions in representations of 

information. These results reveal the existence of a shared fine-scale structure in the 

human connectome that was not incorporated in previous models. 
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Introduction 

Functional magnetic resonance imaging (fMRI) data collected while subjects are at rest 

reveals patterns of functional connectivity that are used to investigate the human 

connectome and parcellate the brain into interconnected areas that form brain systems 

and can be modeled as networks (Biswal, Yetkin, Haughton, & Hyde, 1995; Glasser et 

al., 2016; Gordon et al., 2016; Laumann et al., 2015; Smith, Vidaurre, et al., 2013; 

Sporns, Chialvo, Kaiser, & Hilgetag, 2004; Thomas Yeo et al., 2011; Wig et al., 2014). 

Aggregating individual data into a general model is typically accomplished by aligning 

brains based on anatomical features. Individual variations from the general model are 

described at the level of areal organization and characterized in terms of the absence or 

anomalous locations of functional areas (Gordon, Laumann, Adeyemo, & Petersen, 

2015; Laumann et al., 2015). The connectivity of a single area is modeled as a mean 

connectivity profile and considered to be relatively homogeneous (Cohen et al., 2008). 

Cortical topography has both a coarse scale of cortical areas and a finer scale of 

multiplexed topographies within areas (Grill-Spector & Weiner, 2014; Guntupalli, Hanke, 

et al., 2016; Haxby et al., 2001, 2011). Fine-scale within-area topographies are reflected 

in patterns of activity that can be measured with fMRI and decoded using multivariate 

pattern analysis (MVPA) (Haxby et al., 2001; Haxby, Connolly, & Guntupalli, 2014; 

Norman, Polyn, Detre, & Haxby, 2006). For example, patterns of activity in primary 

visual cortex distinguish responses to natural image stimuli that reflect local receptive 

fields for Gabor filters of different orientations and spatial frequencies (Kay, Naselaris, 

Prenger, & Gallant, 2008). Patterns of activity in the fusiform face area (FFA) 

(Kanwisher, McDermott, & Chun, 1997) distinguish responses to different head angles, 

face identities, animal species, and small objects (Guntupalli, Wheeler, & Gobbini, 2016; 

Haxby et al., 2001, 2011), but the stimulus feature spaces that determine these patterns 

is not well understood. These fine-scale patterns of activity are not well-aligned across 

brains based on anatomical landmarks. Consequently, averaging responses across 

brains blurs these patterns, making them less distinctive (Haxby et al., 2011). We have 

developed an algorithm, response hyperalignment (RHA) (Guntupalli, Hanke, et al., 

2016; Haxby et al., 2011), that models variations in response tunings with a large set of 

basis functions that are shared across brains. Using RHA to transform individual cortical 
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representational spaces into a high-dimensional common model representational space 

aligns the fine-scale structure of within-area functional topographies. We ask here 

whether local variation in functional connectivity also has a fine-scale structure, similar 

to the fine-scale spatial structure of response tuning profiles, and whether such variation 

can be captured in a common model with basis functions that are shared across brains. 

We developed a new algorithm, connectivity hyperalignment (CHA), to discover 

basis functions that are shared across brains and model variation in connectivity 

profiles. We show that CHA can derive these shared basis functions based on 

functional connectivities derived from neural activity during the resting state and during 

a task, namely watching and listening to movie. Transformation of individual 

connectomes into the resultant common model of the human connectome greatly 

increases intersubject correlation of local connectivity profiles. Moreover, the common 

model connectome also captures a fine spatial scale in local variation of connectivity 

profiles with a granularity equivalent to what we observe in individual connectomes. 

Although this fine-scale local variability in connectivity profiles can be observed and 

modeled in individual data (Haak, Marquand, & Beckmann, 2016; Jbabdi, Sotiropoulos, 

& Behrens, 2013), its existence was not incorporated into models of the connectome 

because it is obscured when connectomes are averaged across brains after anatomical 

alignment. We show further that this local variability in functional connectivity profiles is 

meaningful in that it is closely related to local patterns of responses during movie 

viewing that encode fine-scale distinctions among representations. Our results indicate 

that this shared fine-scale local variation accounts for a large portion of variance in 

connectivity profiles and is, therefore, a dominant component that was previously 

overlooked in models of the human connectome.  
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Figure 1. Schematic of connectivity hyperalignment (CHA). (a) Connectivity can be defined as any 
measure of similarity between a cortical locus (eg. voxel) and target region. Connectivities of loci in a 
region of interest or a searchlight to a target region is associated with a connectivity pattern in that region 
of interest or a searchlight for that target. These patterns can be thought of as connectivity vectors in a 
space in which each cortical locus in that region is a dimension. (b) Connectivity vectors in a region of 
interest or a searchlight to be hyperaligned are calculated for target regions distributed uniformly across 
the whole cortex. Connectivity hyperalignment rotates individual subject connectivity spaces to align 
these vectors across subjects. (c) Whole cortex connectivity hyperalignment extends connectivity 
hyperalignment to the whole cortex by performing connectivity hyperalignment in searchlights uniformly 
covering the cortex. Local transformations derived in each searchlight are aggregated by summation into 
a single transformation matrix that aligns data from the whole cortex into the common space and affords 
projection of vectors in common space back into individual cortical patterns by multiplication with the 
transpose of the transformation matrix. 
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Results 

We derived a common model of the human connectome by applying whole cortex 

connectivity hyperalignment (CHA; Fig. 1) to two different fMRI datasets: 1) data 

collected for the HCP during task-free resting state and a battery of tasks (Barch et al., 

2013; Smith, Beckmann, et al., 2013; Van Essen et al., 2013) and 2) data collected 

while subjects watched a full-length audio-visual feature film - “Raider of the Lost Ark” 

(Guntupalli, Hanke, et al., 2016; Haxby et al., 2011). We validated the common model in 

terms of 1) inter-subject correlation (ISC) of connectivity profiles, 2) spatial specificity of 

shared connectivity profiles. The results show that the common model connectivity 

captures shared fine-scale structure. To test whether this fine-scale structure is 

meaningful for the representation of information, we tested 3) ISC of task maps in the 

HCP data, 4) ISC of representational geometry in the movie data, and 5) between-

subject multivariate pattern classification (bsMVPC) of responses to the movie. 

  

Inter-subject correlation of connectivity profiles 

Resting state data.  CHA based on resting state connectivity profiles greatly increased 

ISC of resting state connectivity profiles in independent resting state data. The 

connectivity profile of a feature is measured as the correlations of its time-series with 

the average time-series in a set of target searchlights that covered the whole cortex 

(Fig. 1a). The centers of these target searchlights were identical to those used for CHA. 

Figure 2a shows a cortical map of mean ISCs of connectivity profiles in MSMAll-aligned 

data and in the common model connectome space, as well as within-subject between-

session correlations of connectivity profiles. ISC is measured as the correlation of the 

connectivity profile for a given cortical location in each subject with the mean of other 

subjects’ profiles. Within-subject correlations are computed between connectivity 

profiles for different resting state sessions. We quantify the increases in 26 functional 

ROIs, identified using a meta-analytic database, NeuroSynth (Yarkoni, Poldrack, 

Nichols, Essen, & Wager, 2011) (Fig. 2b; Supplementary Table 1). CHA increased 

mean ISC of connectivity profiles across these ROIs, relative to anatomical alignment, 

from 0.56 to 0.72 (95% confidence interval, CI, for mean difference = [0.14, 0.17]). Note 

that data alignment before CHA of the HCP dataset uses the MSM-All (Multimodal  
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Figure 2. ISC of connectivity profiles calculated from HCP rsfMRI data. (a) Average ISC of 
connectivity profiles in each surface node after surface alignment (MSM-All) and in the common model 
connectome space, and within-subject between-session correlation in common space. (b) ISC of 
connectivity profiles averaged within ROIs covering visual, auditory, cognitive, and social systems across 
the cortex and their mean comparing the common model connectome space, within-subject between-
session correlation in common space, and surface alignment. Bootstrapped testing showed significantly 
higher within-subject correlations and ISCs in the common model connectome space relative to 
anatomical alignment in all ROIs, and significantly higher ISCs in the common model connectome space 
than within-subject correlations in some ROIs (“+”: ISC after CHA>within-subject between-session 
correlation). 
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Surface Matching using individual cortical folding, myelin map, and rsfMRI correlation 

data) method which aligns subjects’ data using both functional and structural properties 

(Robinson et al., 2014). Furthermore, ISCs of resting state connectivity profiles in the 

common model connectome space are slightly, but significantly, higher than within-

subject correlations of resting state connectivity profiles (mean correlation = 0.68; CI for 

difference = [0.01, 0.06]) (Fig. 2b). This latter result indicates that after transformation 

into the common model space, an individual’s connectome is better predicted by other 

subjects’ connectomes (N=19) than by estimates based on that subject’s own rsfMRI 

data, due to the benefit of aggregating data across a large sample of brains. 

Movie data.  CHA increased the ISC of connectivity profiles for each feature in the 

movie data as well. Figure 3a shows the mean ISCs of the connectivity profiles mapped 

onto cortical surface after anatomical alignment and CHA (see Supplementary Fig. 1 for 

control analysis). Figure 3b shows mean ISCs in anatomically-aligned data and in the 

common model connectome space in functionally-defined ROIs. Connectivity profiles of 

features are better aligned in the common model connectome space, relative to an 

anatomically aligned model (ROI means = 0.82 and 0.66, respectively; CI for the 

difference = [0.14, 0.17] (Figure 3b). 

  

Local spatial granularity of the common model connectome 

Resting state data.  We investigated the spatial specificity of the common model 

connectome derived from rsfMRI data by computing spatial point spread functions 

(PSFs) of ISCs of connectivity profiles (Guntupalli, Hanke, et al., 2016). PSF of 

connectivity profiles was computed as the correlation of connectivity profile in a cortical 

surface node with the average connectivity profile of nodes at cortical distances ranging 

from 0 to 12 mm in other subjects’ data.  We similarly calculated within-subject PSFs 

between two resting state sessions. Figure 4 shows the slopes of connectivity profile 

PSFs in the ROIs (Fig. 4a) and the mean PSF across ROIs (Fig. 4b) in MSMAll-aligned 

data, in the common model connectome space, and within-subject. CHA increased the 

average slope of PSF across these ROIs, relative to anatomical alignment, from 0.015 

to 0.066 (difference=0.051 [0.046, 0.054]). The PSF slopes in the common model  
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Figure 3. ISC of connectivity profiles calculated from movie data. (a) Average ISC of connectivity 
profiles in each surface node after anatomical alignment and in the common model connectome space. 
(b) ISC of connectivity profiles averaged within ROIs covering visual, auditory, cognitive, and social 
systems across the cortex and their mean comparing anatomical alignment and the common model 
connectome space. Bootstrapped testing showed significantly higher within-subject correlations and ISCs 
in the common model connectome space relative to anatomical alignment in all ROIs. 
 

connectome space and within subject were not significantly different (slope = 0.070; 

difference = 0.003 [-0.001, 0.008]). The mean PSF across ROIs plotted as a function of 

distance from the cortical node clearly shows that CHA captures fine-scale variations in  
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Figure 4. Spatial granularity of shared connectivity profiles. The intersubject point spread function 
(PSF) of connectivity profile correlations are computed as correlation between the connectivity profile for 
a cortical locus in one subject and the profiles of its spatial neighbors in other subjects at increasing 
distances from that locus (ISCs). For the HCP rsfMRI data, within-subject PSFs are computed as the 
correlation between the connectivity profile for a cortical locus from one rsfMRI session and the profiles of 
its spatial neighbors from a different rsfMRI session. Slope is estimated using a linear fit of these 
correlations at different distances as a function of distance in each of the ROIs (Left). Average PSF 
across all ROIs is plotted on the right. (a) shows PSF and slopes for HCP rsfMRI data and (b) shows the 
same for the movie data. 
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Figure 5. ISC of HCP task activation and contrast maps. Connectivity hyperalignment parameters 
derived from a session of resting state data were applied to the task maps and the correlation of these 
maps is computed between each subject and the average of others before and after hyperalignment. 
Hyperalignment improved correlations on average across all tasks and in all but two (labeled ns) 
individual task maps. 

 

connectivity profiles for neighboring cortical nodes across subjects that are not captured 

after the MSM-All alignment provided by the HCP. 

 

Movie data.  Figure 4c shows the slopes of connectivity profile PSFs for the movie data 

in the ROIs, and Fig. 4d shows the mean PSF across ROIs. ISCs of connectivity profiles 

decrease as the cortical distance between features increases. Inter-subject cortical PSF 

slopes are much steeper in the common model connectome space, relative to 

anatomical alignment. Mean of connectivity profile PSF slopes was 0.077 in the 

common model connectome space and 0.035 after anatomical alignment (difference = 

0.042 [0.039, 0.044]). See Supplementary Fig. 2 for comparison with RHA. 

 

Inter-subject correlation of task activations 

CHA based on resting state connectivity profiles increased ISC of task activation and 

contrast maps(Barch et al., 2013). Figure 5 shows the average correlation between  
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Figure 6. ISC of representational geometry of responses to movie time-points. (a) ISC of 
representational geometry in each voxel mapped onto cortical surfaces. (b) ISC of representational 
geometries in 24 ROIs covering visual, auditory, cognitive, and social systems across the cortex and their 
mean after anatomical alignment and in the common model connectome space. Bootstrapped testing 
showed significantly higher ISCs in the common model connectome space, as compared to anatomical 
alignment in all ROIs. 

 

each subject’s task map and the average task map of all other subjects. This was done 

for each of the 46 task maps independently. ISC of all but two (Face-Shapes and Body-

Average) task maps were higher after CHA, and the average correlation across task 

maps increased from 0.58 to 0.65 (mean difference = 0.07 [0.06, 0.08]). 

  

Intersubject correlation of representational geometry 

Figure 6 shows the mean correlations of local representational geometry in each subject 

with the mean of other subjects’ geometry after anatomical alignment and CHA.  
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Representational geometry is indexed as the similarity of patterns of response to 

different time-points in the movie. CHA increased the ISC of representational geometry 

in all of the ROIs (ROI mean ISC=0.291) relative to anatomical alignment (ISC=0.173) 

(difference=0.118 [0.103, 0.129]) (Fig. 6b). See Supplementary Fig. 3 for comparison 

with RHA. 

 
Figure 7. Between-subject multivariate pattern classification of movie segments. Classification of 
15 s movie segments was performed within each movie half separately and the accuracies are then 
averaged across the two halves. Parameters for hyperalignment and SVD are derived from the half that 
was not used for classification. (a) Classification accuracies in each searchlight after anatomical 
alignment and in the common model connectome space. (b) Classification accuracies in 24 ROIs 
covering visual, auditory, cognitive, and social systems across the cortex and their mean after anatomical 
alignment and in the common model connectome space. Bootstrapped testing showed significantly higher 
accuracies in the common model connectome space to anatomical alignment in all ROIs. (c) 
Classification accuracies using information from multiple systems across the whole cortex. Dimensionality 
of the data is reduced using SVD and classification is performed with different set sizes of top singular 
vectors. Peak accuracy is reached after 200 dimensions in the common model connectome and at 50 
dimensions for anatomically aligned data. 
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Between-subject multivariate pattern classification of movie segments

 Successful bsMVPC of movie segments reflects the degree to which patterns of 

activity representing the content of the movie stimulus are aligned across subjects. 

Figure 7a shows the mean classification accuracies in searchlights distributed across 

the whole cortex mapped to their centers. CHA greatly increased bsMVPC accuracies.  

Accuracies in the 24 ROIs (Fig. 7b), were nearly six times higher after CHA than after 

anatomical alignment (mean accuracies across ROIs were 9.93% and 1.73%, 

respectively). Classifying movie segments using the information distributed across the 

whole cortex also reflected a similar trend (Fig. 7c). Peak accuracy after CHA is 89.61% 

with more than 200 dimensions, whereas the peak accuracy with anatomical alignment 

is 74.85% with 50 dimensions (mean difference between CHA and anatomical 

alignment = 14.76% [12.17%, 17.12%]). See Supplementary Fig. 4 for comparison with 

RHA. 

Discussion 

We developed and present here a computational model of the human connectome that 

captures fine-scale local variation in connectivity profiles with basis functions that are 

shared across brains. We developed a new algorithm, connectivity hyperalignment 

(CHA), to derive this model.  The common model connectome is a matrix of connectivity 

profiles for 59,412 cortical loci (HCP data) across 3852 connectivity targets. CHA 

calculates transformation matrices that project individual connectomes into the common 

model connectome space. Individual connectomes in the common model connectome 

space have markedly increased point-by-point similarity of connectivity profiles, as 

reflected in higher ISCs in the common model connectome space than in MSMAll- and 

anatomically-aligned data, and preserved local variability at a fine scale that matched 

the granularity of local variability observed within-subject. The intersubject PSFs of 

resting state connectivity profiles in the common model connectome were over four 

times steeper than PSFs in the MSMAll-aligned models. Whereas the PSF in the 

common model connectome shows significant change in connectivity profiles at a 

cortical distance of 3 mm, corresponding to a granularity of a single voxel, PSFs in the 

MSMAll- and anatomically-aligned models show negligible changes over distances of 6 
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mm, corresponding to a smoothness of three or more voxels. This local fine-scale 

variation was not incorporated into previous models of the connectome because its 

common structure across brains was obscured in anatomically-aligned and MSMAll-

aligned data. 

The common model connectome accounts for a large share of the variance of 

connectivity profiles across cortex, approximately 80% more than is accounted for by 

MSMAll-alignment of HCP data and 77% more than is accounted for by anatomical-

alignment of movie data. In the HCP rsfMRI data, the common model connectome is a 

better predictor of an individual brain’s connectome than is an independent rsfMRI data 

session from the same subject, due to the benefit of aggregating data over a large 

number of brains at the precision afforded by CHA. The results indicate that this added 

shared variance in the model is meaningful, affording substantially higher ISCs of 

representational geometry and dramatically higher bsMVPC for movie time segments. 

The results also found significantly higher ISCs of task maps and contrasts in the HCP 

data, even though these maps reflect coarse functional distinctions with functional 

topographies that are less dependent on fine-scale local variations. 

Resting state fMRI connectivity is used to map the brain as a network of 

interconnected areas that form multi-area systems (Glasser et al., 2016; Gordon et al., 

2016; Laumann et al., 2015; Smith, Vidaurre, et al., 2013; Sporns et al., 2004; Thomas 

Yeo et al., 2011; Wig et al., 2014). Homogeneous connectivity profiles within areas and 

sharp changes in connectivity profiles are used to define functional areas and their 

boundaries (Gordon et al., 2016; Wig et al., 2014). The existence of meaningful fine-

scale local variation within areas is not inconsistent with such parcellation of cortex into 

areas. In fact, aligning cortical functional topography with CHA may sharpen the 

changes at borders, affording more precise delineation of their locations. Shared fine-

scale variation within areas may reveal finer parcellations or how within-area functional 

topographies, such as retinotopy and orientation selectivity, are recapitulated and 

transformed from one area to another. 

CHA aligns local high-dimensional connectivity spaces across subjects. Whole 

cortex CHA produces a common model of functional connectivity for all of cortex using a 

searchlight approach that we used previously for RHA (Guntupalli, Hanke, et al., 2016). 
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CHA, in contrast to RHA, does not rely on synchronized stimulation across subjects, as 

it finds basis functions for shared patterns of within-brain correlations of response 

profiles (connectivity profiles), rather than for synchronous response profiles. 

Consequently, CHA can be applied to fMRI data that are not synchronized across 

subjects. We show that CHA can derive valid common model connectomes based on 

rsfMRI data with asynchronous response profiles as well as on movie fMRI data with 

synchronous responses. We defined the connectivity profile of a cortical locus as its 

functional connectivity to a set of target regions distributed across the cortex. We index 

functional connectivity of a cortical locus as the correlation of its time-series with the 

time-series of the connectivity target regions. These target regions can be individual 

voxels or parcels covering the cortex. Our implementation of CHA here uses a set of 

searchlights that uniformly cover the cortex as target regions, but the algorithm can be 

applied to any other choice of targets and to other connectivity measures, including 

diffusion weighted imaging (DWI). To capture multivariate information within a target 

region, we used responses of the top three principal components instead of mean 

response in each region as our target. 

CHA analyzes connectivity profiles in a searchlight or ROI as a set of vectors in 

which each cortical locus is a dimension and the connectivities of all ROI loci with each 

target is a vector in a connectivity space. These vectors reflect the “geometry” of 

functional connectivity for that ROI and are the basis for its hyperalignment. By defining 

the targets as sizeable regions or parcels, we can assume a coarse correspondence of 

targets across subjects. CHA aligns connectivity spaces across subjects by aligning 

these connectivity vectors across subjects with a high-dimensional transformation that is 

specific to each individual. This is analogous to how RHA aligns representational 

spaces across subjects by aligning response vectors during synchronized stimulation 

(Guntupalli, Wheeler, et al., 2016; Haxby et al., 2011). Synchronized stimulation allowed 

us to assume correspondence of responses at each time-point across subjects, and 

similarly, the top PCs for sizeable target regions, which are aligned to have similar 

connectivities with other target regions, allows us to assume correspondence of 

connectivity vectors for each target PC across subjects. 
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Successful alignment of fine-scale patterns of neural activity using CHA, as 

shown by increased ISCs of representational geometry and bsMVPC of movie time 

segments, suggests that the response tuning function of a cortical locus is closely 

related to its connectivity profile to the rest of the cortex. Although we predicted this 

relationship, it was not clear that it need exist. It was possible that different cortical loci 

in a given brain area have different response tuning functions but communicate with the 

same constellation of areas in other parts of the brain (Saygin et al., 2012, 2016). In 

other words, the connectivity of cortical loci within an area could be driven by the portion 

of response tuning variance that is shared across those loci, yielding a homogeneous 

connectivity profile, or by the portion of response tuning variance that varies across loci, 

yielding fine-scale local variation in connectivity profiles. Our results show the fine-scale 

local variation in response tunings is strongly associated with fine-scale local variation in 

connectivity profiles. 

         Recent studies have explored another avenue to extract more information from 

connectivity in the temporal domain. Most studies, including this one, use a single 

consensus connectivity computed across the whole session of an experiment or resting 

state. But connectivity between regions varies across time and tasks (Allen et al., 2014; 

Geerligs, Rubinov, Cam-CAN, & Henson, 2015; Hutchison et al., 2013; Shine et al., 

2016). CHA could be extended to multiple connectomes extracted from different tasks 

or states in the same subject. Using connectivity vectors from a set of brain states to 

derive hyperalignment, rather than assuming a single stationary brain state, could 

potentially improve the generalization of alignment to other experiments. 

Using connectivity profiles for hyperalignment offers important practical advantages. 

Since connectivity is computed within subject, synchronized responses to the same 

stimuli are no longer required for hyperalignment. Consequently, connectivity 

hyperalignment can be based on data from experiments probing planning and decision 

making tasks, which might unfold at different speeds across subjects, more free-form 

tasks such as social interactions, and data from task-free resting state sessions. 

Resting state data in particular are simple to acquire, already ubiquitous and acquired 

routinely by many labs for participants in varied experiments, and can be acquired in 

patient populations in which demanding tasks may affect compliance. Many large 
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shared datasets acquired on normal subjects, such as the HCP (Van Essen et al., 2013) 

and ADHD-200 (“The ADHD-200 Consortium,” 2012), and on patient populations 

(ADHD-200, ADNI-GO (Jack Jr. et al., 2010), UCLA Neuropsychiatric Phenomics 

(Poldrack et al., 2016)) already contain resting state data. 

Acquisition of resting state data is now widespread in fMRI research, but such 

data may not be optimal for building a common model of high-dimensional 

representational spaces. rsfMRI datasets typically are limited in size – usually five to 

ten, at most twenty, minutes – and more data afford better estimates of the large 

number of parameters in transformation matrices for increased general validity 

(Guntupalli, Hanke, et al., 2016). Furthermore, a recent study has suggested that 

connectivity profiles during movie viewing, as compared to connectivity profiles during 

the resting state, may be more reliable across sessions and may enhance measures of 

individual differences in a normal population (Vanderwal et al., 2016). Further work will 

be necessary to quantify the precision and general validity afforded by different sizes 

and types of fMRI datasets for building a common model connectome using 

hyperalignment. 

In summary, we present here a common model of the human connectome that 

captures the local fine-scale structure of functional connectivity in shared basis 

functions. The model is derived with a new hyperalignment algorithm, CHA, that 

enables application of hyperalignment to a greatly expanded array of experimental data. 

The common model connectome captures the functional architecture of human cortex at 

a fine spatial scale. Application of CHA to resting state rsfMRI data afforded the 

discovery of a shared fine-scale spatial granularity in local variation of connectivity 

profiles that was previously unrecognized. Capturing this fine-scale structure in the 

common model connectome can afford better models of the areal structure of cortical 

topography and study of how within-area topographies are recapitulated and 

transformed between areas. CHA can be used to project data from large public 

databases, such as the HCP, into a common model space to align functional 

connectivities and functional topographies at a fine spatial scale and, thereby, increase 

the power of these databases for investigation of neural representation, connectivity, 

individual differences, and parcellation of cortex into functional areas.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2017. ; https://doi.org/10.1101/108738doi: bioRxiv preprint 

https://doi.org/10.1101/108738
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Common model of the human connectome     Guntupalli 19 

 

Materials and Methods 

Resting state data: Human Connectome Project 

In the HCP database (Van Essen et al., 2013), we found unrelated subjects of age <= 

35 with at least four resting state scans, yielding a list of 64 subjects. We chose the first 

20 of these subjects in the sorted order of subject IDs for our analysis. 

For each subject, we used their cortical surfaces and fMRI data aligned to the group 

using MSMAll (Robinson et al., 2014) with 32K nodes in each hemisphere as provided 

by the HCP. We used data from one resting state session (Smith, Beckmann, et al., 

2013) (“rfMRI_REST1_LR”) to derive CHA parameters and validated it on a different 

resting state session (“rfMRI_REST2_LR”), and task fMRI sessions (Barch et al., 2013) 

(EMOTION, GAMBLING, LANGUAGE, MOTOR, RELATIONAL, SOCIAL, and WM). 

Resting state data were acquired for 1200 TRs with a TR of 0.720s in each session 

(total time=14 min 33 s). The data used to derive the CHA parameters and common 

model and the resting state data used for validation tests used the same phase-

encoding direction (LR). We used a single session of rsfMRI for alignment to mimic a 

typical resting state data acquisition which usually varies from 10-20 mins of scanning. 

See Smith et al. (2013) for more details about the acquisition and preprocessing 

pipelines. 

We masked the data to include only the left and right cortices (Cortex_Left and 

Cortex_Right), removing all the non-zero nodes that correspond to the medial 

subcortical regions, resulting in 59,412 nodes across both hemispheres. We generated 

a coarser surface grid to match the ico8 surface in SUMA (Saad, Reynolds, Argall, 

Japee, & Cox, 2004) with 1284 nodes (10.7 mm spacing between nodes). We found the 

closest matching nodes on the 32K surface to the nodes on the ico8 surface, and used 

those as our searchlight centers for connectivity target searchlights. For validation of 

task fMRI, we used all of the maps provided by the HCP after removing redundancies 

(such as FACE-AVG and AVG-FACE), which resulted in 46 maps. 
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Movie data: Raiders of the Lost Ark 

We scanned 11 healthy young right-handed participants (4 females; Mean age: 24.6+/-

3.7 years) with no history of neurological or psychiatric illness during movie viewing. All 

had normal or corrected-to-normal vision. Informed consent was collected in 

accordance with the procedures set by the local Committee for the Protection of Human 

Subjects. Subjects were paid for their participation. 

Stimuli and design Stimuli consisted of the full-length feature movie – “Raiders of the 

Lost Ark” – divided into eight parts of approximately 14 min 20 s duration. Video was 

projected onto a rear projection screen with an LCD projector which the subject viewed 

through a mirror on the head coil. The video image subtended a visual angle of 

approximately 22.7° horizontally and 17° vertically. Audio was presented through MR 

Confon’s MRI-compatible headphones. Subjects were instructed to pay attention to the 

movie and enjoy. See Guntupalli et al. (2016) for details. 

fMRI protocol Subjects were scanned in a Philips Intera Achieva 3T scanner with an 8 

channel head coil at the Dartmouth Brain Imaging Center. T1-weighted anatomical 

scans were acquired at the end of each session (MPRAGE, TR=9.85 s, TE=4.53 s, flip 

angle=8°, 256 x 256 matrix, FOV=240 mm, 160 1 mm thick sagittal slices). The voxel 

resolution was 0.938 mm x 0.938 mm x 1.0 mm. Functional scans of the whole brain 

were acquired with an echo planar imaging sequence (TR=2.5 s, TE=35 ms, flip 

angle=90°, 80 x 80 matrix, FOV=240 mm x 240 mm) every 2.5 s with whole brain 

coverage (41 3 mm thick interleaved axial slices, giving isotropic 3 mm x 3 mm x 3 mm 

voxels). We acquired a total of 2718 functional scans with 1350 TRs in four runs during 

the first session and 1368 TRs in four runs during the second session. 

fMRI data preprocessing fMRI data were preprocessed using AFNI software (Cox, 

1996) (http://afni.nimh.nih.gov). Functional data were first corrected for the order of slice 

acquisition and head motion by aligning to the last volume of the last functional run. Any 

spikes in the data were removed using 3dDespike in AFNI. Data were then filtered using 

3dBandpass in AFNI to remove any temporal signal variation slower than 0.00667 Hz, 

faster than 0.1 Hz, and that correlated with the whole brain average signal or the head 

movement parameters. Each subject’s anatomical volume was first aligned to the 

motion corrected average EPI volume and then to the MNI 152 brain template in AFNI. 
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Functional EPI BOLD data were then aligned to the MNI 152 brain template using 

nearest neighbor resampling by applying the transformation derived from the alignment 

of the anatomical volume to the template. Functional data were spatially smoothed with 

a 4 mm full-width at half-max Gaussian filter (see Guntupalli et al. (2016) for the details 

of how smoothing affects hyperalignment and subsequent validations). Data acquired 

during the overlapping movie segments were discarded resulting in a total of 2662 TRs 

with 1326 TRs in the first session and 1336 TRs in the second session. We derived a 

gray matter mask by segmenting the MNI_avg152T1 brain provided in AFNI and 

removing any voxel that was outside the cortical surface by more than twice the 

thickness of the gray matter at each surface node. It included 54,034 3 mm isotropic 

voxels across both hemispheres. We used this mask for all subsequent analyses of all 

subjects. 

  

Connectivity Hyperalignment 

CHA uses functional connectivity profiles to compute transformation matrices and derive 

a common model of the human connectome. Connectivity profiles consist of the 

correlations of the response profiles of cortical loci in an ROI or searchlight with the 

response profiles of targets distributed across the cortex. CHA finds a transformation 

that minimizes the distances between the connectivity vectors for each target in one 

subject with the vectors for matched targets in other subjects. In our implementations of 

hyperalignment, we have used the Procrustes transformation (Schönemann, 1966) that 

derives an orthogonal matrix for the optimal improper rotation of one subject’s 

connectivity vectors to the mean of others’. Other hyperalignment algorithms have used 

alternatives for calculating the transformation matrices, such as regularized canonical 

correlation and probabilistic estimation (Chen et al., 2015; Xu, Lorbert, Ramadge, 

Guntupalli, & Haxby, 2012). The RHA algorithm uses the same procedure but minimizes 

the distances between response vectors for the same time-points or stimuli across 

subjects (Guntupalli, Hanke, et al., 2016; Haxby et al., 2011). A common model 

connectome for an ROI is derived iteratively by first aligning a subject’s connectivity 

vectors to those of another subject, then aligning a third subject’s vectors to the mean of 

those subjects, and then aligning each additional subject to the mean of the subjects 
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that have already been hyperaligned. On a second pass, each subject’s connectivity 

vectors are aligned to the mean vectors for all-but-that subject calculated in the first 

pass. The mean connectivity vectors that have been re-hyperaligned in the second pass 

are the common model connectome. It is a matrix of connectivities between cortical loci 

(tagged to the reference subject’s anatomy) as columns and connectivity targets as 

rows. Thus, each cortical locus in the common model connectome has a connectivity 

profile that is common across brains. The cortical loci in an individual brain are 

transformed into the common model connectome space with a matrix which has the 

common model connectome’s loci as columns and the individual brain’s loci as rows. 

Cortical loci in the common model connectome space can be transformed into 

topographies in an individual brain, using the columns in these transformation matrices, 

that are individual-specific topographic basis functions that capture how the common 

connectivity profiles are expressed in individual brains as multiplexed topographies. 

Each connectivity target is a surface-searchlight of 13 mm radius centered on a 

node of a coarse surface with a total of 1284 covering both hemispheres. Thus, 

neighboring searchlights for connectivity are overlapping. To capture more variance of 

response profiles in each target, we used 3 principal components to represent the 

response profiles in that searchlight instead of using the mean of response profiles of all 

features as is typically done for computing connectomes. CHA rests on the assumption 

that the top target components reflect the same connectivity profiles across subjects 

(similar to the correspondence of time points in a movie across subjects for RHA). 

Therefore, we used a 2 step process to make sure these components are aligned 

across subjects in terms of their connectivity to other targets. 

In the first step, we hyperaligned the features (voxels/surface nodes) in each 

target searchlight across subjects using the correlation of responses between each 

feature in that target and the mean response profiles of all the features in each of the 

target searchlights. For each target searchlight with Ns features (voxels or surface 

nodes), we computed a 1284 x Ns correlation matrix for each subject, and performed 

hyperalignment of these matrices to align those Ns features. This aligns the features in a 

particular target searchlight across subjects based on their connectomes – feature 

connectivity profiles to other target searchlight means. We averaged these aligned 
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connectomes across subjects and did a singular value decomposition (SVD) to compute 

the top three components that explained the most shared variance. Each component is 

a weighted sum of features in that target searchlight for each subject such that its 

connectivity profile is aligned across subjects. Each individual subject’s responses for 

the top three components were then used as target response profiles for CHA. This step 

gave us 1284 x 3 = 3852 target response profiles in each subject’s cortex. 

In the second step, we hyperaligned the larger searchlights centered on a dense 

grid. For the HCP data, searchlights were centered on each of the 59,412 nodes and we 

selected all surface nodes within each searchlight of 20 mm radius. The mean number 

of surface nodes in these large searchlights was 337. For the movie data, we used a 

surface-searchlight (Oosterhof, Wiestler, Downing, & Diedrichsen, 2011) approach as 

described previously in Guntupalli et al. (2016) with searchlights centered on each of 

20,484 cortical nodes with 2.9 mm average spacing between the nodes. We performed 

voxel selection within these searchlights to reduce the contribution from noisy or non-

gray matter voxels that were included due to this dilation (Guntupalli, Hanke, et al., 

2016). The mean number of selected voxels in these searchlights was 235. We then 

computed the connectivities profile between each surface node (or voxel for the movie 

data) in each searchlight of 20 mm radius to the 3852 response profiles for the 

connectivity targets. The 3852 connectivity vectors in an ROI or searchlight, one for 

each connectivity target, are used as the basis for CHA of that ROI or searchlight, 

producing transformation matrices that are then aggregated into a single, whole-cortex 

transformation matrix using the algorithm for whole-cortex searchlight RHA described in 

Guntupalli et al. (2016). 

Whole cortex hyperalignment aggregates the orthogonal matrices from 

hyperalignment of each searchlight by adding all the weights estimated for a given 

node-to-feature mapping in surface-searchlights centered on different cortical nodes, 

resulting in an N x N transformation matrix for each subject, where N is 59,412 surface 

nodes for HCP data and 54,034 voxels in the gray matter mask for movie data. The 

reverse mapping matrix is the transpose of this matrix for that subject (Fig. 1c). Whole 

cortex hyperalignment transformation matrices for an individual were applied to any new 

dataset in that same individual by first normalizing the data in each voxel by z-scoring 
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and multiplying that normalized dataset with the transformation matrix. The same 

procedure can be followed to apply reverse mapping (Guntupalli, Hanke, et al., 2016). 

CHA of HCP data was based on one session of resting state data (~15 min, 1200 TRs) 

and a second session of resting state data was used for validation tests. CHA of movie 

data was based on one half of the movie data (~55 min, ~1300 TRs) and a second half 

of the movie data was used for validation tests. 

Validation tests and statistical analyses 

  

Functional ROIs. In addition to analyzing the results of validation tests in each feature 

or searchlight across the whole cortex, we also examined the results of validation tests 

in 24 functional ROIs associated with different sensory, perceptual, and cognitive 

functions to assess the general validity of the common model (Guntupalli, Hanke, et al., 

2016). We searched for terms and cortical areas implicated in visual, auditory, cognitive, 

and social functions in NeuroSynth (Yarkoni et al., 2011) and took the coordinates for 

the peak location associated with the respective term (Supplementary Table 1). For 

validation testing using the HCP dataset, we found the closest surface node 

corresponding to each peak locus and used a surface searchlight with a 10 mm radius 

around that surface node as the functional ROI. Functional ROIs that were medial and 

encompassing both hemispheres in the volume space were split into left and right ROIs 

in the surface space resulting in 26 ROIs for tests on the HCP data. For validation 

testing using the movie dataset, we used volume searchlights centered around those 

peak loci with a radius of 3 voxels as our functional ROIs. For analyses of ISCs and 

PSFs of connectivity profiles in functional ROIs, we calculated the mean ISC or PSF 

across all cortical loci within the ROI searchlights (Figs. 2b, 3b, and 4). 

  

Statistics. We used bootstrapping to test for significance of the effects by sampling 

subjects 10,000 times to compute 95% CIs using BootES (Kirby & Gerlanc, 2013). We 

did this for each ROI and for the mean of all ROIs separately. We used the same 

bootstrapping procedure for all validation tests unless specified otherwise. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2017. ; https://doi.org/10.1101/108738doi: bioRxiv preprint 

https://doi.org/10.1101/108738
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Common model of the human connectome     Guntupalli 25 

 

Intersubject correlation (ISC) of connectivity profiles. Connectivity profile of a 

feature (or a cortical node) was defined as the correlation of its time-series to that of 

average time-series in a set of target regions covering the whole cortex. For HCP data, 

targets were surface searchlights with a radius of 10 mm with centers with centers 

uniformly distributed on a coarse surface grid (ico8). There were 1284 targets in total. 

This gave vector of 1284 values for each cortical locus. ISCs of connectivity profiles 

were computed between each subject’s connectivity profile and the average 

connectivity profile of all other subjects in each cortical locus. ISCs of connectivity 

profiles were computed for session REST2 before and after CHA, while the session 

REST1 was used for deriving CHA. 

We also computed within-subject between-session (REST1 and REST2) 

correlation of connectivity profiles. This also was performed after CHA to account for 

any filtering effects but to a single common space as used for our main analyses. 

For the movie data, ISCs of connectivity profiles were computed within each movie half 

separately and before and after CHA based on the other half of the movie. Each target 

is a surface disc searchlight of radius 13 mm with centers uniformly distributed on a 

coarse surface grid (ico8). Correlation values were Fisher transformed before averaging 

across both halves of the movie in each voxel. These were then averaged across all 

subjects and inverse Fisher transformed before mapping onto the cortical surface for 

visualization. 

  

Spatial point spread function. To investigate the spatial granularity of representation, 

we computed a spatial point spread function (PSF) of ISCs of connectivity profiles. We 

computed the correlation of connectivity profiles in each cortical locus (voxel or surface 

node) with the average connectivity profiles of cortical loci at varying cortical distances 

in other subjects’ data. To account for the effect of filtering, we did this analyses with 

data after hyperalignment with each subject aligned to a different common space as 

proxy for anatomical alignment and after hyperalignment with each subject aligned to 

the same reference subject for hyperalignment (Guntupalli, Hanke, et al., 2016). We 

computed similar PSFs for connectivity profiles within-subject between-sessions 
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(REST1 and REST2). This was also performed after hyperalignment to account for any 

filtering effects but to a single common space as used for our main analyses. 

  

Inter-subject correlation of task activations. We evaluated if CHA derived from the 

resting state data improves alignment of task maps across subjects. We applied the 

CHA transformations derived from one session of the resting state data to the task 

maps for the respective subjects provided by the HCP (Barch et al., 2013). We used 46 

maps by keeping only one map for each contrast. We then computed the spatial 

correlation of these maps across subjects in the MSM-All aligned data and hyperaligned 

data for each task map. 

  

ISC of representational geometry. ISCs of similarity structures were computed within 

each movie half separately using a searchlight of 3 voxel radius. In each searchlight, 

similarity structure was computed as a matrix of correlation coefficients between 

responses at every pair of time-points from that movie half for each subject. The 

flattened upper triangle of this matrix excluding the diagonal was extracted as the profile 

of representational geometry at each searchlight for each subject. ISC of 

representational geometry in each searchlight was computed as the correlation between 

each subject’s similarity profile and the average of all other subjects’ similarity profiles 

for that searchlight. Correlation values were Fisher transformed before averaging across 

both movie halves in each voxel. These were then averaged across all subject-average 

pairs and inverse Fisher transformed before mapping onto the cortical surface for 

visualization. The same steps were performed to compute inter-subject correlation of 

representational similarity before and after hyperalignment. 

  

Between-subject multivariate pattern classification (bsMVPC). bsMVPC of 15 s 

movie time segments (6 TRs) was computed within each movie half separately using a 

searchlight of 3 voxel radius. bsMVPC was performed using a one-nearest neighbor 

classifier based on correlation distance (Guntupalli, Hanke, et al., 2016; Haxby et al., 

2011). Each 15 s (6TR) sequence of brain data for an individual was compared to 

average 15 s sequences for all other subjects for that sequence and other sequences 
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using a sliding time window (chance < 0.1%). Classification accuracies at each voxel 

were averaged across both halves in each subject before mapping the subject mean 

onto the cortical surface for visualization. bsMVPC of movie segments using voxels 

from the whole cortex was performed after projecting the test datasets into the singular 

vector (SV) space derived from the the same training data as used to derive 

hyperalignment. These SVs were sorted in the descending order of their singular 

values. bsMVPC was performed for multiple sets of top singular vectors in each movie 

half and the accuracies for the two halves of the movie were averaged for each subject 

at each set size. 

  

We implemented our methods and ran our analyses in PyMVPA (Hanke et al., 2009) 

(http://www.pymvpa.org) unless otherwise specified. All preprocessing and analyses 

were carried out on a 64-bit Debian 7.0 (wheezy) system with additional software from 

NeuroDebian (Halchenko & Hanke, 2012) (http://neuro.debian.net). 
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Supplementary Figures 

 
Supplementary Figure 1. ISC of connectivity profiles in the movie data with RHA and control 
analysis. (a) ISC of connectivity profiles mapped onto cortical surface after anatomical alignment, RHA, 
CHA, and filtering control. We controlled for the filtering effect of hyperalignment transformation by 
applying a transformation on each subject that projects that subject’s data into a common model space 
derived with a different reference subject. That way, even though all subjects are projected to common 
model space, their correspondence is only based on anatomy. Increase in ISC of connectivity profiles 
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after CHA cannot be explained by the filtering effect. (b) ISC of connectivity profiles averaged within ROIs 
covering visual, auditory, cognitive, and social systems across the cortex and their mean comparing 
anatomical alignment, RHA and CHA. Bootstrapped testing showed significantly higher ISCs after both 
CHA and RHA relative to anatomical alignment in all ROIs, and slightly but significantly higher ISCs after 
CHA than after RHA in all but two ROIs (“-” : CHA<RHA; “ns” : no significant difference between ISCs 
after CHA and RHA; “+” : CHA>RHA).  CHA afforded higher ISCs of connectivity profiles across ROIs 
than did RHA (ROI means = 0.82 and 0.79, respectively; difference = 0.03 [0.02, 0.04]). 
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Supplementary Figure 2. Spatial granularity of connectivity profiles in the movie data. The 
intersubject point spread function (PSF) of connectivity profile correlations are computed as correlation 
between the connectivity profile for a cortical locus in one subject and the profiles of its spatial neighbors 
in other subjects at increasing distances from that locus (ISCs). Slope is estimated using a linear fit of 
these correlations at different distances as a function of distance in each of the ROIs (Left). Average PSF 
across all ROIs is plotted on the right. Bootstrapped testing showed significantly higher slopes of PSFs 
after both CHA and RHA relative to anatomical alignment in all ROIs, and some differences after CHA 
and RHA (“-” : CHA<RHA; “ns” : no significant difference between ISCs after CHA and RHA; “+” : 
CHA>RHA).  Mean ROI PSF slopes for connectivity profiles were 0.077 and 0.080 after CHA and RHA, 
respectively, as compared to 0.035 after anatomical alignment (difference in mean slope between CHA 
and RHA = 0.003 [0.002, 0.004]). 
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Supplementary Figure 3. ISC of representational geometry in responses to movie time-points. (a) 
ISC of representational geometry in each voxel mapped onto cortical surfaces after anatomical alignment, 
RHA, and CHA. (b) ISC of representational geometries in 24 ROIs covering visual, auditory, cognitive, 
and social systems across the cortex and their mean after anatomical alignment and in the common 
model connectome. Bootstrapped testing showed significantly higher ISCs of representational geometry 
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after both CHA and RHA relative to anatomical alignment in all ROIs, and some differences after CHA 
and RHA (“-” : CHA<RHA; “ns” : no significant difference between ISCs after CHA and RHA; “+” : 
CHA>RHA). CHA increased the ISC of representational geometry in all of the ROIs (ROI mean 
ISC=0.291) relative to anatomical alignment (ISC=0.173) (difference=0.118 [0.103, 0.129]), but the 
increase is slightly, but significantly, less than that provided by RHA (ISC=0.306) (difference=0.015 
[0.009, 0.019]). 
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Supplementary Figure 4. Between-subject classification of movie segments. Analysis procedure 
was identical to Fig. 7 with results after RHA included for comparison. (a) Classification accuracies in 
each searchlight mapped on cortical surfaces after anatomical alignment, RHA, and CHA. (b) 
Classification accuracies in 24 ROIs covering visual, auditory, cognitive, and social systems across the 
cortex and their mean after anatomical alignment, RHA, and CHA. Bootstrapped testing showed 
significantly higher accuracies after both the hyperalignment methods relative to anatomical alignment, 
and RHA slightly better in all ROIs relative to CHA.  Bootstrapped testing showed significantly higher 
accuracies after RHA (ROI mean = 12.95%) than after CHA (ROI mean = 0.93%; mean difference = 
3.02% [2.52%, 3.40%]) (c) Classification accuracies using information from multiple systems across the 
whole cortex. Dimensionality of the data is reduced using SVD and classification is performed with 
different set sizes of top singular vectors. Peak accuracy is reached after 200 dimensions for 
hyperaligned data and at 50 dimensions for anatomically aligned data. Peak accuracy after RHA is 
92.98% and after CHA is 89.61% (mean difference = 3.37% [2.32%, 4.99%] ).  
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Supplementary Tables 
Supplementary Table 1 Selected cortical loci implicated in visual, auditory, cognitive, and 

social functions from Neurosynth. 

Search Term Hemisphere MNI Coordinates (x, y, z) 

Visual 

V1 Left -4 -82 -4 

 Right 10 -94 2 

MT Left -42 -72 2 

 Right 44 -66 2 

Visual word form area Left -46 -60 -14 

FFA Left -42 -52 -20 

 Right 40 -50 -22 

Scenes (PPA) Left -26 -46 -10 

 Right 34 -38 -12 

Auditory 

Primary Auditory (A1) Left -44 -30 10 

 Right 52 -14 4 

Voice Left -60 -14 0 

 Right 60 -4 -12 

Music Left -52 -14 0 

 Right 60 -20 4 

Cognitive 
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Calculations Left -30 -66 38 

 Right 34 -64 44 

Broca’s area Left -52 14 12 

Working memory Left -44 26 24 

 Right 44 42 26 

Social 

MPFC  6 54 14 

TPJ Left 50 -52 22 

 Right -52 -56 22 

Precuneus  0 -56 40 

V1 - primary visual cortex, MT - middle temporal visual motion area, FFA - fusiform face area, 

PPA - parahippocampal place area, MPFC - medial prefrontal cortex, TPJ - temporoparietal 

junction. 
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Supplementary Table 2 Task maps used from the HCP data. 

Experiment/Task Maps 

MOTOR CUE, LF, LH, RF, RH, T, CUE-AVG, LF-AVG, LH-AVG, RF-

AVG, RH-AVG, T-AVG 

LANGUAGE MATH, STORY, MATH-STORY 

WM (Working Memory) 2BK_BODY, 2BK_FACE, 2BK_PLACE, 2BK_TOOL, 

0BK_BODY, 0BK_FACE, 0BK_PLACE, 0BK_TOOL, 2BK, 0BK, 

2BK-0BK, BODY, FACE, PLACE, TOOL, BODY-AVG, FACE-

AVG, PLACE-AVG, TOOL-AVG 

RELATIONAL MATH, REL, MATCH-REL 

EMOTION FACES, SHAPES, FACES-SHAPES 

SOCIAL RANDOM, TOM, TOM-RANDOM 

GAMBLING PUNISH, REWARD, PUNISH-REWARD 

LF - Left Finger, RH - Right Hand, 2BK - Two-Back, TOM - Theory Of Mind 
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