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Single-cell, spatially resolved ‘omics analysis of tissues is poised to transform biomedical 

research and clinical practice. We have developed an open-source computational histology 

topography analysis toolbox (histoCAT) to enable the interactive, quantitative, and 

comprehensive exploration of phenotypes of individual cells, cell-to-cell interactions, 

microenvironments, and morphological structures within intact tissues. histoCAT will be useful in 

all areas of tissue-based research. We highlight the unique abilities of histoCAT by analysis of 

highly multiplexed mass cytometry images of human breast cancer tissues. 

 
Technological advances in the multi-parametric analysis of single cells have revealed an 

unprecedented heterogeneity of cellular phenotypes and functional states that are concealed in 

population-based studies1–3. Each cellular phenotype is defined by the interplay of its internal 

state and the environment in which it resides, and tissue and organ function is the output of 

these coordinated cell activities. Deregulation of inter-cellular communication is central to many 

diseases such as cancer. Consequently, the ability to analyze functional states on the single-cell 

level with spatial resolution is key to understanding normal tissue function, disease biology, and 

for the development of treatments of disease4–6. 

Recent techniques such as FISSEQ7, MERFISH8, cycling immunofluorescence9–11, 

multiplexed ion beam imaging (MIBI)12, and imaging mass cytometry (IMC)13 allow for single-

cell, spatially resolved, highly multiplexed analysis of solid tissues and provide essential 

information including the distribution of transcripts, proteins, and their modifications within single 

cells, microenvironments, and entire tissues. Despite these experimental advances no 

computational approach has been developed to enable the comprehensive and quantitative 

interactive exploration of spatially resolved, highly multiplexed tissue measurements. Current 

open-source tools that provide image-linked data analysis are typically focused on the analysis 

of cell lines imaged with low-plex fluorescence microscopy or basic tissue histology and are not 

geared to the analysis of highly multiplexed measurements14–16. On the other hand, tools that 
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have been developed to perform analyses of non-imaging highly-multiplexed single cell data 

(e.g., suspension based mass cytometry) do not exploit spatial information (Supplementary Fig. 

1)17,18. 

In order to provide a complete picture of a tissue ecosystem, define molecular and 

spatial signatures necessary for analysis of tissue biology, and, in the case of disease, identify 

clinically relevant features, it is necessary to analyze and interrelate layers of information 

obtained from molecular measurements on cells, cell populations, cell-to-cell interactions, 

microenvironments, tissues, and experimental cohorts. Here we present a powerful, interactive 

computational platform that we call histoCAT that makes quantitative analysis of highly 

multiplexed, single-cell-resolved measurements possible. histoCAT combines intuitive high-

dimensional image visualization, state-of-the-art analysis methods for cell phenotype 

characterization, and novel algorithms for the comprehensive study of cell-to-cell interactions 

and the “social“ networks of cells within complex tissues (Fig. 1). This provides unprecedented 

capabilities for investigators from biology, biomedicine, and pathology to investigate tissue 

changes during health, disease, and treatment. 

In histoCAT, all single cell information, including spatial features (Fig. 1a), is linked to the 

corresponding multiplexed image enabling visualization of images and single-cell analysis in 

parallel (Fig. 1b, c). histoCAT uses images and a corresponding segmentation mask to extract 

single-cell data including abundances of all measured markers for a cell and area of interest, as 

well as spatial features (like cell size and shape), and aspects of the cell’s environment such as 

cell neighbors and cell crowding. This information is compiled into a flow cytometry standard 

format (.fcs) file for further analysis inside or outside of histoCAT. “Round-trip” analyses from a 

specific area of an image to dataset-wide analyses of single-cell phenotypes and their 

interactions and back to the visualization of unique cells on the images enables users to define 

and understand key cell populations and their spatial context in the tissue. To enable the 

quantitative and systematic analysis of the “social” networks of cells, we developed a novel 
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algorithm to identify all direct cell-cell neighboring interactions (Fig. 1d) and determine the 

significant interactions and unique cell environments across entire datasets and within specific 

cohorts (Fig. 1d, e).  

To combine image-based spatial information and high-dimensional cytometry data, the 

histoCAT GUI is divided in two parallel sections for paired image and cytometry analysis 

(Supplementary File). In the image visualization section of histoCAT, high-dimensional images 

(Fig. 2a) as well as cell masks, single-cell marker quantification, and cell identification labels can 

be visualized. In the analysis section of histoCAT, image-derived marker quantification and 

spatial features of single-cell data are extracted for each image (Fig. 2a), combined (Fig. 2b), 

and visualized using multi-dimensional reduction tools such as t-SNE17 maps (Fig. 2b), scatter 

plots, histograms, box plots, or other visualizations (Supplementary File).  

To demonstrate the potential of histoCAT-powered analyses, we investigated the cellular 

phenotypes and cellular microenvironments of human breast cancer as visualized by IMC. By 

pairing classic immunohistochemistry staining, high-resolution tissue laser ablation, and mass 

cytometry, IMC can measure abundances of more than forty unique metal-isotope-labeled 

tissue bound antibodies simultaneously at a resolution comparable to fluorescence microscopy 

in a single tissue section13. Fifty-two diverse breast cancer samples were stained with an 

antibody panel designed to enable identification of cell lineages and detection of signaling 

pathway activation, proliferation, apoptosis, and clinical markers (Supplementary Table 1 and 

Supplementary Table 2). 

To gain a tissue-wide overview of the cell phenotypes present in a given image set, we 

have incorporated two approaches into histoCAT. The first approach is supervised and based 

on tSNE17, a data dimensionality reduction approach that projects cell phenotypes defined by a 

multitude of markers into two dimensions, grouping highly similar cells (Fig. 2a-c). Expression of 

individual markers can be highlighted using color scales, manually gated, and annotated for the 

corresponding cell phenotype (Fig. 2d). The second approach is based on the unsupervised 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/109207doi: bioRxiv preprint 

https://doi.org/10.1101/109207


5	
	

clustering algorithm PhenoGraph19,20. PhenoGraph identified 29 phenotypes shared across 

images and clinical subgroups, which were then visualized on a tSNE map (Fig. 2c, 

Supplementary Fig. 2). These phenotypes were characterized by specific epitopes (e.g., 

vimentin, phenotype #4, and CD68, phenotype #7) and combinations of markers (e.g., 

proliferative Ki-67-positive and phospho-S6-positive phenotypes #8, #10, and #19) (Fig. 2e). 

Any of these cell populations can be linked back to their source images to visualize cells within 

the context of the multi-cellular environment (Fig. 2f). 

Tumor associated macrophages (TAMs) are a key cell type of the tumor 

microenvironment. Depending on their polarization state, TAMs can drive or hinder tumor 

progression and thus are highly attractive biomarkers and drug targets21. To gain a deeper 

understanding of TAMs and their neighborhoods, we used the expression of CD68 to select 

macrophages by gating on the tSNE plot (Fig. 2d, Supplementary File) or alternatively selecting 

the CD68+ PhenoGraph phenotype #7 (Fig. 2e). Macrophage CD68 epitope expression can be 

visualized in images by color (yellow, Fig. 2g,h), heatmapped for each segmented cell (Fig. 2i), 

or CD68+ cells selected from a plot can be highlighted on source images in their original tissue 

context (Fig. 2j).  

To investigate the microenvironment histoCAT has two neighborhood functions. The first 

function is user guided and returns a subpopulation of cells touching or proximal to a cell 

population of interest for visualization on images (Fig. 2k) or in downstream analysis (Fig. 2l). 

This analysis showed that distinct proliferative (Ki-67, phospho-S6) and hypoxic (carbonic 

anhydrase IX) epithelial tumor cells neighbor CD68+ macrophages (Supplementary Fig. 3). The 

second neighborhood function enables the unbiased and systematic study of all cell-to-cell 

interaction patterns present in a tissue or all tissues of a sample cohort. Such unbiased 

analyses are needed to generate novel biological hypotheses or to identify novel clinically 

relevant features. histoCAT enables such a comprehensive neighborhood analysis using a 

permutation test to compare the number of interactions between cell types in a given image to 
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that of a matched control containing randomized/shuffled cell phenotypes (Fig. 3a). This 

approach determines the significance of cell-to-cell interactions and reveals enrichments or 

depletions in cell-to-cell interactions that are indicative of cellular organization within a tumor. As 

an output of the comprehensive neighborhood analysis, the significance of a neighboring 

interaction between every pair of phenotypes is visualized as a heatmap in which each row 

represents the neighborhood of a cell phenotype of interest and every column the enrichment or 

depletion of another cell in its neighborhood. This type of analysis was performed for data 

obtained on the 52 breast cancer samples (Fig. 3b). These directional interactions identify cells 

surrounding or being surrounded by another cell type. For example, the highly interactive tumor 

cell phenotype #3 is surrounded by stromal cell phenotype #13, but phenotype #3 is not 

significantly enriched in the surroundings of phenotype #13 (Fig. 3b, red squares and blue 

squares respectively, Supplementary Fig. 4). For TAMs (phenotype #7) this unsupervised 

neighbor analysis revealed significant interactions with the tumor cell phenotype #22 (Fig. 2e; 

Fig. 3b, row 7 column 22) identifying a key subset of TAM interacting cells within all neighbor 

interactions (Supplementary Fig. 3j). This suggests a relationship and cellular crosstalk between 

CD68+ cells and E-cadherin+/phospho-S6+/ Twist+ tumor cells and identifies a distinct tumor 

microenvironment for future study.  

In a next step, we investigated whether we could identify patterns of cell-to-cell 

interactions that relate to the available clinical data of our patient cohort. We clustered all 

images based on their significant cell-to-cell interactions (Fig. 3c), and a clear grouping of Grade 

1 and Grade 3 tumors became apparent. This separation was driven by dense interaction of 

tumor cell phenotypes in Grade 1 tumors, and segregated hypoxic (phenotype #14) and 

proliferative cell phenotypes (phenotype #10 or #19) in more advanced Grade 3 breast cancers 

(Fig. 3c, Supplementary Fig. 4, Supplementary Fig. 5a). Thus, clustering of images based on 

significant cell interactions defines groups of tissues (in this case cancer samples) that have 

similar organization (Fig. 3c). 
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To facilitate the visualization and comparison of cell-to-cell interactions over large 

datasets, we used our neighbor algorithm to detect cell social networks. The resulting cell 

interaction/avoidance networks of Grade 1 or Grade 3 samples revealed tumor-grade specific 

multi-cell interaction/avoidance clusters (Fig. 3d). Different clusters of tumor cells (phenotype 

#3, #9, or #1) were neighbored by tumor cells of other phenotypes and/or stromal cells 

(phenotype #2, #5, #13) within Grade 1 but not Grade 3 samples (Fig. 3d, Supplementary Fig. 

5). Overall, fewer significant interactions were observed in the more advanced and less 

organized Grade 3 tumors than in Grade 1 tumors (Fig. 3d, Supplementary Fig. 5). Thus, 

cellular organization and distinct ecosystems are present in specific clinical settings and could 

be used to distinguish unique disease states. 

By combining cytometry and image analysis and novel algorithms for cell-to-cell 

interaction network analysis within one toolbox, histoCAT is able to define complex cell types 

using multiplexed measurements and spatial features as parameters and to elucidate patterns 

of cellular interactions within heterogeneous tissues. The use of round-trip analyses between 

single-cell data and source images using machine learning and community-finding algorithms 

within an intuitive user interface will enhance our understanding of tissue structure at the cellular 

level. Combined with focused, hypothesis-driven datasets, future investigations of multiplexed 

imaging cytometry data using histoCAT could reveal cell types and cell interactions that drive 

disease. histoCAT is open source, and we invite the community to further develop this tool for 

the analysis of next-generation imaging and pathology data. 

 

Data availability 

All raw data and software can be downloaded upon publication of the manuscript at 

https://github.com/BodenmillerGroup/histoCAT and http://www.bodenmillerlab.org/research-

2/histoCAT/ 
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Figure 1 | From molecular to clinical information: multi-scale analysis of the tissue ecosystem. 

(a) Spatially resolved, high-dimension molecular measurements are aggregated using image 

masks to define regions corresponding to each cell. (b) Visualization of images, (c) cytometry 

analysis and (d) analysis of neighbors and cellular interaction networks facilitate “round-trip” 

analysis through layers of information. (e) Using molecular, cellular and spatial signatures, 

experimental cohorts can be compared and contrasted. 

 
Figure 2 | Round-trip analysis of unique cell types in high-dimension images of breast cancer. 

(a) Multi-parametric images are displayed in the histoCAT image window using up to six user-

defined color channels (red, E-cadherin; green, vimentin; blue, histone H3; cyan, Ki-67; 

magenta, cytokeratin 7; yellow, CD68). Scale bar = 100 µm. High-dimension single-cell data, 

including spatial features and all expressed markers from each segmented cell, are extracted 

from each individual image and visualized in a t-SNE plot. (b) When combined, distinct colors 

distinguish cells of each source image when an entire dataset is visualized in one t-SNE plot. (c) 

Unsupervised clustering of all cells according to their marker expression throughout the dataset 

using PhenoGraph defines complex cell phenotypes and enables labeling of each cell 

phenotype cluster with a distinct color. (d) Alternatively, quantification of an individual parameter 

can be heatmapped onto the t-SNE plot and populations can be identified in a supervised 

manner using the gating tool. (e) Cell phenotypes can be further investigated using plotting tools 

such as heatmaps. (f) Single cells are colored according to the identified phenotypes within the 

context of the tissue microenvironment on their original image. (g) All images containing cells of 

a subpopulation of interest can then be identified and loaded: red, E-cadherin; green, 

fibronectin; blue, histone H3; cyan, Ki67; magenta, cytokeratin 7; yellow, CD68. Scale bar = 100 

µm. Images can be visualized using (h) pseudo-color or by (i) heatmap representing the 

intensity of a marker in each cell. Cells of interest (j) can be highlighted on the image (turquoise) 

and neighboring cells (purple or gray if representing both subpopulations) within a defined pixel 
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range can also be identified and highlighted on (k) the image or (l) the analysis plot of the 

individual image (red highlight, cell of interest; blue highlight, neighbor; yellow highlight, both 

subpopulations). 

 
Figure 3 | Neighborhood analysis of breast cancer cell phenotypes. (a) Schematic of neighbor 

analysis in which the prevalence of a particular cell-cell interaction in an image is quantified and 

significance is determined by comparison to its prevalence in cell-type-randomized controls of 

the same image. Number of interactions between abundant cells (green), between rare 

clustered cells (red), and between abundant cells and rare cells (black). (b) Every cell 

interaction present in more than 10% of all images plotted as a heatmap in which square color 

indicates whether the cell type in the row is significantly neighbored (red) or avoided (blue) by 

the cell type in the column (p < 0.01). Highlighted squares indicate an example of a directional 

interaction where stromal phenotype #13 surrounds tumor cell type #3 (red square), but #3 is 

not surrounded by #13 (blue square). (c) Clustering of all samples and cell-cell interactions 

according to the presence of significant (p < 0.01) phenotype interaction (red) or avoidance 

(blue). White represents interactions that are not present or not significant. (d) Force-directed 

cell interaction network graphs representing the organization of PhenoGraph-defined cell 

phenotypes in Grade 1 and Grade 3 tumors. Circle color corresponds to PhenoGraph cluster, 

arrow color indicates the direction of the interaction (red interaction, blue avoidance), and 

intensity of the line color indicates significance. A connection is only visualized if the interaction 

or avoidance is significant in a least 20% of the grouped samples and the cell phenotypes were 

simultaneously present in at least 40% of the grouped samples. 

 

 
Materials and Methods 

Preparation and staining of breast cancer tissue specimens 
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Formalin-fixed paraffin-embedded tissue samples from patients treated at the University 

Hospital Zurich between 1991 and 2005 were retrieved from the archives of the Institute of 

Surgical Pathology. This project was approved by the local Commission of Ethics (ref. no. StV 

12-2005). H&E stained sections of all tumors were re-evaluated by a pathologist for their 

suitability for tissue microarray construction prior to array construction as previously described22.  

Tissues were stained as previously described10. Briefly, tissue sections were de-waxed 

overnight in xylene and rehydrated in a graded series of alcohol (ethanol:deionized water 100:0, 

90:10, 80:20, 70:30, 50:50, 0:100; 5 min each). Heat-induced epitope retrieval was conducted in 

a water bath at 95 °C in Tris-EDTA buffer at pH 9 for 20 min. After immediate cooling, the 

microarrays were blocked with 3% BSA in TBS for 1 hour. Samples were incubated overnight at 

4 °C in primary antibody at 7.5 g/L diluted in TBS/0.1% Triton X-100/1% BSA (clones in 

Supplementary Table 1). Panel design and antibody database management was done in 

AirLab23. Samples were then washed twice with TBS/0.1% Triton X-100 and twice with TBS and 

dried before imaging mass cytometry measurement. 

 

Imaging mass cytometry 

Antibody staining of tissue sections was quantified through the combination of laser 

ablation using a modified ArF excimer GeoLas C laser system (Coherent) to ablate tissues in a 

rastered pattern at 20 Hz and direct aerosol transportation of the sample to a CyTOF mass 

cytometer (Fluidigm) as described previously24. All raw data processing was performed using in-

house Matlab routines as described and provided previously13. 

 
Segmentation 

 Segmentation was performed using Ilastik 1.1.925 and CellProfiler 2.1.116. Ilastik was 

used to classify pixels into three classes (nuclei, membrane, and background) and to generate 

probability maps. CellProfiler was used to segment probability maps to generate segmentation 
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masks. A combination of channels was used to classify the background and membrane26. 

These masks were combined with the individual tiff files to extract single-cell information from 

each individual image. 

 
Single-cell feature extraction 

histoCAT uses Matlab’s regionprops function to extract shape and pixel value 

measurements. Additionally, by step-wise pixel expansion, histoCAT creates a network of 

neighbors surrounding each cell at a range of defined distances. In most cases, expansion in 

the range of 1 to 6 pixels was chosen. Cells were expanded using a rectangular membrane 

shape. All cells within the defined range were considered neighbors. The distances between 

centroids were used to define cell-cell distances. The number of neighbors and the percent of 

membrane in contact with a neighboring cell were both determined with modified CellProfiler 1.0 

modules16. 

 
Data transformation 

Raw measurements were used for the presented data; however histoCAT offers arcsinh 

transformation with a variable cofactor input.  

 
Normalization 

All images were segmented and single-cell measurements were extracted from all 

available channels using the mean pixel values for each segmented cell. The presented data 

were not normalized, but histoCAT features Z-score normalization across all samples or across 

a subgroup as a module. We used 99th percentile normalized data for t-SNE and Phenograph 

as suggested17,20. 

 
histoCAT 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/109207doi: bioRxiv preprint 

https://doi.org/10.1101/109207


13	
	

histoCAT can be downloaded either as a Matlab 2014b app or as a stand-alone 

application for Mac, Windows, or Linux on the project page 

https://github.com/BodenmillerGroup/histoCAT. Documentation, user manual, and development 

versions of histoCAT can also be found on the project page. All modules, if not differently 

stated, were written in Matlab 2014b, and the GUI was designed in Matlab 2014b using Matlab's 

GUI development environment (GUIDE). histoCAT is built modularly to enable addition of new 

features without need for changes to the existing structure. In general, features in histoCAT 

must include only two basic scripts: callback from the GUI and the script executing the function. 

The main functions are not linked to the GUI and can be run independently. 

All data necessary to perform any function or stored for the current session can be 

retrieved from the GUI handles or included manually without the GUI. Throughout a session, the 

data are kept in the fcs-format structure. There is one main matrix containing a column for each 

channel and a row for each individual cell of each image. This matrix is continuously updated 

during the session and will therefore also contain the custom gates and channels. The 

corresponding channel names for each image are saved in a cell array. All individual tiff files 

and corresponding masks are stored in a multidimensional matrix structure. 

 

bh-t-SNE 

We used the Barnes-Hut t-SNE implementation in histoCAT17. Data were 99th-percentile 

normalized before the analysis, and we used the default t-SNE parameters (initial dimensions: 

110; perplexity: 30; and theta: 0.5). The random seeds for the individual runs can be recorded. 

 
PhenoGraph 

PhenoGraph version 0.2 was used15. Data were 99th-percentile normalized before the 

analysis, and default parameters with nearest neighbors of 75 were used. This parameter was 

chosen based on prior knowledge of the underlying cell types. Lower values for nearest 
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neighbors result in an over clustering and higher values an under clustering. The random seeds 

for the individual runs can be recorded. 

 
Neighborhood analysis – permutation test 

Neighborhood analysis uses basic statistical methods to find significantly enriched 

interactions between or within cell phenotypes. First, cells are manually or automatically 

classified. Manual classification can be done by manual gating on biaxial/t-SNE plots. Automatic 

classification uses the PhenoGraph15 algorithm. PhenoGraph consistently performs well for 

datasets with multiple cell populations14. 

Once classified, pairwise interactions at a distance of 6 pixels between and within cell 

phenotypes are calculated for each single cell with its neighbors. A neighbor is defined as a cell 

within the pixel distance selected during the loading process. Pairwise interactions between and 

within cell phenotypes are compared to a random distribution using a permutation test. This test 

provides us with a p-value for each one-tailed test. These p-values represent the likelihood of a 

neighborhood interaction being enriched or delimited in comparison to a random neighborhood. 

Equation 1 describes our approach using a permutation test with Monte Carlo sampling. We run 

this test twice to calculate the p-value for each tail. 

p=Σ(mean(permutations)=>(=<)mean(realdata))	+1#permutations	+	1 (Equation 1) 

 
Neighborhood analysis – Validation 

The following simple examples demonstrate the validity of the neighborhood module in 

detecting cell neighborhoods deviating from randomness (Supplementary Figure 6). These 

artificial images were constructed in a simple chessboard pattern to visualize the validation. 

Complex structured synthetic datasets were validated but are not shown. The presented 

examples were used as a unit test in histoCAT to ensure the neighborhood analysis runs 

correctly on all platforms. The test dataset contained three different “phenotypic” clusters of 
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cells, constructed by PhenoGraph: green represents cells of cluster 1, blue represents cells of 

cluster 2, and red cells are part of cluster 3. 

All of the following examples were run at a pixel-expansion of 4 for 99 permutations and 

with a significance cut-off of 0.05 for the p-value. The hierarchically clustered heatmaps display 

the cell cluster interactions on the x-axis and the four test images on the y-axis. No interactions 

involving cluster 2 are observed. Those columns were automatically cut out of the visualization 

since their interaction frequencies did not significantly deviate from randomness. Thus the focus 

here is on clusters 1 and 3. 

For image 1 the interaction between cells of cluster 3 with themselves (3→3) is 

displayed red in the corresponding row of the hierarchically clustered heatmap, indicating that 

this interaction occurs significantly more frequently in the actual test image than in the same 

image with randomly permuted cell labels (Supplementary Fig. 6a). This result is clearly 

supported by the bulk of cluster 3 cells in image 1. Random permutations of the cell labels are 

likely to distribute cells of cluster 3 among those of cluster 1. This also leads to a significantly 

fewer cluster 1 cells neighboring cluster 3 cells in the permuted images compared to our real 

image, hence the blue 1→3 interaction in the hierarchically clustered heatmap (Supplementary 

Fig. 6a). 

The alternating pattern of cells of clusters 1 and 3 in image 2 prevents cells of the same 

cluster from being in each other’s neighborhood (Supplementary Fig. 6b). Therefore the 

interactions 1↔1 and 3↔3 are significantly less frequent than in random permutations of the 

cluster labels. 

Image 3 reaches the significance cut-off for none of the cell-type neighbor interactions, 

despite the fact that two of the cells of cluster three are neighbors (Supplementary Fig. 6c). This 

is expected and visualizes the effect of the cut-off. 

The hierarchically clustered heatmap of image 4 shows that the interactions between 

cells of cluster 1 and cells of cluster 3 occur significantly more often (in both directions) than 
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expected from a randomly shuffled image, as is clearly visible in the test image on the left where 

cells of cluster 1 always neighbor a cell of cluster 3 and vice versa (Supplementary Fig. 6d). 
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Figure 1 | From molecular to clinical information: multi-scale analysis of the tissue ecosystem. (a) Spatially 
resolved, high-dimension molecular measurements are aggregated using image masks to define regions corre-
sponding to each cell. (b) Visualization of images, (c) cytometry analysis, and (d) the analysis of neighbors and 
cellular interaction networks facilitate “round-trip” analyses through layers of information. (e) Using molecular, 
cellular, and spatial signatures experimental cohorts can be compared and contrasted.
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Figure 2 | Round-trip analysis of unique cell types in high-dimension images of breast cancer. (a) Multi-parametric images 
are displayed in the histoCAT image window using up to six user-defined color channels (red, E-cadherin; green, vimentin; 
blue, histone H3; cyan, Ki-67; magenta, cytokeratin 7; yellow, CD68). Scale bar = 100 µm. High-dimension single-cell 
data, including spatial features and all expressed markers from each segmented cell are extracted from each individual 
image and visualized in a t-SNE plot. (b) When combined, distinct colors distinguish cells of each source image when an 
entire dataset is visualized in one t-SNE plot. (c) Unsupervised clustering of all cells according to their marker expression 
throughout the dataset using PhenoGraph defines complex cell phenotypes and enables labeling of each cell phenotype 
cluster with a distinct color. (d) Alternatively, quantification of an individual parameter can be heatmapped onto the t-SNE 
plot and populations can be identified in a supervised manner using the gating tool. (e) Cell phenotypes can be further 
investigated using plotting tools such as heatmaps. (f) Single cells are colored according to the identified phenotypes 
within the context of the tissue microenvironment on their original image. (g) All images containing cells of a subpopulation 
of interest can then be identified and loaded: red, E-cadherin; green, fibronectin; blue, histone H3; cyan, Ki67; magenta, 
cytokeratin 7; yellow, CD68. Scale bar = 100 µm. Images can be visualized using (h) pseudo-color or by (i) heatmap 
representing the intensity of a marker in each cell. (j) Cells of interest can be highlighted on the image (turquoise) and 
neighboring cells (purple or gray if representing both subpopulations) within a defined pixel range can also be identified 
and highlighted on (k) the image or (l) the analysis plot of the individual image (red highlight, cell of interest; blue highlight, 
neighbor; yellow highlight, both subpopulations).
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Figure 3 | Neighborhood analysis of breast cancer cell phenotypes. (a) Schematic of neighbor analysis in which the 
prevalence of a particular cell-cell interaction in an image is quantified and significance is determined by comparison 
to its prevalence in cell-type-randomized controls of the same image. Number of interactions between abundant cells 
(green), between rare clustered cells (red), and between abundant cells and rare cells (black). (b) Every cell 
interaction present in more than 10% of all images plotted as a heatmap in which square color indicates whether the 
cell type in the row is significantly neighbored (red) or avoided (blue) by the cell type in the column (p < 0.01). 
Highlighted squares indicate an example of a directional interaction where stromal phenotype #13 surrounds tumor 
cell type #3 (red square), but #3 is not surrounded by #13 (blue square). (c) Clustering of all samples and cell-cell 
interactions according to the presence of significant (p < 0.01) phenotype interaction (red) or avoidance (blue). White 
represents interactions that are not present or not significant. (d) Force-directed cell interaction network graphs 
representing the organization of PhenoGraph-defined cell phenotypes in Grade 1 and Grade 3 tumors. Circle color 
corresponds to PhenoGraph cluster, arrow color indicates the direction of the interaction (red interaction, blue 
avoidance), and intensity of the line color indicates significance. A connection is only visualized if the interaction or 
avoidance is significant in a least 20% of the grouped samples and the cell phenotypes were simultaneously present 
in at least 40% of the grouped samples.
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