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Abstract 
DNA methylation is one of the main epigenetic modifications in the eukaryotic genome; it has 
been shown to play a role in cell-type specific regulation of gene expression, and therefore cell-
type identity. Bisulfite sequencing is the gold-standard for measuring methylation over the 
genomes of interest. Here, we review several techniques used for the analysis of high-
throughput bisulfite sequencing. We introduce specialized short-read alignment techniques as 
well as pre/post-alignment quality check methods to ensure data quality. Furthermore, we 
discuss subsequent analysis steps after alignment. We introduce various differential methylation 
methods and compare their performance using simulated and real bisulfite sequencing 
datasets. We also discuss the methods used to segment methylomes in order to pinpoint 
regulatory regions. We introduce annotation methods that can be used for further classification 
of regions returned by segmentation and differential methylation methods. Finally, we review 
software packages that implement strategies to efficiently deal with large bisulfite sequencing 
datasets locally and we discuss online analysis workflows that do not require any prior 
programming skills. The analysis strategies described in this review will guide researchers at 
any level to the best practices of bisulfite sequencing analysis.  

1. Introduction 
Cytosine methylation (5-methylcytosine, 5mC) is one of the main covalent base modifications in 
eukaryotic genomes. It is involved in epigenetic regulation of gene expression in a cell-type 
specific manner. It is reversible and can remain stable through cell division. The classical 
understanding of DNA methylation is that it silences gene expression when occurs at a CpG rich 
promoter region [1]. It occurs predominantly on CpG dinucleotides and seldom on non-CpG 
bases in metazoan genomes. The non-CpG methylation has been mainly observed in human 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/109512doi: bioRxiv preprint 

https://doi.org/10.1101/109512
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 

embryonic stem and neuronal cells [2],[3]. There are roughly 28 million CpGs in the human 
genome, 60–80% are generally methylated. Less than 10% of CpGs occur in CG-dense regions 
that are termed CpG islands in the human genome [4]. It has been demonstrated that DNA 
methylation is also not uniformly distributed over the genome, but rather is associated with CpG 
density. In vertebrate genomes, cytosine bases are usually unmethylated in CpG-rich regions 
such as CpG islands and tend to be methylated in CpG-deficient regions.  Vertebrate genomes 
are largely CpG deficient except at CpG islands. Conversely, invertebrates such as Drosophila 
melanogaster and Caenorhabditis elegans do not exhibit  cytosine methylation and 
consequently do not have CpG rich and poor regions but rather a steady CpG frequency over 
the genome [5]. DNA methylation is established by DNA methyltransferases DNMT3A and 
DNMT3B in combination with DNMT3L and maintained through/after cell division by the 
methyltransferase DNMT1 and associated proteins. DNMT3a and DNMT3b are in charge of the 
de novo methylation during early development. Loss of 5mC can be achieved passively by 
dilution during replication or exclusion of DNMT1 from the nucleus. Recent discoveries of ten-
eleven translocation (TET) family of proteins and their ability to convert 5-methylcytosine (5mC) 
into 5-hydroxymethylcytosine (5hmC) in vertebrates provide a path for catalysed active DNA 
demethylation [6]. Iterative oxidations of 5hmC catalysed by TET result in 5-formylcytosine (5fC) 
and 5-carboxylcytosine (5caC). 5caC mark is excised from DNA by G/T mismatch-specific 
thymine-DNA glycosylase (TDG), which as a result returns cytosine residue back to its 
unmodified state [7]. Apart from these, mainly bacteria but possibly higher eukaryotes contain 
base modifications on bases other than cytosine, such as methylated adenine or guanine [8]. 
 
One of the most reliable and popular ways to measure DNA methylation is bisulfite sequencing. 
This method, and related ones, allow measurement of DNA methylation at the single nucleotide 
resolution. In this review, we describe strategies for analyzing data from bisulfite sequencing 
experiments. First, we introduce high-throughput sequencing techniques based on bisulfite 
treatment. Next, we summarize algorithms and tools for detecting differential methylation and 
methylation profile segmentation. Finally, we discuss management of  large datasets and data 
analysis workflows with a guided user interface. The computational workflow summarizing all 
the necessary steps is shown in Figure 1.   
 

2. Bisulfite sequencing for detection of methylation and other 
base modifications 
Techniques for  profiling genome-wide DNA methylation fall into four categories: methods based 
on restriction enzymes sensitive to DNA methylation (such as MRE-seq), methylcytosine-
specific antibodies (such as methylated DNA immunoprecipitation using MeDIP-seq [9]), methyl-
CpG-binding domains to enrich for methylated DNA at sites of interest [10] and those based on 
sodium bisulfite treatment. However, the first three methods allow methylation detection over 
measured regions ranging in size from 100 to 1000 bp. Methods that use sodium bisulfite 
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treatment, which converts unmethylated cytosines to thymine (via uracil) while methylated 
cytosines remain protected, measure DNA methylation at single nucleotide resolution [11]. For 
the remainder of this section, we will focus on bisulfite-conversion based sequencing 
techniques. 
 
Whole genome bisulfite sequencing (WGBS) is considered the 'gold standard' for assaying DNA 
methylation because it provides global coverage at single-base resolution. Briefly, it combines 
bisulfite conversion of DNA molecules with high-throughput sequencing. To perform WGBS, the 
genomic DNA is first randomly fragmented to the desired size (200 bp). The fragmented DNA is 
converted into a sequencing library by ligation to adaptors that contain 5mCs. The sequence 
library is then treated with bisulfite. This treatment effectively converts unmethylated cytosines 
to uracil. After amplifying the library treated with bisulfite by PCR, it is sequenced using high-
throughput sequencing. After the PCR, uracils will be represented as thymines. A precise recall 
of cytosine methylation requires not only sufficient sequencing depth, but also strongly depends 
on the quality of bisulfite conversion and library amplification. The benefit of this shotgun 
approach is that it typically reaches  coverage of over 90% of the CpGs in the human genome in 
unbiased representation. It allows identification of non-CG methylation as well as identification 
of partially methylated domains (PMDs, [2]), and regions at distal regulatory elements with low 
methylation (LMRs, [12]) and DNA methylation valleys (DMVs) in embryonic stem cells [13]. 
Despite its advantages, WGBS remains the most expensive technique and standard library prep 
requires relatively large quantities of DNA (100ng–5 ug); as such, it is usually not applied to 
large numbers of samples [14]. To achieve high sensitivity in detecting methylation differences 
between samples, high sequencing depth is required which leads to significant increase in 
sequencing cost.  
 
Reduced representation bisulfite sequencing (RRBS) is another technique that can also profile 
DNA methylation at single-base resolution. It combines digestion of genomic DNA with 
restriction enzymes and sequencing with bisulfite treatment in order to enrich for areas with high 
CpG content. Thus, it relies first on digestion of genomic DNA with restriction enzymes, such as 
MspI which recognises 5’-CCGG-3’ sequences and cleaves the phosphodiester bonds 
upstream of CpG dinucleotide. It can sequence only CpG dense regions and doesn’t interrogate 
CpG-deficient regions such as functional enhancers, intronic regions, intergenic regions or in 
general lowly methylated regions (LMRs) of the genome. It has limited coverage of the genome 
in CpG-poor regions and examines about 4% to 17% of the approximately 28 million CpG 
dinucleotides distributed throughout the human genome depending on the sequencing depth 
and which variant of RRBS is used [15,16]. 
 
Targeted Bisulfite sequencing also uses a combination of bisulfite sequencing with high-
throughput sequencing, but it needs a prior selection of predefined genomic regions of interest. 
Frequently used protocols employ either PCR amplification of regions of interest [17,18], 
padlock probes [19], hybridization-based target enrichment [20], or convert-then-capture 
approaches [21]. 
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One of the major assay specific issues is the fact that bisulfite sequencing cannot discriminate 
between hydroxymethylation (5hmC) and methylation (5mC) [22]. Hydroxymethylation converts 
to cyto-5-methanesulfonate upon bisulfite treatment, which then reads as a C when sequenced 
[22]. Furthermore, 5hmC mediated by TET proteins is a mechanism of non-passive DNA 
demethylation. Hence, methylation measurements for tissues having high 5-hydroxymethylation 
will be unreliable at least in certain genomic regions. The development of Tet-assisted bisulfite 
sequencing (TAB-seq) [23] and oxBS-Seq [24] has made it possible to distinguish between the 
two modifications with single-base resolution. In addition to 5hmC, single-base resolution 
mapping of 5caC using CAB-seq [25] and detection of 5fc (fCAB-seq [26,27] and redBS-Seq 
[26,27]) in mammalian genomes has recently been achieved.  

3. Alignment and data processing for bisulfite sequencing 
Since BS-seq changes unmethylated cytosines (C) to thymines (T), subsequent analysis steps 
focus on counting the number of C to T conversions and quantifying the methylation proportion 
per base. This is simply done by identifying C-to-T conversions in the aligned reads and dividing 
number of Cs by the sum of Ts and Cs for each cytosine in the genome. Being able to do the 
quantification reliably depends on quality control before alignment, the alignment methods and 
post-alignment quality control.  
 
Since base-calling quality is not constant and could change between sequencing runs and 
within the same read, it is important to check the base quality (which represents the level of 
confidence in the base calls). Miscalled bases can be counted as C-T conversions erroneously, 
and such errors should be avoided if possible. This basic quality check can be done via fastQC 
software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Furthermore, sometimes 
adapters can be sequenced and if not properly removed, they will either lower the alignment 
rates or cause false C-T conversions. We recommend trimming low quality bases on sequence 
ends and removing adapters to minimize issues with false C-T conversions and to increase 
alignment rates. This can be achieved using trimming programs such as Trim Galore 
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).   
 
Once pre-alignment quality control and processing is done, the next step is the alignment where 
potential C-T conversions should be handled. The BS-seq alignment methods mostly rely on 
modifications of known short-read alignment methods. For example, Bismark relies on Bowtie 
and in silico C-T conversion of reads and genomes [28]. Many other aligners use this in silico 
conversion strategy, such as: MethylCoder [29], BS-seeker2 [30], BRAT-BW [31] and Bison 
[32]. Other methods, such as Last [33], use a specific score matrix that can tolerate C-T 
mismatches or, such as BSMAP [34], masks Ts in the reads and matches them to genomic Cs. 
There are few comprehensive benchmarks of the aligners since new alternatives emerge 
frequently, but earlier attempts to compare the performance of the aligners did not find sufficient 
differences between aligners to exclude any from consideration[35,36]. Furthermore, recent 
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tools are usually only better in some aspects of the benchmark; they may, for example, 
outperform competing tools in terms of computing time, but show a much higher memory 
footprint or have a worse mapping efficiency [35,36]. Some of these performance differences 
even disappear by varying parameters of the tools [37] and we see no compelling evidence that 
an established tool such as Bismark is significantly worse or better in accuracy than competing 
tools. For our own work, we frequently use Bismark since it provides BAM files, as well as 
additional methylation call related metrics and files.  
 
After the alignment and methylation calling, there is still a need for further quality control. There 
are potential problems to be highlighted here. During the end repair step following the 
fragmentation unmethylated Cs are introduced at the ends of the DNA fragments [38]. This 
leads to a significant drop in the average methylation level that can be detected in a methylation 
bias (M-bias) plot [38,39] at those ends. A simple solution for this would be to disregard the 
affected positions in the sequenced reads [38,39]. Furthermore, incomplete conversion can 
occur during bisulfite treatment, where not all unmethylated Cs are converted to Ts [40]. 
Incomplete conversion causes false positive results due to interpretation of the unconverted 
unmethylated cytosines as methylated. For species without major non-CpG methylation, such 
as human, we can calibrate the conversion rate by using the percentage of non-CpG 
methylation. For a high quality experiment, we expect the conversion rate to be as close to 
100% as possible, typical values for a good experiment will be higher than 99.5%. Another way 
to measure conversion rate is to add spike-in sequences with unmethylated Cs and counting the 
number of Ts for unmethylated Cs. Degradation of DNA during bisulfite treatment is another 
potential problem. Long incubation time and high bisulfite concentration, can lead to the 
degradation of about 90% of the incubated DNA [41]. Therefore, it is crucial to check unique 
alignment rates and read lengths after trimming. Moreover, it has been shown that the majority 
of CpGs with high inter-population differences contain common genomic SNPs (minor allele 
frequency > 0.01) [42]. To ensure more reliable interpretation of the data we advise removing 
known C/T SNPs which can interfere with methylation calls. The last post-alignment quality 
procedure addresses PCR bias. A simple way could be to remove reads that align to the exact 
same genomic position on the same strand. This de-duplication can be performed using the 
“samtools rmdup” command or Bismark tools. For RRBS, removing PCR duplicates by looking 
at overlapping coordinates of reads is not advised. Instead, one can try to remove PCR bias by 
removing regions with unusually high coverage; this method produces concurrent methylation 
measurements with orthogonal methods such as pyrosequencing [43].  
 

4. Differential methylation methods 
Once methylation proportions per base are obtained, generally, the dynamics of methylation 
profiles are considered next. When there are multiple sample groups, it is usually of interest to 
locate bases or regions with different methylation proportions across samples. The bases or 
regions with different methylation proportions across samples are called differentially methylated 
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CpG sites (DMCs) and differentially methylated regions (DMRs). They have been shown to play 
a role in many different diseases due to their association with epigenetic control of gene 
regulation. In addition, DNA methylation profiles can be highly tissue-specific due to their role in 
gene regulation [44]. DNA methylation is highly informative when studying normal and diseased 
cells, because it can also act as a biomarker [44].  For example, the presence of large-scale 
abnormally methylated genomic regions is a hallmark feature of many types of cancers [45]. 
Because of aforementioned reasons, investigating differential methylation is usually one of the 
primary goals of doing bisulfite sequencing. 
 
Differential DNA methylation is usually calculated by comparing the proportion of methylated Cs 
in a test sample relative to a control. In simple comparisons between such pairs of samples (i.e. 
test and control), methods such as Fisher’s Exact Test (implemented in e.g. methylkit [46] and 
RnBeads [47]) can be applied when there are no replicates for test and control cases. There are 
also methods based on hidden Markov models (HMMs) such as ComMet, included in the 
Bisulfighter methylation analysis suite [48,49] or the MethPipe software package [50]. These tools 
are sufficient to compare one test and one control sample at a time; if there are replicates, 
replicates can be pooled within groups to a single sample per group [46]. This strategy, 
however, does not take into account biological variability between replicates. 
 
Regression-based methods are generally used to model methylation levels in relation to the 
sample groups and variation between replicates. Differences between currently available 
regression methods stem from the choice of distribution to model the data and the variation 
associated with it. In the simplest case, linear regression can be used to model methylation per 
given CpG or loci across sample groups. The model fits regression coefficients to model the 
expected methylation proportion values for each CpG site across sample groups. Hence, the 
null hypothesis of the model coefficients being zero could be tested using t-statistics. Such 
models are available in the limma package [51]. Limma was initially developed for the detection 
of differential gene expression in microarray data, but it is also used for methylation data. It is 
the default method applied in RnBeads.  It uses moderated t-statistics in which standard errors 
have been moderated across loci, i.e. shrunk towards a common value using Empirical Bayes 
method. Another method that relies on linear regression and t-tests is the BSmooth [39] method. 
The main difference is that BSmooth applies a local-likelihood smoother to smooth DNA 
methylation across CpGs within genomic windows, assumes that data follow a binomial 
distribution and parameters are estimated by fitting linear model inside windows. It calculates 
signal-to-noise ratio statistic similar to t-test together with Empirical Bayes approach to test the 
difference for each CpG. 
 
However, linear regression based methods might produce fitted methylation levels outside the 
range [0, 1] unless the values are transformed before regression. An alternative is logistic 
regression, which can deal with data strictly bounded between 0 and 1 and with non-constant 
variance, such as methylation proportion/fraction values. In the logistic regression, it is assumed 
that fitted values have variation np(1-p), where p is the fitted methylation proportion for a given 
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sample and n is the read coverage. If the observed variance is larger or smaller than assumed 
by the model, one speaks of under- or overdispersion. This over/under-dispersion can be 
corrected by calculating a scaling factor and using that factor to adjust the variance estimates as 
in np(1-p)s, where s is the scaling factor. MethylKit can apply logistic regression to test the 
methylation difference with or without the overdispersion correction. In this case, Chi-square or 
F-test can be used to compare the difference in the deviances of the null model and the 
alternative model. The null model assumes there is no relationship between sample groups and 
methylation, and the alternative model assumes that there is a relationship where sample 
groups are predictive of methylation values for a given CpG or region for which the model is 
constructed. 
 
More complex regression models use beta binomial distribution and are particularly useful for 
better modeling the variance. Similar to logistic regression, their observation follows binomial 
distribution (number of reads), but methylation proportion itself can vary across samples, 
according to a beta distribution. It can deal with fitting values in [0,1] range and performs better 
when there is greater variance than expected by the simple logistic model. In essence, these 
models have a different way of calculating a scaling factor when there is overdispersion in the 
model. Further enhancements are made to these models by using the Empirical Bayes methods 
that can better estimate hyperparameters of beta distribution (variance-related parameters) by 
borrowing information between loci or regions within the genome to aid with inference about 
each individual loci or region. Some of the tools that rely on beta-binomial or beta model are as 
follows: MOABS [52] and DSS [53], RADMeth [54], BiSeq [52,55] and methylSig [56]. 
  
The choice of which method to apply also depends on the data at hand. If replicates are not 
available, possible tests include Fisher’s Exact test (implemented in methylKit, RnBeads and 
along with many other tool) or HMM-based methods such as ComMet. If replicates are 
available, tests based on regression are the natural choice rather than pooling the sample 
groups. Regression methods also have the advantage that one can add covariates into the tests 
such as technical/batch effects effects, age, sex, cell type heterogeneity, and genetic effects. 
For instance, it has been shown that age is a contributing factor for methylation values at some 
CpGs [57,58] and genetic heritability [59]. Covariates can be added to many methods such as 
methylKit, DSS, BSmooth and RnBeads.  
 
Various differential methylation detection tools are based on similar methods and each method 
has its own advantages and disadvantages. To show this, we compared three classes of 
methods: 1) t-test/linear regression, 2) logistic regression and 3) beta binomial regression. For 
comparisons, we used both a simulated data set and a biologically relevant data set where we 
expect differentially methylated bases in certain regions. For the simulated data set, we used 
three different tools: DSS (beta binomial regression), limma (linear regression), and methylKit 
(logistic regression with/without overdispersion correction). We simulated a dataset consisting of 
6 samples (3 controls and 3 samples with treatment). The read coverage modeled by a binomial 
distribution. The methylation background followed a beta distribution with parameters alpha=0.4, 
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beta=0.5 and theta=10. We simulated 6 sets of 5000 CpG sites where methylation at 50% of the 
sites was affected by the treatment to varying degrees - specifically, methylation was elevated 
by 5%, 10%, 15%, 20% and 25% with respect to  the test sample respectively. To adjust p-
values for multiple testing, we used the q-value method [60] and we defined differentially 
methylated CpG sites with q-values below 0.01 for all examined methods. We calculated 
sensitivity, specificity and F-score for each of the three methods above. Sensitivity measured 
the proportion of true differentially methylated CpGs that were correctly identified as such, 
specificity was calculated as the proportion of detected CpGs that were truly not differentially 
methylated and correctly identified as such and F-score refers to a way to measure sensitivity 
and specificity by calculating their harmonic mean. Limma detected the fewest DMCs and 
consequently the fewest true positives (see Suppl. Figure 1) which lead to the lowest sensitivity 
(Figure 2a). DSS had similar results to limma where both also had high specificity (Figure 2b). 
MethylKit also performed well using either the Chi-squared or F-test. MethylKit without 
overdispersion showed the lowest specificity (the overdispersion correction usually improves 
specificity). F-test with overdispersion has similar results to DSS, whereas the Chi-squared test 
with overdispersion correction has similar specificity to stringent methods such as DSS and 
limma but achieves higher sensitivity (Figure 2c). Overall,  DSS and limma are not very sensitive 
but very specific. We believe that a good compromise between the DSS/limma/F-test and 
default methylKit test is the overdispersion corrected methylKit Chi-square test. In addition, 
higher effect sizes results in higher number of detected true positives, higher sensitivity for all 
methods, and higher number of DMCs detected jointly by all methods (Suppl. Figure 2). 
Researchers should also consider a cutoff for the effect size or methylation difference in their 
analyses, as it is easier to detect changes with higher effect sizes and smaller effect sizes may 
not be biologically meaningful. A 5% change in methylation may not have an equivalent effect 
on gene expression and small changes may be within the range of the acceptable noise for 
biological systems.   
 
The performance of different methods using simulated datasets are always a subject of debate. 
There are many different ways to simulate datasets and how the data is simulated can bias the 
performance metrics towards certain methods. Therefore, we also compared the performance of 
different methods using real bisulfite sequencing experiments where we expect to see changes 
between samples in certain locations. Stadler and colleagues showed that DNA-binding factors 
can create low-methylated regions upon binding [12]. One of them, a CTCF protein, is a TF 
CCCTC-binding factor (zinc finger protein) that has a critical role in complex genome processes 
such as transcription, long range interactions, subnuclear organisation [61] and imprinting [62]. 
It had been shown that reduced methylation is a feature of CTCF-occupied sites supported by a 
high CpG content and specific CTCF recognition sequences, and if the site is unoccupied, the 
region on and around the site will have high methylation [63]. This means that if the CTCF 
occupancy changes between two cell types, we expect to see a change in the methylation 
levels as well. With this information, we looked for differentially methylated bases in regions that 
gained or lost CTCF binding between two cell types. We used the CTCF occupancy peaks 
supported by a presence of CTCF DNA motifs derived from the Factorbook database, binarized 
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as ‘peak present’ or ‘peak lost’, and the ENCODE RRBS data (where each cell line has two 
replicates) for 19 human cell lines [64]. We performed pairwise comparisons for each pair in all 
possible combinations of these 19 cell lines. We defined true positives as the number of CTCF 
peaks gained/lost between two cell lines which overlap with at least one DMC. True negatives 
are defined as the number of CTCF peaks that do not change between cell lines and do not 
overlap any DMC even though they are covered by RRBS reads. Accordingly, false positives 
are defined as the number of CTCF peaks that are present in both cell lines but overlap with at 
least one DMC, while false negatives are defined as peaks that are gained or lost between cell 
lines but have no DMC. We also down-sampled the CTCF peaks that do not change to match 
the number of peaks that change, in order to have a balanced classification performance. 
Without this correction, true negatives overwhelm performance metrics since there are many 
CTCF peaks that do not change. Differentially methylated CpGs were identified for all 
combinations of two cell lines using DSS, limma, methylKit and BSmooth. In the simulation data 
set, we did not model changes in methylation of nearby CpGs and since BSmooth assumes that 
the true methylation profile is smooth and uses a local smoother, it was not adequate to apply 
this method on simulation data and did not perform well.  
 
For the CTCF dataset, we observed consistent results with the simulated dataset results (see 
Figure 3). limma has the highest specificity (Figure 3b), however it detects extremely small 
number of true positives (Supp. Figure 3) and has the lowest sensitivity (Figure 3a). MethylKit 
without overdispersion had the highest F-score (Figure 3c), but also the lowest specificity. With 
overdispersion, methylKit showed higher specificity close to DSS and BSmooth and second 
highest F-score. methylKit and DSS show similar methylation level of true DMCs (Figure 3d). 
limma can only capture CpGs with higher methylation difference/effect size and BSmooth has 
the lowest methylation differences due to the smoothing step performed before computing the t-
statistics. Taken together with the simulation results, methylKit without overdispersion can be 
used for more exploratory analysis as it achieves higher sensitivity but lower specificity, 
although it is still the best method when overall accuracy is considered. In contrast limma, DSS 
and methylKit F-test with overdispersion correction can be applied when there is a need to limit 
false positive rates, such as when picking regions or CpGs for validation. A good compromise 
between stringent and relaxed methods seems to be Chi-squared test with overdispersion 
correction.  
 

4.1 Defining differentially methylated regions 
Most of the methods for differential methylation calling discussed earlier are designed to 
calculate both DMCs and DMRs. Some of them are designed to detect DMRs via aggregating 
DMCs together within a predefined regions, such as CpG islands or CpG shores. RADmeth [54] 
and eDMR [65] group P-values of adjacent CpGs and produce differentially methylated regions 
based on distance between differential CpGs and combination of their P-values using weighted 
Z-test. DSS set some thresholds on the P-values, number of CpG sites and length of regions 
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before aggregation. Similarly, BSmooth defines DMRs by taking consecutive CpGs and cutoff 
based on the marginal empirical distribution of t and DMRs are ranked by sum of t-statistics in 
each CpG. BiSeq, on the other hand, first agglomerates CpG sites into clusters and smoothes 
methylation within clusters, uses beta regression and Wald test to test a group effect between 
control and test samples (with maximum likelihood with bias reduction). Apart from the various 
ways of clustering nearby CpGs or DMCs, many other methods rely on HMMs or other 
segmentation methods to segment the differential CpGs into hypo- and hyper-methylated 
regions and combine them to DMRs, such as MOABS, Methpipe, ComMet and methylKit.  
 
Other methods define DMRs directly based on pre-defined windows. When input for functions 
for differential methylation calling are regions, so then data is summarized per region. The 
regions can be either predefined (such as regions with biological meaning like CpG islands) or 
user-defined with criteria like fixed region length for tiling windows that cover the whole genome, 
fixed numbers of significant adjacent CpG sites and smoothed estimated effect sizes. 
 

5. Segmentation of the methylome 
The analysis of methylation dynamics is not exclusively restricted to differentially methylated 
regions across samples, apart from this there is also an interest in examining the methylation 
profiles within the same sample. Usually, depressions in methylation profiles pinpoint regulatory 
regions like gene promoters that co-localize with CG-dense CpG islands. On the other hand, 
many gene-body regions are extensively methylated and CpG-poor [1]. These observations 
would describe a bimodal model of either hyper- or hypomethylated regions dependent on the 
local density of CpGs [66]. However, given the detection of CpG-poor regions with locally 
reduced levels of methylation ( on average 30 % ) in pluripotent embryonic stem cells and in 
neuronal progenitors in both mouse and human, a different model seems also reasonable [12]. 
These low-methylated regions (LMRs) are located distal to promoters, have little overlap with 
CpG islands and associated with enhancer marks such as p300 binding sites and H3K27ac 
enrichment.  
 
The identification of these LMRs can be achieved by segmentation of the methylome using 
computational approaches. One of the well-known segmentation methods is based on a three-
state Hidden Markov Model (HMM) taking only DNA methylation into account, without 
knowledge of any additional genomic information such as CpG density or functional annotations 
[12]. The three states that the authors aimed for were fully methylated regions (FMRs), 
unmethylated regions (UMRs) and low-methylated regions (LMRs). This segmentation 
represents a summary of methylome properties and features, in which unmethylated CpG 
islands correspond to UMRs [5], the majority is classified as FMR since most of the genome is 
methylated [67] and LMRs represent a new feature with intermediate levels of methylation, poor 
CpG content and shorter length compared to CpG islands [12]. Other segmentation methods 
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such as MethPipe assume a two model state HMM and can not differentiate between LMRs and 
UMRs.  
 
The authors of the R package “MethylSeekR” [68] adapt the idea of a three-state methylome and 
additionally identify partially methylated domains (PMDs), another methylome feature found, for 
instance, in human fibroblast but not in H1 embryonic stem cells [2,69]. These large regions, 
spanning hundreds of kilobases, are characterized by highly disordered methylation with 
average levels of methylation below 70% and covering almost 40% of the genome [2,69]. PMDs 
do not necessarily occur in every methylome, but their presence can be detected using a sliding 
window statistic [68]. In both MethylSeekR and MethPipe, the genome wide identification is 
done by training a two-state HMM, to separate PMDs from background regions. Then the PMDs 
are masked prior the characterization of UMRs/LMRs or hyper-/hypomethylated regions 
[50],[68]. 
 
There are also other segmentation strategies based on change-point analysis, where change-
points of a genome-wide signal are recorded and the genome is partitioned into regions 
between consecutive change points. This approach is typically used in the context of copy 
number variation detection [70] but can be applied to methylome segmentation as well.  
A package implementing this method of segmentation based on change points is methylKit. It 
identifies segments that are further clustered using a mixture modeling approach. This 
clustering is based on only the average methylation level of the segments and allows the 
detection of distinct methylome features comparable to UMRs, LMRs and FMRs. This approach 
provides a more robust approach to segmentation where one can decide on the number of 
segmentation classes after segmentation. Whereas in HMM-based methods, one must know, a 
priori, the number of segmentation classes or run multiple rounds of HMMs with different 
numbers and identify which model fits best to the data.  
 

5.1 Comparison of segmentation methods 
We compared the change-point based segmentation to MethylSeekR, the latter of which is 
partially based on HMMs but mainly using cutoffs for methylation values. We identified high-
concordance between these two methods by analysing chromosome 2 of the  H1 embryonic 
stem cell methylome from the Roadmap Epigenomics Project [71]. They describe regions with 
similar segment lengths, number of CpGs per segment, methylation values and genome 
annotation (Figure 4a-d, respectively). 
 
We also applied change-point based segmentation to a genome with PMDs. We segmented the 
Human IMR90 methylome from the Roadmap Epigenomics Project [71] into four distinct 
features using methylKit. Then we compared feature-specific properties to published PMDs 
identified with MethPipe [50],[2,69] (Figure 5a-c) and found the feature with mean methylation 
level of segments closest to 50% to be the most proximate. We overlapped the published 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/109512doi: bioRxiv preprint 

https://doi.org/10.1101/109512
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 

regions with all segments of this feature and found that 94% of the published regions of PMDs 
overlap with the generated segments of our feature (Figure 5d).  
In summary, change-point-based methods can be useful in the segmentation of the methylome, 
they provide classifications comparable to HMMs and also identify PMDs.  
  
 

6. Strategies for dealing with large datasets 
With rising numbers of publicly available epigenetic data, it is  tempting to reconstruct the results 
of published papers for many reasons, e.g. to better understand the reasoning behind steps the 
authors took or to develope a general intuition for the data. In the case of bisulfite sequencing 
data, we might want to perform differential methylation analysis in R using whole genome 
methylation data of multiple samples. The problem is that for genome-wide experiments, file 
sizes can easily range from hundreds of megabytes to gigabytes and processing multiple 
instances of those files in memory (RAM) might become infeasible unless we have access to a 
high performance cluster (HPC) with extensive RAM. If we want to use a desktop computer or 
laptop with limited RAM, we either need to restrict our analysis to a subset of the data or use 
packages that can handle this situation.  
 
The authors of the RADmeth package for differential methylation analysis advise running the 
software on a “computing cluster with a few hundred available nodes” to allow the processing of 
multiple WGBS samples in a reasonable time. The same analysis can also be performed on a 
personal workstation with the disadvantage of increasing the computation time, which is in 
general dependent on three factors: the sample coverage, the number of sites analyzed and the 
number of samples. There exists one avenue to speed up the time-consuming step of 
regression if one’s workstation is a multicore system. The authors included a script to split the 
input data into smaller pieces which could than be processed separately and merged afterwards 
using UNIX commands. 
 
A package for the comprehensive analysis of genome-wide DNA methylation data that can 
handle large data is RnBeads [47], which internally relies on the ‘ff’ package. The R package ‘ff’ 
[72] allows work with datasets larger than available RAM by storing them as temporary files and 
providing an interface to enable reading and writing from flat files and operate on the parts that 
have been loaded into R. 
 
The methylKit package provides very similar capability by exploiting flat file databases to 
substitute in-memory objects if the objects grow too large. The internal data apart from meta 
information has a tabular structure storing chromosome, start/end position, strand information of 
the associated CpG base just like many other biological formats like BED, GFF or SAM. By 
exporting this tabular data into a TAB-delimited file and making sure it is accordingly position-
sorted it can be indexed using the generic Tabix tool [66]. In general “Tabix indexing is a 
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generalization of BAM indexing for generic TAB-delimited files. It inherits all the advantages of 
BAM indexing, including data compression and efficient random access in terms of few seek 
function calls per query.” [73]. MethylKit relies on Rsamtools 
(http://bioconductor.org/packages/release/bioc/html/Rsamtools.html) which implements tabix 
functionality for R and this way internal methylKit objects can be efficiently stored as 
compressed file on the disk and still be fast accessed. Another advantage is that existing 
compressed files can be loaded in interactive sessions, allowing the backup and transfer of 
intermediate analysis results. 
 
 
 

7. Annotation of DMRs/DMCs and segments  
The regions of interest obtained through differential methylation or segmentation analysis often 
need to be integrated with genome annotation datasets. Without this type of integration, 
differential methylation or segmentation results will be hard to interpret in biological terms. The 
most common annotation task is to see where regions of interest land in relation to genes and 
gene parts and regulatory regions: Do they mostly occupy promoter, intronic or exonic regions ? 
Do they overlap with repeats ? Do they overlap with other epigenomic markers or long-range 
regulatory regions ? These questions are not specific to methylation -nearly all regions of 
interest obtained via genome-wide studies have to deal with such questions. Thus, there are 
already multiple software tools that can produce such annotations. One is the Bioconductor 
package genomation [74]. It can be used to annotate DMRs/DMCs and it can also be used to 
integrate methylation proportions over the genome with other quantitative information and 
produce meta-gene plots or heatmaps. Another similar package is ChIPpeakAnno [75], which is 
designed for ChIP-seq peak annotation but could also be used for DMR/DMC annotation to a 
certain degree. 
 
 

8. Workflows and tools that do not require programming 
experience  
Software packages for the analysis of whole genome bisulfite sequencing data perform 
computationally intensive tasks and are therefore hosted on advanced hardware infrastructures. 
Moreover, the majority of the tools require programming knowledge (e.g. writing R commands). 
If the local execution of those tools is not feasible due to insufficient processing power or 
expertise, using an online service could be an alternative. For example, an analysis workflow on 
the RnBeads web service is started by simply uploading the data and setting a handful of 
options through a web form. The limitations it imposes on file size, however, make it infeasible 
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for large datasets. Galaxy is an open source, web-based platform for data intensive biomedical 
research (see https://galaxyproject.org), providing access to publicly available servers and tools 
dedicated to data processing and analysis. A curated list of tools exists at 
https://toolshed.g2.bx.psu.edu hosting 4300 different programs for use within Galaxy at the time 
of writing, including methylKit 
https://toolshed.g2.bx.psu.edu/view/rnateam/methylkit/a8705df7c57f) and RnBeads 
(https://toolshed.g2.bx.psu.edu/view/pavlo-lutsik/rnbeads/6b0981ab063e). 
WBSA is another freely available1 web service for WGBS and RRBS (http://wbsa.big.ac.cn/ ) 
data. It is a modular collection of custom scripts combined with widely used tools, such as BWA 
for alignment and FastQC for quality control. The focus of WBSA is on ease of use. Uploading 
data and setting up analysis parameters is achieved using a small web form. The main 
advantages of this service are support for genome assemblies from 10 species, support for a 
range of sequencing protocols, as well as extraction and analysis of non-CpG methylation. More 
flexibility can be achieved by downloading and locally installing the modules, however, installing 
the WBSA back-end is a non-trivial task as its long list of dependencies includes tools and 
libraries from heterogeneous platforms: Java, MySQL, Perl, and R. 
 

9. Conclusions 
In this review, we have discussed the experimental and the computational methods for 
measuring and analysing DNA methylation in a genome-wide or targeted manner. We 
presented all the necessary steps of downstream analysis for bisulfite sequencing experiments 
starting from read alignment and quality check. We discussed and compared differential 
methylation and methylome segmentation methods. Our efforts for comparing differential 
methylation methods revealed that performances of different methods are comparable. One can 
choose methods based on the overall goal of their research. The methods that are stringent and 
limit the false positive rates are good for subsequent validation studies (DSS, limma, BSmooth, 
MethylKit with F-test and overdispersion correction), however these methods sacrifice sensitivity 
(true positive rate) for the sake of reducing false positives. A very relaxed method, such as the 
default methylKit method, has the best accuracy overall but highest false positive rate. A good 
alternative to stringent and relaxed methods is Chi-square test after overdispersion correction 
(implemented in methylKit). This method has high sensitivity without sacrificing too much for 
specificity. For segmentation methods, we observed high-concordance between cutoff-based 
methods and change-point analysis based methods. Change-point analysis methods are more 
flexible in the sense that they identify multiple biologically relevant segments within the same 
analysis.  For example, HMM or cutoff based methods should first remove partially methylated 
domains (PMDs) from the analysis in order to define LMRs. Whereas methods based on 
change-point analysis can identify LMRs and PMDs in the same step. 
 

                                                 
1 for academic use only 
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We believe with this guideline of methods for BS-seq analysis both bioinformaticians and 
experimental biologists will gain insight into experimental design as well as best practises for 
computational analysis. The code that we used to generate the results is available online on the 
website: https://github.com/BIMSBbioinfo/Strategies_for_analyzing_BS-seq 
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Figure 1. Workflow for analysis of DNA methylation using data from bisulfite sequencing 
experiments. 
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Figure 2. Comparison of DMC detection methods on simulated data. Barplots show sensitivity 
(a), specificity (b) and F-score (c) using DSS, limma, methylKit with Chi-squared or F-test. 
Overdispersion correction available only for methylKit has a suffix “-OC”. Effect size indicates 
methylation differences between two groups of samples (treatment and normal samples). 
Replicates in one group had elevated methylation in 50% of CpGs sites by accordingly 5%, 
10%, 15%, 20% and 25%. 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/109512doi: bioRxiv preprint 

https://doi.org/10.1101/109512
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 

Figure 3. Performance measurements of tools for DMCs detection based on the association 
between CTCF occupancy with methylation status in cell-type specific manner using the Wang 
et al data and the RRBS ENCODE data. Barplots show sensitivity (a), specificity (b) and F-score
(c) using BSmooth, DSS, limma, methylKit between pairs of multiple cell lines. MethylKit was 
performed using Chi-squared and F-test. MethylKit with overdispersion correction is depicted 
with “-OC” suffix. The absolute methylation percentage differences of DMCs found in CTCF 
peaks, that for given two cell lines, in one cell line has a gain and another lost of occupancy 
(true positives) are shown in subfigure d. 
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Figure 4. Comparison of features identified by segmentation tools analysing chromosome 2 of 
the H1 embryonic stem cells methylome. Boxplots show for each feature the distribution of (a) 
segment lengths in log10 transformed base pairs (bp) (b) CpG position covered by each 
segment in log10 transformed numbers (c) average methylation score per segment. (a) - (c) 
Boxplot colors indicate the tool generating the features either methylKit or MethylSeekR. (d) 
Heatmap showing the percentage of methylSeeker and methylKit segments that overlapped 
with chromatin state annotations for H1 embryonic stem cells. 
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Figure 5. Comparison of features identified using methylKit change-point based segmentation 
on Human IMR90 methylome with published PMDs identified with MethPipe [50],[2,69]. 
Boxplots show for each feature the distribution of (a) segment lengths in log10 transformed 
base pairs (bp) (b) CpG position covered by each segment in log10 transformed numbers (c) 
average methylation score per segment. (a) - (c) Boxplot colors indicate the tool generating the 
features either methylKit or MethylPipe. (d) Genome Browser View showing region chr10: 
117,786,314 - 121,271,788 of the hg19 assembly. The tracks are from top to bottom: “RefSeq 
Genes”, “Human_IMR90_PMD” from the Public “DNA Methylation” Track Hub [2],[50], Custom 
Segmentation Feature Track generated with methylKit, Human IMR90 methylome from 
Roadmap Epigenomics Project [71], CpG-Islands (track “cpgIslandExt”) from UCSC  
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Suppl. Figure 1. Barplots show number of true positives (TP), false negatives (FN), false 
positives (FP) and true negatives (TN) for each effect size (5%, 10%, 15%, 20% and 25%) on 
the simulated dataset using DSS, limma and methylKit tools. 
 

 
Suppl. Figure 2. Visualisation of common and unique DMCs generated by tools: DSS, limma, 
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methylKit using F-test with an overdispersion and Chisq test with and without the overdispersion 
correction using the simulated datasets. Empty intersections are now shown. 
 
 

 
 
Suppl. Figure 3. Number of true positives (TP), false negatives (FN), false positives (FP) and 
true negatives (TN) for each effect size (5%, 10%, 15%, 20% and 25%) on the CTCF 
occupancy with methylation status in cell-type specific manner using Wang et al data and the 
RRBs ENCODE data using DSS, limma and methylKit tools. 
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