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In the statistical learning language, samples are snapshots of random vectors drawn from some
unknown distribution. Such vectors usually reside in a high-dimensional Euclidean space, and thus,
the “curse of dimensionality” often undermines the power of learning methods, including community
detection and clustering algorithms, that rely on Euclidean geometry. This paper presents the idea
of effective dissimilarity transformation (EDT) on empirical dissimilarity hyperspheres and studies
its effects using synthetic and gene expression data sets. Iterating the EDT turns a static data dis-
tribution into a dynamical process purely driven by the empirical data set geometry and adaptively
ameliorates the curse of dimensionality, partly through changing the topology of a Euclidean feature
space Rn into a compact hypersphere Sn. The EDT often improves the performance of hierarchical
clustering via the automatic grouping information emerging from global interactions of data points.
The EDT is not restricted to hierarchical clustering, and other learning methods based on pairwise
dissimilarity should also benefit from the many desirable properties of EDT.

PACS numbers: 89.20.Ff, 87.85.mg

I. INTRODUCTION

Community detection, better known as clustering in
the literature of statistical learning [1–7], is a process of
merging similar nodes of a complex network into com-
munities (clusters) and often shows a hierarchical orga-
nization of communities at different levels of similarity.
Akin to the idea of renormalization group in physics,
decreasing the threshold for similarity leads to increas-
ingly coarse-grained pictures of the “microscopic” net-
work. The reduction in complexity can sometimes yield
more interpretable statistical models that could serve as
a basis for further classification analysis. Along this line,
we present an idea of transforming dissimilarity measures
to allow dynamic agglomeration of data points into com-
munities.

Complexity in networks is analogous to that in many-
body systems. Thus, clustering algorithms based on clas-
sical spin models have been designed by statistical physi-
cists; e.g. each data point is replaced by a spin, and the
similarity between points is computed from their Eu-
clidean distance and spin orientations [8, 9]. Although
such algorithms are both applicable and theoretically in-
teresting, they usually require intensive Monte Carlo sim-
ulations and are thus too complex to implement in prac-
tical data analysis compared to other popular determin-
istic clustering algorithms. With practicality in mind,
we present a nonlinear transformation of data set geome-
try and then pass the transformed geometric information
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to the standard hierarchical clustering algorithm widely
used in contemporary data analysis. We show that the
geometric transformation effectively captures a collective
interaction among all sample points and that such global
network interaction often improves the accuracy of com-
munity detection.

Most statistical learning algorithms utilize a pairwise

dissimilarity measure d
(0)
ij that depends only on the (i, j)-

pair of samples. In the context of Einstein’s theory of
gravity, or Riemannian geometry, the “geometry” is com-
pletely encoded in the metric tensor. This paper adopts
the same notion of geometry for a data set and focuses
on the information encoded in the dissimilarities between
all pairs of sample points. The n features of m samples
measured in an experiment are typically organized into
an n ×m matrix, with m samples represented as points
in Rn. Thus, the Euclidean Lp-metric directly defined on
the feature space Rn is among the most common pairwise
dissimilarities.

In high dimensions, however, the relative contrast be-
tween the farthest and nearest points measured by the
Lp-metric diminishes; consequently, the concept of near-
est neighbors, which serves as the foundation for clus-
tering, becomes increasingly ill-defined as the feature di-
mension increases [10–12]. This phenomenon is termed
“the curse of dimensionality,” analogous to the idea of
“more is different” for many-body systems [13]. Modifi-
cations of Euclidean distances are found to improve the
relative contrast for an artificial data cloud drawn from
a single distribution [10, 11], but fail in data drawn from
several distributions [12]. One way to address the loss of
contrast in high dimensions for multi-distribution data
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is to introduce an effective dissimilarity measure calcu-
lated from the number of shared nearest neighbors of two
data points, where each point is allowed to have a fixed
number of nearest neighbors [12]. The use of effective dis-
similarity reduces the effect of high feature dimensions in
subsequent computations; however, the choice of effective
dissimilarity function actually dictates the improvement.

This paper proposes a new effective dissimilarity trans-
formation (EDT), where all data points in the primary
feature space participate in redefining the effective dis-
similarity between any two given data points. Our main
motivation stems from the empirical formula for distance
correlation in statistics and the idea of heat flow on
a hypersphere in support vector machine classification
[15, 16]. Empirical distance correlation utilizes the co-
variance of pairwise distance between all samples to mea-
sure statistical association between two random vectors
[14]. In this spirit, our EDT can be viewed as measuring
the similarity between two data points by taking a dot
product of the corresponding columns of uncentered dis-
tance matrix. More precisely, transforming data to lie on
a hypersphere has been previously shown to yield several
advantages in machine learning [15, 16], so an interme-
diate step in EDT maps the columns of distance matrix
to points on a hypersphere before taking a dot product.
We show that this simple EDT improves the contrast be-
tween clusters in a geometrically interpretable manner
and that it is able to reshape a geometrically mixed data
distribution into separable clusters.

To be specific, the effective dissimilarity obtained from
EDT is beyond the pairwise level and globally captures
relations to all available sample points. Moreover, we also
observe that the EDT is a map defined on a non-negative
dissimilarity space Rm≥0 of samples, where typically the
sample size m is much smaller than the feature dimen-
sion n, thus providing an efficient dimensional reduction
scheme. Iteratively applying the transformation yields a

sequence d
(τ)
ij of EDT parametrized by a non-negative in-

teger τ . As τ increases, microscopic structures condense
locally, while inter-cluster macroscopic distinctions be-
come more evident. Since the heat kernels describing
heat diffused from a point source is parametrized by con-
tinuous time t ≥ 0, we may interpret EDT as a gen-
eralized nonlinear diffusion process in the dissimilarity
space driven by the distribution of samples. Iterating
EDT thus turns a static distribution of points into a dy-
namical process and often amplifies its power of cluster
separation.

II. RESULTS

A. Formulation of effective dissimilarity
transformation (EDT)

As observed in previous support vector machine (SVM)
classification studies [15, 16], hyperspherical geometry of-
ten improves classification accuracy. Motivated by these

results, we now introduce an effective dissimilarity trans-
formation based on a hyperspherical representation of
data clouds. To map sample points onto a hypersphere,
we will utilize the following hyperspherical transforma-
tion from non-negative space Rm \ {0} to a unit hyper-
sphere:

Definition 1 A hyperspherical projective map ϕ : Rm≥0 \
{0} → Sm−1 maps a vector x, with xi ≥ 0 and

∑m
i=1 xi >

0, to a unit vector x̂ ∈ Sm−1 where (x̂)i ≡
√
xi/
∑m
j=1 xj.

A useful measure of similarity on a hypersphere is the
cosine similarity:

Definition 2 For unit vectors x̂ = ϕ(x) and ŷ = ϕ(y)
obtained from non-negative vectors x,y ∈ Rm≥0 \ {0} via
the hyperspherical projective map, the cosine similarity is
the dot product x̂ · ŷ.

The EDT relies on this notion of cosine similarity, as
explained below.

Many algorithms – such as hierarchical clustering,
KMedoids, and KMeans – directly rely on some notion of
difference between samples. For example, the Euclidean
distance function is a popular measure of the difference
between two sample points in Rn. In statistical learn-
ing approaches based on pairwise differences, however,
we often relax the definiteness condition and triangular
inequality satisfied by a distance function and utilize in-
stead a more general and flexible measure of difference,
called the dissimilarity function:

Definition 3 A dissimilarity function defined on a man-
ifold M is a map d :M×M→ R≥0 satisfying

1. non-negativity: d(x, y) ≥ 0 for all x, y ∈M,

2. identity: d(x, x) = 0 for all x ∈M,

3. symmetry: d(x, y) = d(y, x) for all x, y ∈M.

UsuallyM = Rn, representing the sample space of origi-
nal data directly collected from experiments, and its non-
linear embedding into an abstract manifold is often only
implicitly defined through the dissimilarity function.

Dissimilarity functions are relatively easy to con-
struct; in particular, we can turn the cosine similar-
ity on Rn≥0\{0} into a dissimilarity function by defining

d(x,y) = 1− x̂ · ŷ = 1
2 ‖x̂− ŷ‖

2
. We here show that this

cosine dissimilarity function can be iteratively applied to
an initial dissimilarity measure and that this simple it-
eration leads to several robust properties desirable for
clustering applications.

More precisely, given an initial dissimilarity function
d(·, ·) and m sample points, organize the pairwise dissim-
ilarity of the samples into an m×m non-negative, sym-
metric dissimilarity matrix d(0). To apply our method,
we only need to assume the mild condition that each
column of d(0) is not a zero vector. We then define the
effective dissimilarity transformation on the space of such
matrices as follows:
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Figure 1. (a) A schematic illustration of the network structure
of effective dissimilarity transformations (EDT) parameter-

ized by τ . The (i, j)-th entry of d(τ) arises from transforming

the i- and j-th columns of d(τ−1). (b) Illustrations of perspec-
tive contraction effect of EDT. (c) Two ideal clusters with
radius r and centroid-centroid distance ` in R2. (d) The de-
tector used in the measurement of local deformation of data
distributions in R2. (e) An ideal cluster of radius r in R2 and
an outlier at distance ` from the cluster centroid. (f) An ideal
cluster of radius r in the xy-plane of R3 with symmetrically
located outliers on the z-axis at distance ` 1

2
= `

2
from cluster

centroid.

(a) (b) (c)

(d) (e) (f)

Figure 2. Results of Gedankenexperimente: (a) cluster con-
densation (Fig. 1(c)), (b) single outlier absorption (Fig. 1(e)),
(c, d) two outliers perpendicular to an ideal cluster (Fig. 1(f)),
(e, f) probabilistic sampling.

Definition 4 The effective dissimilarity transformation
(EDT) ψ : Rm×m≥0 → Rm×m≥0 is defined as[

ψ(d(0))
]
ij

=
1

2
‖ϕ(pi)− ϕ(pj)‖2 ,

where pi is the i-th column of the dissimilarity matrix d(0)

and ϕ is the hyperspherical projective map into Sm−1.
We denote d(1) ≡ ψ(d(0)).

The resulting d(1) is thus a cosine dissimilarity ma-
trix of the m samples newly represented by the columns
of the dissimilarity matrix d(0). Importantly, the pair-

wise dissimilarity captured by d(1) between any two sam-
ples measures how dissimilar are their respective d(0)

dissimilarities to all samples; in other words, each en-
try of d(1) depends on the global network structure en-
coded in d(0) as illustrated in Fig. 1(a). Iterating the
map composition ψ(τ+1) = ψ ◦ ψ(τ) yields a sequence
{ψ(τ)}∞τ=0 of EDTs and corresponding dissimilarity ma-
trices {d(τ)}∞τ=0, where ψ(0) is the identity map and
d(τ) = ψ(τ)(d(0)). The sequence of dissimilarity matrices
{d(τ)}∞τ=0 may be interpreted as inducing a data-driven
evolution or flow of sample points parametrized by τ .
This paper shows that the data-driven redefinition of dis-
similarity resulting from an iterated application of EDT
often leads to improved clustering results.

Even though EDT is simple in its definition and deter-
ministic in nature, its nonlinearity makes the flow of data
points difficult to study. Consequently, we first study
the properties of EDT by performing Gedankenexperi-
mente on carefully designed synthetic data sets shown in
Fig. 1(b-f) (accompanying simulation results in Fig. 2(a-
f)), and then test the power of these observed properties
in the setting of real data sets.

B. Gedankenexperimente of EDT

First consider the simple data set consisting of 3 dis-
tinct points, P1, P2, and P3, in Rn, for any n ≥ 2. Let P1

and P2 represent two ends of a ruler of length d
(0)
12 = a,

and let P3 represent an observer at distance b to the cen-
ter of the ruler; Fig. 1(b) shows two particular cases: (1)
the ruler and observer are colinear, and b > a/2; (2)
the observer and ruler form an isosceles triangle, and

d
(0)
23 = d

(0)
13 = c =

√(
a
2

)2
+ b2. In scenario (1), the

original distance d
(0)
12 between P1 and P2 is equal to the

ruler length and is also the observed distance d
(0)
13 − d

(0)
23

measured by the observer at P3, irrespective of the loca-

tion of P3; after EDT, however, both d
(1)
12 and the ratio

(d
(1)
13 − d

(1)
23 )/d

(1)
12 =

√
a
2b shrink as the observer moves

away (Appendix B 1). That is, in the limit b� a, the ef-
fective dissimilarity between P1 and P2 approaches zero,
and the observer at P3 cannot distinguish between P1

and P2 on the scale set by d
(1)
12 . In the language of hi-

erarchical clustering, the single, average, and complete
linkages become equivalent after EDT as P3 becomes a
clear outgroup. Similarly, in scenario (2), the effective
ruler length also shrinks as the observer moves away from

the other two points, i.e. d
(1)
12 = 1− c

a+c ↓ 0 as b/a ↑ ∞.
We can thus summarize these properties as a perspective
contraction effect:

Observation 1 The EDT dissimilarity between each
pair of points shrinks as an observer moves away from
the distribution of points. Consequently, compared to the
original dissimilarity, hierarchical clustering using the
EDT dissimilarity is insensitive to the choice of linkage.
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Figure 3. Comparison of hierarchical clustering results us-
ing Euclidean distance vs. EDT-enhanced Euclidean distance
with single, average, and complete linkages. The number of
clusters was chosen to be three in the analysis.

We verified this observation by comparing the perfor-
mance of Euclidean distance with its EDT dissimilarity
in the hierarchical clustering of three Gaussian clouds in
R2 using single, average and complete linkages (Fig. 3).
As often is the case with real data, the three linkages
based on the Euclidean distance led to different cluster-
ing results (Fig. 3 top row), whereas the EDT dissimilar-
ity was insensitive to the choice of linkage (Fig. 3 bottom
row).

We next replaced the ruler and observer in our first
model with two identical ideal clusters, each of which con-
sisted of a centroid point and ms uniformly distributed

satellites at radius d
(0)
cs = r in R2 (Fig. 1(c)). The dis-

tance between the two centroids was set to d
(0)
cc = ` > 2r,

and data distribution had two global mirror reflection
symmetries about (1) the line connecting two centroids,
and (2) the perpendicular bisector thereof. We compared
the changes in intra- and inter-cluster dissimilarities after
EDT and found that the two circles were deformed, but
the global mirror reflection symmetries were preserved.

We further measured the mean r̄′ ≡
〈
d
(1)
cs

〉
and `′ ≡ d(1)cc

and found the ratio `′/r̄′ to be an increasing function in
both `/r and ms; moreover, `′/r̄′ > `/r for any ` > 2r
(Fig. 2(a)). Thus, the EDT had the effect of forcing the
data points in each cluster to condense towards their re-
spective centroid location, a potentially desirable effect
that can help automatically merge data points into cor-
rect communities. We summarize our observation as a
cluster condensation effect:

Observation 2 For separable clusters, the EDT con-
denses the points within a cluster, while inflating the
space between clusters; this cluster condensation effect
becomes stronger with the number of points in each clus-
ter and also with the initial inter-cluster dissimilarity.

The previous two Gedankenexperimente were per-
formed on highly symmetric data sets. To probe the local
deformation induced by EDT on a generic data distribu-

Figure 4. The ν-distribution for three data sets: (1) two
Gaussian distributions with equal variance, but different sam-
ple sizes mleft = 70 and mright = 30 (top); (2) two layers of
circularly distributed points with radius router = 2rinner (bot-
tom left); (3) points distributed in the shape of the word
“COS” (bottom right). Each ν-distribution was normalized
by dividing by its maximum; the white segment in each plot
indicates the diameter of the detector used in the measure-
ment of ν.

tion, we devised a detector, or a composite “test charge.”
The idea is generalizable to higher feature dimensions,
but to simplify the interpretation, we performed the sim-
ulation in R2, with the detector being an ideal cluster
of 12 sensor points at radius r from a centroid point
(Fig. 1(d)). Deviations of the detector from a perfect
circle in local ambient distributions were used to assess
the EDT impact landscape. We captured the deviations
through the transformed arm lengths {r′i}12i=1 of the 12
sensors after EDT; we then derived two scalar quantities
of interest: (1) the mean arm length ν = 〈r′i〉 that mea-
sures a volume change, and (2) the standard deviation
of {r′i/ν}

ms
i=1, denoted κ, that measures anisotropy or the

effect of “tidal force” from probed data points. The ob-
served volume changes were consistent with the effect of
“perspective contraction,” and the mean arm length ν
of the detector shrank as it moved away from high den-
sity regions of the probed data distribution (Fig. 4). The
κ-distributions were highly non-trivial, as illustrated in
Fig. 5: κ attained high values whenever the rim of the de-
tector was near a data point, indicating an intense tug-of-
war between the data points and the detector that were
both trying to capture the sensors; by contrast, the nor-
malized κ almost vanished at the centers of two Gaussian
distributions, within the inner circle of the two layers of
circularly distributed points, and at the center of “O” in
the “COS” data. The low values of κ in the interior of
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Figure 5. The κ-distribution for three data sets: (1) two Gaus-
sian distributions with equal variance, but different sample
sizes mleft = 70 and mright = 30 (top); (2) two layers of circu-
larly distributed points with radius router = 2rinner (bottom
left); (3) points distributed in the shape of the word “COS”
(bottom right). Each κ-distribution was normalized by divid-
ing by its maximum; the white segment in each plot indicates
the diameter of the detector used in the measurement of κ.

clustered data suggest a screening effect that shields the
interior from anisotropic distortions, akin to the shield-
ing effect of conductors in electrostatics; this effect may
potentially protect sub-cluster structures within a dense
cluster.

Inspired by the high values of κ near the boundary of a
cluster, we performed additional experiments to test the
effect of EDT on outliers, using (1) an ideal cluster in
R2 with ms satellites at radius r from the center point
and an additional single point at varying distance ` from
the center (Fig. 1(e)), and (2) the same ideal cluster in
the xy-plane of R3 and two outliers located on the z-
axis at z = ±`/2 (Fig. 1(f)). For the first case, Fig. 6
shows how a cluster of points traps an outlier and pre-
vents it from escaping the cluster. Furthermore, in both
cases, we observed that the trapping power increased
with cluster mass ms: in case (1), increasing ms reduced
the relative effective outlier-centroid dissimilarity `′/r̄′

and broadened the outlier region that got pulled back
towards the cluster (Fig. 2(b)); in case (2), increasing
ms also decreased the relative effective outlier-centroid
dissimilarity `′1

2

/r′ (Fig. 2(c)). We summarize the local

deformation effect, or the “tidal force” exerted by local
data distribution, as follows:

Observation 3 Under the EDT, data points deform the
local distribution of neighboring points such that potential
outliers tend to be trapped by a massive cluster. The

Figure 6. A cluster of points can pull back or “trap” an out-
lier. Figure shows the case illustrated in Fig. 1(e) for varying
values of the ratio `/r in the range [0.5, 1.5] and for 20 satel-
lite points. The top gray circles indicate the actual locations
of points in R2; the bottom colored circles illustrate the cor-
responding effective locations after EDT, where we doubled
the distortions to visualize the effect more clearly. As `/r
increased from left to right, the deformed circle behaved like
an elastic membrane trying to trap the outlier from escaping
and demonstrated singular behavior at ` = r.

deformation is strong near the exterior of a cluster and
almost completely screened inside the cluster.

In case (2), we also observed an intriguing paradox: the
transformed outlier-outlier dissimilarity `′ satisfied the
condition `′ < 2`′1

2

for all ` 1
2
/r > 0, and it even satisfied

the counter-intuitive inequality `′ < `′1
2

for sufficiently

large ` 1
2
/r and large ms (Fig. 2(d)). A resolution of this

paradox is achieved by noting that the points at infinity
become identified under EDT. For example, for the par-
ticular case of circularly distributed data points in R2,
as illustrated in Fig. 7, the outer rings of points become
increasingly similar as τ , indexing the EDT iteration, in-
creases; moreover, the effect becomes more pronounced
as the density of points at the center of the distribution
increases (bottom row in Fig. 7, Appendix B 4). In math-
ematical terms, adding the point at infinity to R2 yields
a compact sphere S2, and the above process can be visu-
alized as the outer rings diffusing towards the south pole
(Fig. 7).

We tested whether this property of EDT can help im-
prove clustering performance on synthetic data sets that
are known to confound simple algorithms. For this pur-
pose, we chose two clusters of data concentrically dis-
tributed with a gap in radial direction (Fig. 8). The EDT
dramatically improved the performance of hierarchical
clustering with Euclidean metric (Fig. 8); furthermore,
the EDT-enhanced hierarchical clustering outperformed
spectral clustering using Gaussian RBF as a measure of
similarity (Fig. 9). These observations can be summa-
rized as EDT’s global deformation effect:

Observation 4 EDT is able to globally warp the data
space on the length scale comparable to inter-cluster dis-
tances, such that points far from the majority distribution
become approximately identified. EDT thus topologically
changes Rn to Sn.

In application, the EDT will asymptotically group out-
liers that are very dissimilar to all clusters and may
be dissimilar among themselves into one “unclassifiable”
cluster in an automatic fashion.
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Figure 7. EDT approximately identifies the points at infin-
ity. We designed two uniformly circularly distributed data
sets with (1) a uniform increment in radius, or (2) a small
increment in radius near the center and a large increment for
the outermost three circles. For both data sets, the outer cir-
cles became relatively closer as τ increased. The effect was
more pronounced in the second case, and the outermost three
circles were visibly mapped to the south pole. The mapping
method can be found in Appendix B 4.
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Figure 8. Hierarchical clustering results on “easy” (top) and
“hard” (bottom) annulus data sets using Euclidean metric
(τ = 0) or EDT-enhanced dissimilarities up to three itera-
tions (τ = 1, 2, 3) and using average linkage. Dramatic im-
provements were seen after just one iteration of EDT.

Lastly, we considered the effect of EDT in a probabilis-
tic sense. The initial dissimilarity d(0) can be thought of
as a random matrix calculated from data sampled from
a probability distribution. We replaced the ideal clusters
in R2 in Fig. 1(c) by two independent bivariate Gaus-
sian distributions N1((−`1, 0)t, σ2

1) and N2((`2, 0)t, σ2
2)

located symmetrically about the origin, i.e. initially `1 =
`2. We then placed a test point at the origin and two
anchor centroids at x = −`1 and x = `2. Denoting the
transformed value of `i after one application of EDT by
`′i, we used Monte Carlo simulations to compute the prob-
ability P(`′1 > `′2), which may be viewed as the probabil-
ity that the test point is clustered withN2. We performed
the calculation in two different settings: (1) N1 and N2

have same number of samples (m1 = m2), but different
variances; and (2) N1 and N2 share the same variance
(σ2

1 = σ2
2), but different number of samples. We found

that the test point was more likely to join (1) a cluster
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Figure 9. Spectral clustering results for the “easy” (top) and
“hard” (bottom) data sets from Fig. 8 using the Gaussian
RBF kernel exp

(
−γ ‖x− y‖2

)
with γ = 0.05, 0.1 or 0.2 (first

3 columns) and the “nearest neighbors” method (last column)
retaining only 10 nearest neighbors of each point to assemble
a sparse similarity matrix. In SVM, nonlinear kernels with
tunable hyperparameters are usually more powerful than a
vanilla linear kernel x · y; however, an unthresholded con-
tinuous measure of relatedness between sample points is not
necessarily a bless for unsupervised learning algorithms.

drawn from the distribution with larger variance, con-
sistent with the local deformation effect that absorbs an
outlier near the boundary of a cluster into the cluster,
or (2) a cluster with fewer samples, consistent with the
global deformation effect of EDT that makes points from
the majority distribution similar to each other. More
precisely, we empirically found the P(`′1 > `′2) to be a hy-
perbolic tangent sigmoid function in m1/(m1 +m2) and
− log2(σ1/σ2), as shown in Fig. 2(e-f).

C. Application of EDT in two gene expression data
sets

We tested the power of EDT on two publicly available
gene expression data sets: (1) 59 cancer cell lines from
NCI60 in 9 cancer types, (2) 116 blood cell samples in
4 cell types from human hematopoietic stem cell differ-
entiation data set [17], with 4,000 most variable genes
in each data set as features. We performed hierarchical
clustering using the first few iterations of EDT dissim-
ilarity. We used the variation of information (VI) as a
well-defined distance between two clustering results [7];
using the given cell types as the reference clustering, we
optimized the threshold for cutting the dendrogram into
clusters and quantified the performance of clustering with
the minimum distance to reference clustering (Fig. 10).

For the NCI60 data, the original Euclidean distance
(τ = 0) gave minimum VI of 1.042; but, after two rounds
of EDT (τ = 2), the VI reduced by 31.7% to 0.712 (top
two rows in Fig. 10). The original Euclidean distance
failed to combine all leukemia (LE) cell lines, but EDT
(τ = 2, 3) brought LE cell lines together into a single
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Figure 10. Hierarchical clustering of NCI60 cancer cell lines
(row 1-2, m = 59 samples) and human differentiated blood
cells (row 3-4, m = 116 samples) with n = 4, 000 most variable
genes (with largest standard deviations across all samples) in
each each data set. For the NCI60 data, the original Euclidean
distance (τ = 0) gave minimum VI of 1.042; but, after two
rounds of EDT (τ = 2), the VI reduced by 31.7% to 0.712.
The original Euclidean distance failed to combine all leukemia
(LE) cell lines, but EDT (τ = 2, 3) brought LE cell lines
together into a single cluster. From the very beginning (τ =
0), the melanoma cell lines were in a distinct single cluster
except for one outlier LOXIM-VI, which is a desmoplastic
melanoma cell line and is biologically similar to neurofibroma.
Among the misclassified cell lines after two iterations of EDT,
the LOXIM-VI found itself more similar to the mixture cluster
of central nervous system (CNS) and breast cancer (BR) cell
lines. For the blood cell data, the original Euclidean distance
split the erythrocyte (Ek, where larger values of k indicate
latter stages of of maturity) samples into several small sub-
clusters, and the VI was 0.706. After one iteration of EDT,
the VI reduced by 54.0% to 0.325, and all Ek samples were
grouped into a single cluster with two branches – immature
red blood cells (E1, E2) and more mature blood cells (E3, E4,
E5) – well separated from the immune cells: T-cells, B-cells,
and natural killer (NK) cells. These results support that the
EDT can help improve clustering performance in real data
analysis.

cluster. From the very beginning (τ = 0), the melanoma
cell lines were in a distinct single cluster except for one
outlier LOXIM-VI. Among the misclassified cell lines af-
ter two iterations of EDT, the LOXIM-VI found itself
more similar to the mixture cluster of central nervous sys-
tem (CNS) and breast cancer (BR) cell lines; the result
is consistent with the fact that LOXIM-VI is a desmo-
plastic melanoma cell line and is biologically similar to
neurofibroma [18].

For the blood cell data, the original Euclidean dis-
tance split the erythrocyte (Ek, where larger values of
k indicate latter stages of of maturity) samples into sev-
eral small sub-clusters, and the VI was 0.706 (bottom

two rows in Fig. 10). After one iteration of EDT, the
VI reduced by 54.0% to 0.325, and all Ek samples were
grouped into a single cluster with two branches – im-
mature red blood cells (E1, E2) and more mature blood
cells (E3, E4, E5) – well separated from the immune cells
(T-cells, B-cells, and, natural killer cells). These results
support that the EDT can help improve clustering per-
formance in real data analysis.

III. DISCUSSION

In this paper, we have developed the notion of effec-
tive dissimilarity transformation to enhance the perfor-
mance of hierarchical clustering, utilizing only the ge-
ometric information of all pairwise dissimilarities. The
nonlinear transformation adjusts the dissimilarities ac-
cording to the global distribution of data points. The
EDT can be interpreted either as deformation of the fea-
ture space or as the result of emergent interactions among
all sample points. Specifically, we devised a probe to
detect local “tension,” or the force field due to ambi-
ent sample points, in a deformed feature space. On a
global scale, the EDT is able to change the topology of
original Euclidean feature space into a compact sphere.
Furthermore, iterating the EDT produces a discrete-time
dynamical process purely driven by data set geometry.
Using carefully designed Gedankenexperimente, we have
shown that EDT has the following properties: (1) per-
spective contraction, (2) cluster condensation, (3) local
deformation, and (4) global deformation effects. These
properties arise as different facets of the same mathemat-
ical transformation and, thus, should be interpreted in a
unified manner. The cosine similarity of EDT is akin to
distance correlation [14] and measures the similarity of
two random vectors obtained from pairwise similarities
to all sample points. Properties (1), (2) and (4) can be
understood as mutually enhancing the similarity among
a subset of points that share common dissimilar points,
while property (3) suggests that common similar points
can enhance the similarity between “local” or slightly less
similar points.

An adjustable regularizer, such as the number of near-
est of neighbors in spectral clustering, is able to qualita-
tively improve an unsupervised learning algorithm. We
have shown that spectral clustering [5] using Gaussian
RBF kernels may lead to suboptimal clustering even for
some easy synthetic data sets. The reason lies in the
fact that Gaussian RBF kernels produce a fully con-
nected network: after restricting each node to commu-
nicate with only a specified number of nearest neigh-
bors, the resulting similarity network became sparse and
the performance of spectral clustering improved. The
sequence of iterated EDT indexed by discrete “time” τ
plays a similar role in hierarchical clustering: increasing τ
brings similar sample points into tighter proximity, while
enhancing the contrast between clusters (communities).
The EDT thus helps hierarchical clustering by utilizing
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information about the global data distribution. Further-
more, the improvement in clustering accuracy arises from
the transformation of data set geometry; thus, any learn-
ing algorithm based on pairwise dissimilarity should also
benefit from the desirable properties of EDT.

Although the key properties of EDT were first ex-
tracted in low feature dimensions in this paper, these
advantages, arising from capturing the intrinsic geome-
try of data distribution, are independent of the feature
space dimension, as demonstrated by our finding that
EDT also improved the hierarchical clustering of two bi-
ological data sets containing 4, 000 features. As an ad-
ditional verification of the robustness of EDT in high
feature dimensions, our simulation shows that the EDT
helps increase the contrast in dissimilarity of bimodal
Gaussian clouds even in feature dimensions as high as
103, where EDT adapts to the increase in feature dimen-
sion by increasing the “time” index τ (Appendix B 5).
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Appendix A: Data preparation

Two public data sets were used in the hierarchical clus-
tering analysis: (1) NCI60 gene expression data in 59
cancer cell lines comprising 9 cancer types, and (2) 116
differentiated blood cell samples in 4 cell types from hu-
man hematopoietic cell (HHC) gene expression data [17].
The 9 cancer types in NCI60 data were 5 breast (BR), 6
central nervous system (CNS), 7 colon (CO), 6 leukemia
(LE), 10 melanoma (ME), 8 non-small cell lung (LC), 7
ovarian (OV), 2 prostate (PR), and 8 renal (RE) cancer.
The 4 cell types in the HHC data were red blood cells
or erythrocytes (E), T-cells (T), B-cells (B), and natural
killer cells (NK). For both data sets, approximately four
thousand most variable genes were selected as features.

Samples from each data set were first clustered with

the usual Euclidean distance d
(0)
ij = ‖xi − yj‖2 , and then

with the EDT dissimilarity d
(τ)
ij computed from d

(0)
ij . Av-

erage linkage was used in all hierarchical clustering anal-
ysis, unless indicated otherwise. To quantify the cluster-
ing performance unambiguously, the minimum distance
from a given clustering to the standard reference clus-
tering was found by measuring the variation of informa-
tion (VI), which is a well-defined metric function that
computes the distance between different partitions (clus-
terings) of a given set [7]. The reference clustering for
NCI60 was the known 9 cancer types (BR, CNS, CO,
LE, ME, LC, OV, PR, and RE); the reference clustering

for HHC was the known 4 cell types (E, T, B, and NK).

Appendix B: Effective dissimilarity transformation

The following properties of EDT mentioned in the
main article were obtained from the Gedankenexperi-
mente illustrated in Fig. 2(b-f).

1. Perspective contraction

The 3 points {P1, P2, P3} shown in Fig. 1(b) form two
distinct configurations: (1) aligned in a line, and (2)
forming a triangle in a plane. For case (1), let P1 and
P2 be at x = +a/2 and −a/2, respectively, and P3 at
x = b > a/2. Then, the original dissimilarity matrix is

d(0) =

 0 a b+ 1
2a

a 0 b− 1
2a

b+ 1
2a b− 1

2a 0

 ,

and the transformed feature vectors are:

p̂1 =
1√

b+ 3
2a

 0√
a√

b+ 1
2a

 ,

p̂2 =
1√

b+ 1
2a


√
a

0√
b− 1

2a

 ,

and

p̂3 =
1√
2b


√
b+ 1

2a√
b− 1

2a

0

 .

From these feature vectors, we compute the first EDT
dissimilarity matrix components to be

d
(1)
12 = 1− p̂1 · p̂2 = 1−

√
b− 1

2a

b+ 3
2a
,

d
(1)
13 = 1− p̂1 · p̂3 = 1−

√
a
(
b− 1

2a
)

2b
(
b+ 3

2a
) ,

and

d
(1)
23 = 1− p̂2 · p̂3 = 1−

√
a

2b
.

As b/a ↑ ∞, we have d
(1)
12 ↓ 0, d

(1)
13 ↑ 1, and d

(1)
23 ↑ 1;

in other words, the EDT ruler length will shrink to zero
if the observer moves away from the ruler. Next, we
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can calculate the relative dissimilarity, i.e. the observed
difference between P1 and P2 from the perspective of P3

measured in units of the transformed dissimilarity d
(1)
12 ,

to be

d
(1)
13 − d

(1)
23

d
(1)
12

=

√
a

2b
.

Therefore, as the observer moves away from the ruler,
the EDT ruler length shrinks to zero, but the observed
difference shrinks even faster. In the application of hi-
erarchical clustering, the diminishing difference between
the nearest (P2) and the farthest (P1) point with respect
to the outlier P3 implies that clustering derived from the
EDT tends to be robust against the choice of linkage,
which may be single (nearest point), average, or com-
plete (farthest point).

For case (2), we set up a Cartesian coordinate sys-
tem in R2 such that P1, P2, and P3 are located at
(0, a/2), (0,−a/2), and (b, 0), respectively, where we as-
sume a, b > 0. The original Euclidean distance matrix is
thus

d(0) =

0 a c
a 0 c
c c 0

 ,

where c =

√(
a
2

)2
+ b2. The transformed feature vectors

are

p̂1 =
1√
a+ c

 0√
a√
c

 ,

p̂2 =
1√
a+ c

√a0√
c

 ,

and

p̂3 =
1√
2

1
1
0

 .

The corresponding transformed dissimilarity matrix ele-
ments are

d
(1)
12 = 1− p̂1 · p̂2 = 1− c

a+ c
,

and

d
(1)
23 = d

(1)
13 = 1− p̂1 · p̂3 = 1−

√
1

2

a

a+ c
.

As b/a increases to infinity, d
(1)
12 monotonically decreases

to zero. Thus, the effective ruler length d12 approaches
0 from the perspective of point P3 as it moves far away.

2. Cluster condensation

When clustering real datasets, the contrast between
the inter-cluster distance and the intra-cluster variance is
often not very dramatic, making it very difficult to sepa-
rate the clusters. Therefore, if the data points could con-
dense to the respective centroid locations, then it would
improve clustering accuracy considerably; this effect is
precisely what EDT accomplishes. For the synthetic data
shown in Fig. 1(c), the EDT centroid-centroid dissimilar-

ity d
(1)
cc increased relative to the average centroid-satellite

distance
〈
d
(1)
cs

〉
, or the contrast captured by the ratio

d
(1)
cc /

〈
d
(1)
cs

〉
grew more rapidly than d

(0)
cc /d

(0)
cs . More-

over, for fixed d
(0)
cc /d

(0)
cs , increasing the number of satel-

lites ms around each centroid amplified the contrast ratio
(Fig. 2(a)).

Throughout the simulations, we did not use any infor-
mation about the cluster labels, and the improvement of
contrast is purely driven by the data. The dense clus-
ters condense while pushing themselves away from other
clusters. In other words, within a cluster, the EDT acts
similar to gravity, whereas the transformation inflates the
space between clusters.

3. Local deformation

In Fig. 1(e), r denotes the radius of the cluster and
` the distance between a single test point and the clus-
ter centroid. We simulated the effect of increasing ` on
the EDT. As `/r ↓ 1, we observed a window where the
transformed ratio `′/r̄′ was less than or equal to the lo-
cal peak at `/r = 1 (Fig. 2(b)). This phenomenon can
be interpreted as the cluster’s trying to reabsorb the test
point that is escaping to become an outlier. We also ob-
served that the range of absorption window increased as
the cluster size ms increased, thus making it easier for
an outlier to tunnel back to a denser cluster (Fig. 2(b)).
Moreover, the test point also deformed the shape of the
cluster, and the satellite points on the circle acted like
an elastic membrane that trapped the test point and hin-
dered it from escaping the cluster through elongation.

4. Global deformation

Consistent with the single test point example, the clus-
ter in Fig. 1(f) tended to attract the two escaping out-
liers, as manifested by the fact that as ms increased,
the ratio `′/r′ decreased (Fig. 2(c)). Counterintuitively,
`′/`′1

2

also dropped below 1 as `/r increased (Fig. 2(d));

that is, the two test points became more similar as they
departed from the cluster centroid in opposite directions.
This paradox can be resolved by merging the points at in-
finity to a single point, or by topologically transforming
the Euclidean space into a hypersphere. We explicitly
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Figure 11. Plots of the empirical function f that satisfies
`′ = f(θ′)`′max, where `′ is the EDT dissimilarity between two
neighboring points on a circle and θ′ is the EDT dissimilarity
between the centroid and the circle. The three plots on the
top (bottom) correspond to the top (bottom) three spheres
in Fig. 7

demonstrated our idea using two circularly distributed
data sets shown in Fig. 7. We first observed that the
effective dissimilarity between two neighboring points in
the outer rings shrank faster than that between neigh-
boring points in the inner rings. To better visualize this
phenomenon, we then displayed the dissimilarities on a
sphere using the following methods.

For a ring of k points distributed on a unit 2-sphere at
constant colatitude θ ∈ [0, π] and uniformly partitioned
longitude φi ∈ [0, 2π], i = 1, . . . , k, the latitude distance `
between any two neighboring points is equal to sin θ δφ,
where δφ = 2π/k. Thus, ` attains its maximum value
`max = δφ at the equator θ = π

2 . Note that regardless
of the size of δφ, we always have `/`max = sin θ; we will
utilize this fact to display the EDT-deformed concentric
rings shown in Fig. 7. For this purpose, it might appear
natural to identify the centroid as the north pole of the
sphere, and then identify the colatitude θ′ of a ring as
the EDT dissimilarity between the centroid and a point
on the ring. However, while the distance between two
neighboring data points on the sphere at such θ′ would
then be fixed to be sin θ′ δφ, the actual EDT dissimilarity
`′ might be different. We thus empirically calculated the
function f(θ′) that satisfies `′ = f(θ′)`′max. We then used
the location θπ

2
of the global maximum of f to calibrate

the equator location, and then calculated the effective
colatitude θ̃ defined as

θ̃ =

{
arcsin `′

`′max
θ′ ≤ θπ

2

π − arcsin `′

`′max
θ′ > θπ

2

to display the concentric rings on the sphere, as shown in
Fig. 7. Fig. 11 shows the f(θ′) for the two circular data
sets shown in Fig. 7 after τ iterations of EDT.

(a)

(b)

(c)

Figure 12. Plots of maximum and minimum dissimilar-

ities normalized by mean dissimilarity: d
(τ)
max/d̄

(τ) (solid)

and d
(τ)
min/d̄

(τ) (dashed) of two multivariate normal distribu-
tions N ((±`/2, 0, . . . , 0, 0)t, σ2In) in Rn with variations in (a)
`/σ = 0, (b) `/σ = 4, and (c) `/σ = 10. For all three cases

(a-c), EDT (τ > 0) enlarged the difference between d
(τ)
max/d̄

(τ)

and d
(τ)
min/d̄

(τ), and hence enhanced the contrast; when the
initial inter-cluster distance ` � σ, EDT with high index τ
preserved contrast dramatically relative to initial Euclidean
distance d(0), consistent with cluster condensation effect of
EDT.

5. EDT and the curse of dimensionality

The loss of contrast in Euclidean distance is one of the
symptoms of the curse of dimensionality; to be exact, the

longest distance d
(0)
max and shortest distance d

(0)
min between

any pair of points in a data set will both asymptotically
approach the mean distance d̄(0) in the large feature di-
mension limit n ↑ ∞. To see whether EDT can help im-
prove the contrast between clusters in high dimensions,
we simulated two n-dimensional Gaussian distributions
N ((±`/2, 0, . . . , 0, 0)t, σ2In), 100 points from each, for
`/σ = 0, 4, and 10. We then computed the Euclidean
distance matrix d(0) and subsequent effective dissimilar-
ity matrices {d(τ)}5τ=0. Fig. 12 shows the normalized

pairwise maximum (d
(τ)
max/d̄(τ)) and minimum (d

(τ)
min/d̄

(τ))
distance between data points in each dimension. The dif-

ference (d
(τ)
max−d(τ)min)/d̄(τ) generally became larger as the

EDT index τ increased, and the improvement in contrast
over the original Euclidean distance in high dimensions
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was very dramatic when ` � σ, as seen for n = 1000 in Fig. 12(c).
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