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Abstract

The analysis of patterns of segregating (i.e. polymorphic) sites in aligned se-

quences is routine in population genetics. Quantities of interest include the

total number of segregating sites and the number of sites with mutations of dif-

ferent frequencies, the so-called site frequency spectrum. For neutrally evolving

sequences, some classical results are available, including the expected value and

variance of the spectrum in the Kingman coalescent model without recombina-

tion as calculated by Fu (1995).

In this work, we use similar techniques to compute the third moments of the

site frequency spectrum without recombination. We also account for the linkage

pattern of mutations, yielding the full haplotype spectrum of three polymorphic

sites. Based on these results, we derive analytical results for the bias of Tajima’s

D and other neutrality tests.

As an application, we obtain the second moments of the spectrum of linked

sites, which is related to the neutral spectrum of chromosomal inversions and

other structural variants. These moments can be used for the normalisation of

new neutrality tests relying on these spectra.
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spectrum; coalescent approximation; nested mutations; skewness.
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1. Introduction1

Statistics based on polymorphic loci are key to estimate relevant quantities2

in population genetics, such as the rescaled mutation rate θ. One common3

approach is to group variants together that appear with the same frequency in4

a sample and count the elements of each such group. The resulting summary5

statistic is called the site frequency spectrum.6

The frequency spectrum is one of the most relevant statistics for population7

genetics. It can be used to infer evolutionary parameters such as mutation and8

recombination rate, past population history, demography and selection (Hud-9

son, 1983; Nielsen et al., 2005; Hein et al., 2004). Often, the variants are10

biallelic SNPs that can be “polarized”, e.g. for each site it is possible to say11

which allele is ancestral and which one is derived. This is the case for sequences12

with low mutation rate per base and for which an outgroup sequence is avail-13

able. In what follows, we will consider exclusively this situation and assume14

that the evolution of these sequences can be modelled by a standard neutral15

Wright-Fisher model of constant population size.16

Watterson (1975) credits Fisher (1930) with the first derivation (for a17

special case) of the first moments of the frequency spectrum. Their statement for18

the continuous case can be found in (Ewens, 1979), where it follows from results19

of diffusion theory (Kimura, 1964). Watterson (1975) himself derived the20

first and second moments for the sum over all classes of the frequency spectrum,21

i.e. the number of segregating sites, using the technique of “moment estimators”.22

The full distribution of this quantity was shown by Tavaré (1984). The first23

and second moments for combinations of some components of the spectrum were24

later computed by Tajima (1989) using coalescent theory (Kingman, 1982) and25

combinatorics, while Fu (1995) completed this approach for the full frequency26

spectrum. A major application of his formulas is the normalisation of a class27

of neutrality tests such as Tajimas’s D (Tajima, 1989), as described by Achaz28

(2009). Recently, Hudson (2015) has given another proof of the first moments.29

As far as we know, higher moments of the spectrum have never been computed.30

2

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2017. ; https://doi.org/10.1101/109579doi: bioRxiv preprint 

https://doi.org/10.1101/109579
http://creativecommons.org/licenses/by-nc/4.0/


Asymptotic results for the distribution of the spectrum have been obtained31

by Dahmer and Kersting (2015). Their approach shows that for sample32

size n → ∞ and large θ (i.e. ignoring mutational Poisson noise), the first k33

components of the spectrum converge in distribution to i.i.d normal variables34

with mean θ/i and variance θ2 ln(n)/n. However, their method applies only to35

allele counts which are much smaller than the sample size, hence it does not36

provide information on the full frequency spectrum in finite samples.37

In this article we derive exact expressions for the third moments of the fre-38

quency spectrum. We use notation and approach of Fu (1995), with some39

technical modifications in order to keep the number of different cases manage-40

able. We derive independently by the approach of Watterson (1975) the third41

moment of the number of segregating sites and show the consistency of the two42

approaches. An immediate corollary of the third moments is the expected fre-43

quency spectrum for three linked segregating sites, which fully characterises the44

expected haplotype structure for triplets of sites.45

We present two applications. The first one concerns the bias of neutrality46

tests. Several neutrality tests based on the frequency spectrum, like Tajima’s47

D, should ideally have an expected value of zero, yet they don’t. For the first48

time, we obtain general expressions for the bias of these neutrality tests as a49

function of mutation rate and sample size.50

Finally, we derive the variance of the frequency spectra of nested and disjoint51

mutations at sites linked to a focal mutation. These spectra are equivalent to52

the spectrum of neutrally evolving chromosomal inversions (Ferretti et al.,53

2017). Moreover, they represent the basis for the derivation of the spectra of54

other structural variants. With these results, it is possible to obtain the proper55

normalisation for new Tajima’s D-like tests relying on the spectrum of linked56

mutations, e.g. neutrality tests for chromosomal introgressions or inversions.57

2. Results58

As is common practise in coalescent theory, we define θ as the population-59

scaled mutation rate per sequence, i.e. θ = 2pNeµL where p is the ploidy, Ne is60
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the effective population size, µ is the mutation rate per generation per bp and L61

is the length of the sequence in base pairs. We refer to the number of mutations62

of size i in a sample of n sequences (i.e. the frequency spectrum) as ξi.63

The model that we consider is the Kingman coalescent, with an infinite-sites64

model of mutations. We assume no recombination, i.e. complete linkage among65

sites.66

2.1. The third moments of the frequency spectrum67

Our main result is an analytical expression for the third moments of the68

frequency spectrum.69

70

Theorem 1.

E[ξhξiξj ] =δh=i=jτiθ + (δh=iτij + δi=jτhj + δj=hτhi) θ
2 + τhijθ

3 (1)

for 1 ≤ h, i, j < n. The functions τ are:

τi =
1

i
, (2)

τij = ta(i, j) + ta(j, i) + tb(i, j) + tb(j, i) (3)

with

ta(i, j) =

{
1
2 (βn(j)− βn(j + 1)) if j < i

1
2βn(j) if j = i

tb(i, j) =

{
1
ij −

1
i(i+j) −

1
2 (βn(j)− βn(j + 1)) if i+ j < n

αn(j)− 1
2βn(j) if i+ j = n ,

(4)

and1

τhij =
∑

Permutations(h,i,j)

taa(h, i, j) + tab(h, i, j) + tba(h, i, j) + tbb(h, i, j) (5)

1
∑

Perm.(h,i,j) f(h, i, j) = f(h, i, j) + f(i, j, h) + f(j, h, i) + f(h, j, i) + f(i, h, j) + f(j, i, h)

4
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with

taa(h, i, j) =


β5
n(i, j) if j < i and i < h

β4
n(i, j) if j < i and i = h

ζn(j) if j = i and i < h

δn(j)− αn(j) + 1
2βn(j) if j = i and i = h

tab(h, i, j) =

{
λn(h− i, i, j) if i+ j < h

β6
n(i, j) if i+ j = h

tba(h, i, j) =


λn(n− i, j, h)− λn(i, h, j) + β2

n(h, j)− β2
n(h, j + 1)− β5

n(i, j) if j < i and h+ i < n

α3
n(h, j)− β3

n(h, j) + α4
n(n− h, j)− β4

n(n− h, j) + β6
n(j, h) if j < i and h+ i = n

β2
n(h, j) + β3

n(j, h)− β6
n(h, j)− ζn(j) if j = i and h+ i < n

1
2

(
αn(j)− 1

2βn(j) + αn(n− j)− 1
2βn(n− j)

)
+ γn(j) if j = i and h+ i = n

tbb(h, i, j) =


1

(h+i+j)(h+i)h + 1
ij(h+i) −

1
ih(i+j)

−β2
n(i, j) + β2

n(i, j + 1)− λn(n− h− i, i, j) if h+ i+ j < n

α2
n(i, j)− β2

n(i, j)− β6
n(i, j) if h+ i+ j = n ,

(6)

using the following auxiliary functions (notation with upper indices):71

an =

n−1∑
i=1

1

i

αn(i) =
an − ai
n− i

βn(i) =
2(

n−1
i

)
i

n∑
k=2

(
n−k
i−1

)
k

γn(i) =
1(

n−1
i

)
i

n∑
k=2

(
n−k
i−1

)
k2

δn(i) =
1(

n−1
i

)
i

n∑
k=2

(
n−k
i−1

)
k(k − 1)

ak+1

α2
n(i, j) =

1

i
(αn(j)− αn(i+ j))

β2
n(i, j) =

1

2i
(βn(j)− βn(i+ j))

ζn(i) =
1

n− i− 1

(
2αn(i)− 1

2
βn(i)− 2δn(i)

)
(7)

72
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α3
n(i, j) =

n∑
k=3

k−2∑
t=1

(
i−1
t−1

)(
n−i−j−1
k−t−2

)(
n−1
k−1

) k − t
k(k − 1)

αk(t)

α4
n(i, j) =

n∑
k=3

k−1∑
t=2

(
i−j−1
t−2

)(
n−i−1
k−t−1

)(
n−1
k−1

) t

k(k − 1)
αk(t)

β3
n(i, j) =

n∑
k=3

k−2∑
t=1

(
i−1
t−1

)(
n−i−j−1
k−t−2

)(
n−1
k−1

) k − t
k(k − 1)

βk(t)

2

β4
n(i, j) =

n∑
k=3

k−1∑
t=2

(
i−j−1
t−2

)(
n−i−1
k−t−1

)(
n−1
k−1

) t

k(k − 1)

βk(t)

2

β5
n(i, j) =

1

n− i− 1

(
βn(j)− βn(j + 1)

2
− 2β4

n(i, j)

)
gn(i, j) =

n∑
k=2

k−1∑
t=1

(
i−1
t−1

)(
n−i−j
k−t−1

)(
n−1
k−1

) 1

k(k − 1)
βk(t)

β6
n(i, j) =

1

n− i− j

(
αn(j)− βn(j)

2
− gn(i, j)

)
+ α2

n(i, j)− β2
n(i, j)

(8)

λn(h, i, j) = (h− j + 1)β6
n(i, j)− 2(h− j)β6

n(i, j + 1) + (h− j − 1)β6
n(i, j + 2)

(9)

Remark 1. The coefficient for θ is the well known result for the expectation
of the frequency spectrum

E[ξi] = τiθ =
θ

i
. (10)

The terms τij are identical to the quadratic part of the second moments,73

E[ξiξj ] = δi=jτiθ + τijθ
2 , (11)

computed by Fu (1995): τij = σij + 1
ij , with σij defined in eq. (2) and (3)74

therein.75

76

Remark 2. Fu (1995) showed in his eq. (34), that for βn(i) exists a more
compact form, namely

βn(i) =
2n

(n− i+ 1)(n− i)
(an+1 − ai)−

2

n− i
,

where the summation over k is hidden in the an. We do not have a similar form77

for the other expressions, however β3
n and β4

n can be expressed in terms of gn,78

too. Hence in a computational implementation the speed limiting factor are the79

double summations in α3
n(i, j), α4

n(i, j) and gn(i, j).80

81
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Remark 3. The sum over permutations simplifies the fractions in tb resp. tbb∑
Permutations(i,j)

(
1

ij
− 1

i(i+ j)

)
=

1

ij
(12)

∑
Permutations(h,i,j)

(
1

(h+ i+ j)(h+ i)h
+

1

ij(h+ i)
− 1

ih(h+ j)

)
=

1

hij
. (13)

Remark 4. The central third moments can be obtained by

µ3[ξh, ξi, ξj ] =E[(ξh − E[ξh])(ξi − E[ξi])(ξj − E[ξj ])]

=E[ξhξiξj ]− E[ξh]E[ξiξj ]− E[ξi]E[ξhξj ]− E[ξj ]E[ξhξi] + 2E[ξh]E[ξi]E[ξj ] .

(14)

Remark 5. For the folded spectrum

ηi =
ξi + ξn−i

1 + δi=n−i

the corresponding third moments can be computed in a simnilar way as the
second moments (eq. (9) in Fu (1995))

E[ηhηiηj ] = (E[ξhξiξj ] + E[ξhξiξn−j ] + E[ξhξn−iξj ] + E[ξhξn−iξn−j ]

+E[ξn−hξiξj ] + E[ξn−hξiξn−j ] + E[ξn−hξn−iξj ] + E[ξn−hξn−iξn−j ])

· 1

(1 + δh=n−h)(1 + δi=n−i)(1 + δj=n−j)
.

(15)

2.2. The frequency spectrum of three linked sites82

The components taa, tab, tba and tbb correspond to different linkage patterns83

of three mutations (without recombination). The analogous pattern for two sites84

has been recently studied in Ferretti et al. (2017). Pairs of linked mutations85

are nested, when one mutation is present only in sequences containing the other,86

or disjoint, if the mutations are present in different sets of sequences. The nested87

and disjoint components of the frequency spectrum for pairs of sites give a88

complete description of the haplotype structure of two sites (up to permutations89

of individuals and sites).90
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Following the derivation in Ferretti et al. (2017), the frequency spectrum91

for triplets of segregating sites is given by92

E[ξh,i,j ] =



E[ξhξiξj ] for h 6= i, h 6= j, i 6= j

E[ξhξi(ξi − 1)]/2 = (E[ξhξ
2
i ]− E[ξhξi])/2 for i = j 6= h

E[ξhξi(ξh − 1)]/2 = (E[ξ2
hξi]− E[ξhξi])/2 for h = j 6= i

E[ξhξj(ξh − 1)]/2 = (E[ξ2
hξj ]− E[ξhξj ])/2 for h = i 6= j

E[ξh(ξh − 1)(ξh − 2)]/6 = (E[ξ3
h]− 3E[ξ2

h] + 2E[ξh])/6 for h = i = j

(16)

noticing that three derived mutations in different sites can have four possible93

relations:94

• fully nested : the second mutation i is nested inside the first h, and the95

third j is nested inside the second i.96

This component corresponds to taa(h, i, j).97

• disjoint within nested : the second and third mutations i, j are disjoint,98

but both are nested inside the first h.99

This component corresponds to tab(h, i, j).100

• nested within disjoint : the mutations h, i are mutually disjoint, but mu-101

tation j is nested inside i (and consequently j is disjoint to h, too).102

This component corresponds to tba(h, i, j).103

• fully disjoint : all mutations h, i, j are mutually disjoint.104

This component corresponds to tbb(h, i, j).105

Therefore, the spectrum of three sites can be easily decomposed by separating106

the components taa, tab, tba and tbb. This spectrum is equivalent to a complete107

characterization of the haplotype spectrum of three sites.108
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2.3. Comparison with the third moments of the number of segregating sites109

We derive by the method of Watterson (1975) the third moments for the110

number of segregating sites S =
∑n−1
i=1 ξi.111

Theorem 2. Writing Hn,m =
∑n
i=1

1
im for the n-th harmonic number of order

m, the third moment (resp. central moment) of the number of segregating sites
S for a sample of size n is:

E[S3] = Hn−1,1θ + 3(H2
n−1,1 +Hn−1,2)θ2 + (H3

n−1,1 + 3Hn−1,1Hn−1,2 + 2Hn−1,3)θ3

µ3[S] = E[(S − E[S])3] = Hn−1,1θ + 3Hn−1,2θ
2 + 2Hn−1,3θ

3

(17)

Since

n−1∑
h=1

n−1∑
i=1

n−1∑
j=1

E[ξhξiξj ] = E[S3]

and

n−1∑
h=1

n−1∑
i=1

n−1∑
j=1

µ3[ξh, ξi, ξj ] = µ3[S],

following from Theorem 1 and Theorem 2, the corresponding coefficients for θ,112

θ2 and θ3 have to be the same. We give in the supplement an explicit proof of113

the non-trivial identities of the coefficients for θ2 and θ3 stated as:114

Lemma 1.

n−1∑
i=1

n−1∑
j=1

τij = H2
n−1,1 +Hn−1,2

n−1∑
h=1

n−1∑
i=1

n−1∑
j=1

τhij = H3
n−1,1 + 3Hn−1,1Hn−1,2 + 2Hn−1,3 .

2.4. Skewness and bias of Tajima’s D and similar neutrality tests115

One of the applications of the frequency spectrum is to test if the observed116

patterns in sequences are compatible with neutral evolutionary models. Several117
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neutrality tests fall into a general class that relies on normalized linear com-118

binations of the frequency spectrum (Achaz (2009), Ferretti et al. (2010)).119

Their general form is120

TΩ =

∑n−1
i=1 iΩiξi√

Var[
∑n−1
i=1 iΩiξi]

,
n−1∑
i=1

Ωi = 0 (18)

where the variance in the denominator

Var

[
n−1∑
i=1

iΩiξi

]
= θ

n−1∑
i=1

i2Ω2
i τi + θ2

n−1∑
i,j=1

ijΩiΩj

(
τij −

1

ij

)
is a linear combination of θ and θ2. These two quantities, if unknown, are121

usually estimated from S and S2 by the method of moments: θ̂ = S/Hn−1,1122

and θ̂2 = S(S − 1)/(H2
n−1,1 +Hn−1,2).123

In this section, we explore the additional information that the third moments124

of the spectrum reveal about the distribution of neutrality tests, in particular125

about their skewness and bias.126

[Table 1 about here.]127

First, we consider the case of known θ. It is well known the distributions of128

neutrality tests based on the frequency spectrum such as Tajima’s D (Tajima,129

1989) tend to be skewed (Hudson, 1991). These tests are normalized to mean130

0 and variance 1 under the neutral coalescent with constant population size:131

E[TΩ] = 0 and Var[TΩ] = 1. Consequently, the skewness γ = µ3/σ
3 equals the132

third moment of the test:133

γ(TΩ) = E[T 3
Ω] =

∑n−1
i=1

∑n−1
j=1

∑n−1
k=1 ijkΩiΩjΩk · E[ξiξjξk]

Var[
∑n−1
i=1 iΩiξi]

3/2
. (19)

The weights Ωi for some commonly used neutrality tests are given in Table134

1. Figure 1 shows, that analytical results and those from simulations with ‘ms’135

(Hudson, 2002) agree well. However, when the parameter θ has to be estimated136

from the data, as it is usually the case, the denominator of the test is a function137

of the estimator, contributing to the skewness. This has a relatively large effect,138

but surprisingly for most considered values of θ it reduces the skewness.139

140
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[Figure 1 about here.]141

[Figure 2 about here.]142

For θ unknown and estimated from S, we can still make use of the third

moments. In this case, we can compute an approximate result for the bias of

the test. We apply the following formula for the Taylor expansion of moments

of random variables2 X, Y with E[X] = 0 and Y > 0

E

[
X√
Y

]
≈ − E[XY ]

2E[Y ]3/2

and the fact that E[
∑n−1
k=1 kΩkξk] = 0 to obtain the bias:143

E[TΩ] ≈ −

∑n−1
k=1 kΩk

[
E[ξkS]/an

∑n−1
i=1 i

2Ω2
i τi + E[ξkS(S − 1)]/(a2

n + bn)
∑n−1
i,j=1 ijΩiΩj

(
τij − 1

ij

)]
2
[
θ
∑n−1
i=1 i

2Ω2
i τi + θ2

∑n−1
i,j=1 ijΩiΩj

(
τij − 1

ij

)]3/2
(20)

with E[ξkS] =
∑n−1
i=1 E[ξkξi] resp. E[ξkS

2] =
∑n−1
i,j=1E[ξkξiξj ].144

The above equation gives a reasonably good estimate of the bias of neutrality145

tests (Figure 2), taking into account that eq. (20) represents only the first term146

of a bivariate Taylor expansion.147

2.5. The variance of the frequency spectrum of linked sites148

We will use the nomenclature introduced by Sargsyan (2015) and expanded149

in Ferretti et al. (2017). We call a certain mutation of interest focal and we150

refer to it as φ. As above, further mutations that appear in at least one individ-151

ual together with it, are called nested while all others are called disjoint. Note,152

that the focal mutation φ itself is not included into neither. More specifically,153

we refer to the number of mutations of size i that are nested with the focal154

mutation by ξNi,φ and to those that are disjoint by ξDi,φ. Evidently, the number155

of overall occurrences of mutations of size i, given φ, is ξi,φ = ξNi,φ + ξDi,φ.156

2From the general expansion (e.g. Van Erp and Van Gelder (2007))

E

[
X
√
Y

]
≈

E[X]√
E[Y ]

−
E[XY ]− E[X]E[Y ]

2E[Y ]3/2
+

3E[X]Var[Y ]

8E[Y ]5/2
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We now condition on the focal mutation φ being a mutation of any size h and157

write: E[ξNi|h] = E[ξNi,φ]/E[ξh] resp. E[ξDi|h] = E[ξDi,φ]/E[ξh]. The expectation158

values of nested mutations are a corollary of the second moments derived by159

Fu (1995); they are given in Ferretti et al. (2017). The second moments of160

two nested respective two disjoint mutations, or between one nested and one161

disjoint mutation, are obtained directly from the above expressions of the third162

moments:163

Corollary 1.

E[ξNi|hξ
N
j|h] = h

δi=jta(h, i)θ +

tab(h, i, j) + tab(h, j, i) +
∑

Permutations(h,i,j)

taa(h, i, j)

 θ2


E[ξNi|hξ

D
j|h] = h (tab(i, j, h) + tab(i, h, j) + tba(j, h, i) + tba(j, i, h)) θ2

E[ξDi|hξ
N
j|h] = h (tab(j, i, h) + tab(j, h, i) + tba(i, h, j) + tba(i, j, h)) θ2

E[ξDi|hξ
D
j|h] = h

δi=jtb(h, i)θ +

tba(h, i, j) + tba(h, j, i) +
∑

Permutations(h,i,j)

tbb(h, i, j)

 θ2

 .

(21)

2.6. Numerical results164

In Figure 4 we compare the analytical results with the third moments from165

coalescent simulations. We use “ms” (Hudson, 2002) to generate samples and166

from their frequency spectra we calculate estimates of the third moments. For167

increasing sample size n the “off-diagonal” elements of the three-dimensional168

array of third moments get increasingly small; that’s why the maximum rela-169

tive error of the simulated data increases with n. The graphs show that with170

increasing number of samples, the values from simulations converge to our an-171

alytical results. However the convergence is extremely slow, indicating a large172

variance of the third moments.173

[Figure 3 about here.]174

Figure 4 shows all third moments for a sample of size n = 5. As in the two-175

dimensional case, the values of the diagonals (now in 3 dimensions) dominate.176
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177

In Figure 5 we compare the covariances of the standard frequency spectrum178

with the covariances between nested and disjoint mutations of a conditional179

spectrum. The spectra of nested, resp. disjoint, sites are still dominated by the180

variances, while the correlation of “mirror sites” (ξi and ξn−i in the standard181

spectrum), is lost. There is almost no correlation between nested and disjoint182

sites.183

[Figure 4 about here.]184

[Figure 5 about here.]185

2.7. Comparison with asymptotic analytical results186

Dahmer and Kersting (2015) showed the convergence of the distribution187

of the components of the spectrum to centered and rescaled i.i.d. Gaussian188

variables in the large n limit. More precisely, they state that for large θ, i.e.189

ignoring the Poisson noise, we have for fixed k190 √
n

ln(n)

(
ξ1 − θ, ξ2 −

θ

2
, . . . ξk −

θ

k

)
−→
n→∞

N(0, θ2 · 1k×k) . (22)

One could naively assume, that this means that in the limit of large n the ξks

could be treated as independent Gaussian random variables with mean θ/k and

variance θ2 ln(n)/n, leading to the approximation

E[ξhξiξj ]|θ3 = τhijθ
3 =E[ξh]E[ξi]E[ξj ] +

ln(n)

n
(δh=iE[ξj ] + δh=jE[ξi] + δi=jE[ξh])θ2 + o

(
ln(n)

n

)
(23)

This is however incorrect. The distribution of each component of the spectrum191

ξk shows excesses of outliers and heavy tails (Janson and Kersting, 2011),192

hence the convergence in distribution proved by Dahmer and Kersting does not193

imply the scaling of the moments.194

Figure 6 shows, that the asymptotics are of limited help for a particular195

finite sample size n, since only moments for h, i, j << n
2 , and only those with196

at least two indices differing, seem to be approximated reasonably well.197

[Figure 6 about here.]198

13

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2017. ; https://doi.org/10.1101/109579doi: bioRxiv preprint 

https://doi.org/10.1101/109579
http://creativecommons.org/licenses/by-nc/4.0/


3. Methods199

3.1. Proof of theorem 1200

3.1.1. Separation of estimation201

A coalescent tree is constructed by two independent stochastic processes,202

namely its branching pattern (the topology) and the lengths of its branches (co-203

alescent times). The idea of Fu (1995) is to decompose the tree into small parts,204

called lines, by cutting each branch along states, which are delineated by coa-205

lescent events. He first calculates all possible hierarchical relationships between206

those lines, thereby transforming a probabilistic problem into a combinatorial207

one. Second, he computes the estimated mutations on each line. This number208

is correlated between lines of the same state because of their shared lengths.209

The combined sum over the two quantities yields the desired second moments.210

We re-use method and notation of Fu (1995) with appropriate extensions. A211

thorough explanation of the main ingredients of his proof, albeit with somewhat212

different notation, has been given in Durrett (2008). An extended “reprint”213

of the more technical parts can be found in the supplement of our companion214

paper Ferretti et al. (2017).215

[Figure 7 about here.]216

We define index variables εkl(i), that indicate if the line l of state k has i217

descendants at state n, (e.g. they take the values 1 resp. 0). It follows that (cf.218

figure 7)219

ξi =

n∑
k=2

k∑
l=1

εkl(i)ξkl . (24)

In the following we use the fact, that the index l serves only to distinguish lines220

of the same state, but otherwise has no meaning, since all lines of the same221

state are equivalent. The indicator variables are idempotent (εkl(i)
2 = εkl(i))222

and independent of the length (resp. mutation rate) ξkl. The expectation values223

of the indicator variables correspond to probabilities, which we will define in the224

following subsection.225
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3.1.2. Averaging over topologies226

[Figure 8 about here.]227

We split the computation of the expectation values of the indicator variables

(which define the topology) into several cases, pictured in figure 8.

We recall, that the number of descendants of lines in the coalescent is equiva-

lent to that of balls of a specific colour in a so-called Pólya urn model whose

probability distribution is known and reviewed in e.g. Griffiths and Tavaré

(2003). We introduce the following notation: pk�n(t � i) is the probability that

t lines at state k have i descendants at state n. This probability is

pk�n(t � i) =

(
i−1
t−1

)(
n−i−1
k−t−1

)(
n−1
k−1

) . (25)

At this point it is helpful to define
(−1
−1

)
= 1, while binomial coefficients con-228

taining any other combination of one or two negative numbers are set to zero229

(Durrett, 2008). This makes it possible to subsume in the above and follow-230

ing formulas the case that t = k lines of state k yield i = n lines at state n231

(which is true with probability 1). Later on, these special cases will be resolved232

separately and none of the expressions in Results rely on this definition.233

234

The probability that t and u (different) lines at state k have respectively i

and j descendants at state n is

pk�n(t � i, u � j) =

(
i−1
t−1

)(
j−1
u−1

)(
n−i−j−1
k−t−u−1

)(
n−1
k−1

) . (26)

And for three such (non-overlapping) sets of lines the probability yields

pk�n(s � h, t � i, u � j) =

(
h−1
s−1

)(
i−1
t−1

)(
j−1
u−1

)(
n−h−i−j−1
k−s−t−u−1

)(
n−1
k−1

) . (27)

Using this notation we can now state the probabilities for different configu-

rations. We start with those derived by Fu: The probability, that one line at
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state k has i descendants at state n is (Fu, 1995, eq. (14))

p(k, i) =pk�n(1 � i)

=

(
n−i−1
k−2

)(
n−1
k−1

) .
(28)

The joint probability that one line at state k and one nested line at state k′ ≥ k

have i respective j descendants at state n is (Fu, 1995, eq. (18))

pa(k, i; k′, j) =
k′−1∑
t=1

pk�k′(1 � t)
t

k′
pk′�n(t− 1 � i− j, 1 � j)

=

k′−1∑
t=1

(
k′−t−1
k−2

)(
k′−1
k−1

) t

k′

(
i−j−1
t−2

)(
n−i−1
k′−t−1

)(
n−1
k′−1

) .

(29)

The joint probability that one line at state k and one disjoint (not nested)

line at state k′ ≥ k have i resp. j descendants at state n is (Fu, 1995, eq. (19)

and (20))

pb(k, i, k
′, j) =

k′−1∑
t=1

pk�k′(1 � t)
k′ − t
k′

pk�n(t � i, 1 � j)

=

k′−1∑
t=1

(
k′−t−1
k−2

)(
k′−1
k−1

) k′ − t
k′

(
i−1
t−1

)(
n−i−j−1
k′−t−2

)(
n−1
k′−1

) (30)

In the latter two cases the summation index t runs over the possible numbers

of descendants that the line of state k may have at state k′. Since no single line

can be ancestor of all k′ lines, this number has an upper limit of k′ − 1. There

are more constraints on t as detailled by Fu (1995) (e.g. a line from state k can

have at most k′ − k + 1 descendants at state k′, hence only t ≤ k′ − k + 1 is

meaningful), however these are already implicit in the binomial coefficients.

Note, that Fu defined these equations only for the case k < k′. Using the

special definition for the binomial coefficient, they include the case k = k′

(Durrett, 2008): if the lines are from the same state, then t = 1 and we

have pa(k, i; k, j) = δi=j
1
kp(k, i) and pb(k, i; k, j) = k−1

k

(n−i−j−1
k−3 )

(n−1
k−1)

. These two

equations correspond to eq. (14) and (15) of (Fu, 1995).

Hence the probability, that a line at k and a line at state k ≤ k′ have i resp. j
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descendants at state n yields for 2 ≤ k ≤ k′ ≤ n:

p(k, i; k′, j) = pa(k, i; k′, j) + pb(k, i; k
′, j) . (31)

Now we derive the probabilities involving three lines. These may be all of235

the same state, of two different states or of three different states. We assume236

k ≤ k′ ≤ k′′. We take a single line at each state k, k′ and k′′ respectively and237

subdivide along their possible relationships. We denote the lines l, l′ and l′′238

respectively. The six cases are (compare figure 8):239

• aa: l′ is a descendant of l and l′′ is a descendant of l′240

• ab: l′ and l′′ are both descendants of l, but l′′ is not a descendant of l′241

• ba(3): l′ is a descendant of l , but l′′ is not242

• ba(2): l′′ is a descendant of l, but l′ is not243

• ba(1): l′′ is a descendant of l′, but both are not descendants of l244

• bb: no line is a descendant of any of the other two lines245

As before, t counts the number of descendants of line l at state k′. t1 denotes

the number of descendants of l at state k′′, without the descendants of l′. t2

finally counts the descendants of line l′. We present here only the first case,

while all six cases are listed in the supplement.

paa(k, h; k′, i; k′′, j)

=
k′−1∑
t=1

k′′−2∑
t1=0

k′′−t1−1∑
t2=1

pk�k′(1 � t)
t

k′
pk′�k′′(t− 1 � t1, 1 � t2)

t2
k′′
pk′′�n(t1 � h− i, t2 − 1 � i− j, 1 � j)

=
k′−1∑
t=1

k′′−2∑
t1=0

k′′−t1−1∑
t2=1

(
k′−t−1
k−2

)(
k′−1
k−1

) t

k′

(
t1−1
t−2

)(
k′′−t1−t2−1
k′−t−1

)(
k′′−1
k′−1

) t2
k′′

(
h−i−1
t1−1

)(
i−j−1
t2−2

)(
n−h−1

k′′−t1−t2−1

)(
n−1
k′′−1

) .

(32)

Since the six cases cover all possible combinations, the total probablity that

three lines at state k, k′ and k′′ resp. (with k ≤ k′ ≤ k′′) have h, i and j resp.
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descendants at state n is given by

p(k, h; k′, i; k′′, j) =paa(k, h; k′, i; k′′, j) + pab(k, h; k′, i; k′′, j) + p
(3)
ba (k, h; k′, i; k′′, j)

+ p
(2)
ba (k, h; k′, i; k′′, j) + p

(1)
ba (k, h; k′, i; k′′, j) + pbb(k, h; k′, i; k′′, j) .

(33)

We now relate the indicator variables of eq. (24) to the above probabilities. For

two lines we have the three cases distinguished by Fu (1995, text and equations

without number, before eq. (22))

E[εkl(i)εk′l′(j)] =δi=jp(k, i) if k = k′ and l = l′

E[εkl(i)εk′l′(j)] =p(k, i; k, j) if k = k′

E[εkl(i)εk′l′(j)] =p(k, i; k′, j) else.

(34)

With three lines (still assuming k ≤ k′ ≤ k′′), this extends to:

E[εkl(h)εk′l′(i)εk′′l′′(j)] =δh=i=jp(k, i) if k = k′ = k′′ and l = l′ = l′′

E[εkl(h)εk′l′(i)εk′′l′′(j)] =δh=ip(k, i; k
′′, j) if k = k′ and l = l′

E[εkl(h)εk′l′(i)εk′′l′′(j)] =δi=jp(k, h; k′, i) if k′ = k′′ and l′ = l′′

E[εkl(h)εk′l′(i)εk′′l′′(j)] =p(k, h; k′, i; k′′, j) else.

(35)

3.1.3. Averaging over line lengths246

Proposition 1. For any 1 ≤ k, k′, k′′ < n, 1 ≤ l ≤ k, 1 ≤ l′ ≤ k′, 1 ≤ l′′ ≤ k′′

the following equation holds:

E[ξklξk′l′ξk′′l′′ ] =δk=k′=k′′δl=l′=l′′E[ξk1]

+ δk=k′=k′′(δl=l′ + δl=l′′ + δl′=l′′)E[ξk1]2

+ δk=k′δl=l′E[ξk1]E[ξk′′1] + δk=k′′δl=l′′E[ξk1]E[ξk′1] + δk′=k′′δl′=l′′E[ξk1]E[ξk′1]

+ (2δk=k′=k′′ + δk=k′ + δk=k′′ + δk′=k′′ + 1)E[ξk1]E[ξk′1]E[ξk′′1]

(36)

Proof. Let X be a random variable. It can be easily shown that, if X is

exponentially distributed (X ∼ Exp(λ)), then the first three moments of X

are E[X] = 1
λ , E[X2] = 2

λ2 and E[X3] = 6
λ3 . If X is Poisson-distributed

(X ∼ Poisson(µ)), then E[X] = µ, E[X2] = µ+µ2 and E[X3] = µ+ 3µ2 +µ3.

In agreement with the definition of the coalescent the ξkl are distributed as

ξkl ∼ Poisson( θ2Tk) with Tk ∼ Exp( 2
k(k−1) ). ξkl and ξk′l′ are independent if
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k 6= k′ while ξkl and ξkl′ are independent conditional on Tk for l 6= l′. We follow
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here an analogous derivation as in Wakeley (2008).

E[ξ3
kl] =E[E[ξ3

kl|Tk]]

=E[Tk
θ

2
+ 3(Tk

θ

2
)2 + (Tk

θ

2
)3]

=
2

k(k − 1)

θ

2
+ 3 · 2 4

k2(k − 1)2

θ2

4
+ 6

8

k3(k − 1)3

θ3

8

=
1

k(k − 1)
θ +

6

k2(k − 1)2
θ2 +

6

k3(k − 1)3
θ3

=E[ξk1] + 6E[ξk1]2 + 6E[ξk1]3

E[ξ2
klξkl′ ] =E[E[ξ2

klξkl′ |Tk]]

=E[E[ξ2
kl|Tk]E[ξkl′ |Tk]]

=E[(Tk
θ

2
+ (Tk

θ

2
)2)Tk

θ

2
]

=
2

k2(k − 1)2
θ2 +

6

k3(k − 1)3
θ3

=2E[ξk1]2 + 6E[ξk1]3

E[ξklξkl′ξkl′′ ] =E[E[ξklξkl′ξkl′′ |Tk]]

=E[E[ξkl|Tk]E[ξkl′ |Tk]E[ξkl′′ |Tk]]

=E[(Tk
θ

2
)3]

=
6

k3(1− 3)3
θ3

=6E[ξk1]3

E[ξ2
klξk′l′ ] =E[ξ2

kl]E[ξk′l′ ]

=
1

k(k − 1)k′(k′ − 1)
θ2 +

2

k2(k − 1)2k′(k′ − 1)
θ3

=E[ξk1]E[ξk′1] + 2E[ξk1]2E[ξk′1]

E[ξklξkl′ξk′l′′ ] =E[ξklξkl′ ]E[ξk′l′ ]

=
2

k2(k − 1)2k′(k′ − 1)
θ3

=2E[ξk1]2E[ξk′1]

E[ξklξk′l′ξk′′l′′ ] =E[ξk1]E[ξk′1]E[ξk′′1]

(37)

20

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2017. ; https://doi.org/10.1101/109579doi: bioRxiv preprint 

https://doi.org/10.1101/109579
http://creativecommons.org/licenses/by-nc/4.0/


3.1.4. Combining results247

We insert now the results for averaged topologies and averaged line lengths

into eq. (24):

E[ξhξiξj ] =E
[
(
n∑
k=2

k∑
l=1

εkl(h)ξkl)(
n∑

k′=2

k′∑
l′=1

εk′l′(i)ξk′l′)(
n∑

k′′=2

k′′∑
l′′=1

εk′′l′′(j)ξk′′l′′)
]

=
n∑
k=2

n∑
k′=2

n∑
k′′=2

k∑
l=1

k′∑
l′=1

k′′∑
l′′=1

E[εkl(h)εk′l′(i)εk′′l′′(j)]E[ξklξk′l′ξk′′l′′ ]

(38)

=δh=i=j

n∑
k=2

kE[εk1(h)]E[ξk1]

+
n∑
k=2

k2(δh=iE[εk1(i)εk2(j)] + δi=jE[εk1(j)εk2(h)] + δj=hE[εk1(h)εk2(i)])E[ξk1]2

+
n∑
k=2

n∑
k′=2

kk′(δh=iE[εk1(i)εk2(j)] + δi=jE[εk1(j)εk2(h)] + δj=hE[εk1(h)εk2(i)])E[ξk1]E[ξk2]

+ 2

n∑
k=2

kE[εk1(h)]E[ξk1]3

+
n∑
k=2

n∑
k′=2

kk′ (δh=iE[εk1(i)εk′1(j)] + δi=jE[εk1(j)εk′1(h)] + δj=hE[εk1(h)εk′1(i)])E[ξk1]2E[ξk′1]

+

n∑
k=2

n∑
k′=2

n∑
k′′=2

kk′k′′E[εk1(h)εk′1(i)εk′′1(j)]E[ξk1]E[ξk′1]E[ξk′′1]

=δh=i=j

n∑
k=2

kp(k, h)E[ξk1]

+ δh=i

n∑
k=2

n∑
k′=k

kk′(p(k, i; k′, j) + p(k, j; k′, i))E[ξk1]E[ξk2]

+ δi=j

n∑
k=2

n∑
k′=k

kk′(p(k, j; k′, h) + p(k, h; k′, j))E[ξk1]E[ξk2]

+ δj=h

n∑
k=2

n∑
k′=k

kk′(p(k, h; k′, j) + p(k, j; k′, h))E[ξk1]E[ξk2]

+
n∑
k=2

n∑
k′=k

n∑
k′′=k′

kk′k′′ ((p(k, h; k′, i; k′′, j) + p(k, i; k′, j; k′′, h) + p(k, j; k′, h; k′′, i)

+p(k, h; k′, j; k′′, i) + p(k, i; k′, h; k′′, j) + p(k, j; k′, i; k′′, h))E[ξk1]E[ξk′1]E[ξk′′1]

(39)
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Applying eq. (22) of (Fu, 1995) to the first term of (39) yields eq. (2):

n∑
k=2

kp(k, i)E[ξk1] =
θ

i
= τiθ , (40)

and applying his eq. (23) to the next three terms of (39) yields eq. (4):

n∑
k=2

n∑
k′=k

kk′(p(k, i; k′, j) + p(k, j; k′, i))E[ξk1]E[ξk2] = τijθ
2 . (41)

We now define the remaining terms (39) as functions

tx(h, i, j) = θ−3
n∑
k=2

n∑
k′=k

n∑
k′′=k′

kk′k′′px(k, h; k′, i; k′′, j)E[ξk1]E[ξk′1]E[ξk′′1]

(42)

where x stands for {aa, ab, ba(3), ba(2), ba(1), bb} and finally we set

tba(h, i, j) = t
(3)
ba (i, j, h) + t

(2)
ba (i, h, j) + t

(1)
ba (h, i, j). (43)

In the supplement we transform these functions to yield (6).248

We offer an implementation in C++ for numerical calculation of the third249

moments, given n and θ, using the expressions (1)-(6). Just for control, we250

implemented the unsimplified functions (42), too. Within rounding errors (<251

10−12) they yield the same values as (6) for all third moments E[ξhξiξj ] and252

tested sample sizes 2 ≤ n ≤ 17. With the algebraic computing software Mathe-253

matica (Wolfram Research, Inc., 2014) we were able to prove for the same254

range of n that the expressions are exactly equivalent. The source code is con-255

tained in the package “coatli”, downloadable at http://sourceforge.net/projects/coatli.256

3.2. Proof of theorem 2257

We derive the third moments of segregating sites S using the method of

Watterson (1975). He showed (his eq. (1.3a)), that the probability generating

function of S can be approximated for large population size N and small sample

size n by:

E[sS ] =

n−1∏
i=1

1

1 + 1
i θ(1− s)

. (44)
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From general probability theory we use the formula

E[S3 − 3S2 + 2S] =

(
d3

ds3
E[sS ]

) ∣∣∣∣
s=1

. (45)

Hence:

d3

ds3

n−1∏
i=1

1

1 + 1
i θ(1− s)

=
d2

ds2

n−1∑
j=1

1
j θ

1 + 1
j θ(1− s)

n−1∏
i=1

1

1 + 1
i θ(1− s))


=

d

ds

n−1∑
j=1

1
j2 θ

2

(1 + 1
j θ(1− s))2

n−1∏
i=1

1

1 + 1
i θ(1− s))

+
d

ds

n−1∑
j=1

1
j θ

1 + 1
j θ(1− s)

n−1∑
k=1

1
kθ

1 + 1
kθ(1− s)

n−1∏
i=1

1

1 + 1
i θ(1− s))


=

n−1∑
j=1

2 1
j3 θ

3

(1 + 1
j θ(1− s))3

n−1∏
i=1

1

1 + 1
i θ(1− s))

+
n−1∑
j=1

1
j2 θ

2

(1 + 1
j θ(1− s))2

n−1∑
k=1

1
kθ

1 + 1
kθ(1− s)

n−1∏
i=1

1

1 + 1
i θ(1− s))

+
n−1∑
j=1

1
j2 θ

2

(1 + 1
j θ(1− s))2

n−1∑
k=1

1
kθ

1 + 1
kθ(1− s)

n−1∏
i=1

1

1 + 1
i θ(1− s))

+
n−1∑
j=1

1
j θ

1 + 1
j θ(1− s)

n−1∑
k=1

1
k2 θ

2

(1 + 1
kθ(1− s))2

n−1∏
i=1

1

1 + 1
i θ(1− s))

+

n−1∑
j=1

1
j θ

1 + 1
j θ(1− s)

n−1∑
k=1

1
kθ

1 + 1
kθ(1− s)

n−1∑
l=1

1
l θ

1 + 1
l θ(1− s)

n−1∏
i=1

1

1 + 1
i θ(1− s))

.

(46)

Setting s = 1 gives

E[S3 − 3S2 + 2S] =

(
2
n−1∑
i=1

1

i3
+ 3

n−1∑
i=1

1

i2

n−1∑
i=1

1

i
+ (

n−1∑
i=1

1

i
)3

)
θ3 (47)

and inserting Wattersons results for the first and second moment (his eq. (1.4a)

and (1.5a))

E[S] =

n−1∑
i=1

1

i
θ

E[S2] =Var[S2] + E[S]2 = E[S] +
n−1∑
i=1

1

i2
θ2 + E[S]2
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yields our theorem 2:

E[S3] = E[S3 − 3S2 + 2S] + 3E[S2]− 2E[S]

=

(
2
n−1∑
i=1

1

i3
+ 3

n−1∑
i=1

1

i2

n−1∑
i=1

1

i
+ (

n−1∑
i=1

1

i
)3

)
θ3 + 3

(
n−1∑
i=1

1

i2
+ (

n−1∑
i=1

1

i
)2

)
θ2 +

n−1∑
i=1

1

i
θ .

4. Discussion258

Kingman’s coalescent (Kingman, 1982) is an extremely useful model to de-259

scribe the patterns of mutations in neutral populations. For this reason, coales-260

cent methods were used to compute analytically the expectation and covariance261

of the frequency spectrum (Fu, 1995). Here, we derive for the first time the262

third moments of the full frequency spectrum. We think, the third moments263

add a valuable building block to coalescent theory.264

Beyond their fundamental interest, our results have several applications.265

We show how to compute analytically the bias of neutrality tests. Moreover, we266

describe the joint frequency spectrum for triplets of sites (fully characterising267

their expected haplotype structure). In turn, these results can be used to im-268

prove neutrality tests and approaches based on composite likelihood (Kim and269

Stephan, 2002) and Poisson random field (Sawyer and Hartl, 1992).270

The conditional spectra can be used to characterize chromosomal inversions271

and introgressions (Ferretti et al., 2017). The evolution of inversions has272

been studied already a long time (Corbett-Detig and Hartl, 2012). Recent273

improvements of high-throughput sequencing technology allow their investiga-274

tion on a much larger scale (Sudmant et al., 2015). When alleles are found275

at intermediate frequency, it is not obvious, whether they are under balanc-276

ing selection, ongoing positive selection or just neutrally evolving by genetic277

drift (Hoffmann and Rieseberg, 2008). Patterns of polymorphisms in such278

regions may help to tackle this question. In regions with inversions, recombina-279

tion can be strongly inhibited (Kirkpatrick, 2010) which allows to partition280

the spectrum into nested and disjoint components with respect to the inverted281

sequences. Nested/disjoint spectra can hence be used to extend the class of282
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frequency spectrum based tests on neutrality to cope with genomic features283

such as inversions and introgressions. The proper normalisation of such tests284

requires the knowledge of the corresponding variances and covariances, which285

we derived.286

The main limit of our results is that they do not account for recombination287

between sites. Recombination is largely irrelevant for the spectrum of a single288

site, but becomes already relevant for pairs of sites. Therefore, applicability to289

biological data is limited to small regions or sequences with negligible recombina-290

tion. For this reason we present an application to the dynamics of chromosomal291

inversions. The patterns of mutations in these regions are naturally described in292

terms of the higher moments of the frequency spectrum without recombination.293

In particular, the expected spectrum of neutral inversions can be obtained from294

the second moments of the usual spectrum, as shown in Ferretti et al. (2017),295

while the variance of the spectrum of neutral inversions requires precisely the296

third moments of the spectrum derived here. Applications to the detection of297

balancing and positive selection in chromosomal inversions and other structural298

variants will be presented in future publications.299

Note that there is a close relation between the joint spectrum of multiple300

sites and the multi-allelic spectrum of a single locus (Ferretti et al., 2017). In301

fact, at low mutation rates, we can consider the multiple sites as a single locus302

with multiple alleles, and retrieve the multi-allelic spectrum for the locus by303

considering the frequencies of the m+ 1 alleles that result from the m polymor-304

phic sites. In this light, our results can be used to derive the full quadri-allelic305

frequency spectrum. This could be applied to several multiallelic variants, the306

more relevant being nucleotide polymorphism (which have at most four alle-307

les A,C,G,T). Related results can be found in Jenkins and Song (2011) and308

Bhaskar et al. (2012).309

The results in this paper apply to a sample of size n much smaller than the310

size of the population. The spectrum for large samples converges to the contin-311

uous population spectrum for triplets of sites. It would be interesting to derive312

analytically simple expressions for such a spectrum, similarly to Ferretti et al.313
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(2017). However, our expressions contain many explicit sums that prevent a di-314

rect computation. A further simplification of the expressions provided in this315

paper would be helpful.316
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Figure 1: Skewness of neutrality tests for sample size n = 50 (top) and n = 500 (bottom). The
analytical skewness was obtained by eq. (19). For simulations, the skewness was estimated

by γ̂ =
1
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∑
i(xi−x̄)3

( 1
n

∑
i(xi−x̄)2)

3
2

over 106 genealogies. The test values were calculated using the true

θ (green points) and Wattersons estimator θ̂ = S
an

(blue points), respectively.
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Figure 2: The bias of the tests mentioned in table 1 with sample size n = 50 (top) and n = 500
(bottom). Shown are the values of our analytical approximation and numerical data, obtained
by simulation with ’ms’, averaged over 106 genealogies.
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Figure 3: The relative error between expected (analytical) and observed (estimated from

simulated data) third moments. We computed errors e = max
h,i,j

|Ehij−Ohij |
Ehij

where Ohij was

averaged over 103 til 109 genealogies (number of samples). The figure shows the average over
100 of these errors. The colours indicate different sample sizes n.
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Linear term Quadratic terms Cubic terms

Figure 4: The expected values of all third moments for n = 5, θ = 1 and the respective
contributions of the linear, quadratic and cubic terms.
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Figure 5: Comparison between unconditional and conditional covariances. Left: unconditional
covariances Cov[ξi, ξj ] for sample size n = 10. The remainder graphs show the covariances
between mutations conditional on a mutation of size k = 10 in a sample of size n = 20.
The left middle shows the covariances between mutations nested within the focal mutation,
the right middle the covariances of mutations both disjoint and the rightmost the covariance
between nested and disjoint mutations.
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Figure 6: From (Dahmer and Kersting, 2015) follows, that mutations of small size within a
large sample are approximately independent. Shown is the ratio of our exact results (τhijθ

3)
to the asymptotic approximation (eq. (23)) for small fixed indices 1 ≤ h, i, j ≤ 4 and varying
sample size n. Left: all indices are the same; middle: two indices differ; right: all indices
differ.
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Figure 7: How do we calculate the expected number of mutations of size 2? For a tree
with this topology T only the lines ξ21, ξ22 and ξ33 have two descendants in the sample.
Thus we have ε21(2) = ε22(2) = ε33(2) = 1 and all other εkl(2) are zero. It follows, that
E[ξ2|Topology=T ] = E[ξ21] + E[ξ22] + E[ξ33]. E[ξkl] is the expected amount of mutations on
the line ξkl which is proportional to its length. Averaging over all topologies yields E[ξ2].
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Figure 8: The possible hierachical relationships between three lines of a coalescent tree and
their corresponding probabilities.
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Test weights Ωi reference
D(Tajima) (n− i)/

(
n
2

)
− 1/ian Tajima (1989)

D(Fu&Li) 1/ian − δi,1 Fu and Li (1993)
F(Fu&Li) (n− i)− δi,1 Fu and Li (1993)
H(Fay&Wu) (n− 2i)/

(
n
2

)
Fay and Wu (2000)

E(Zeng) 1/(n− 1)− 1/ian Zeng et al. (2006)

Table 1: Weights and references of the analysed neutrality tests.
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